

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15345-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack**" for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6 "Indirect Addressing"** for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary**" for more details.

TABLE 4-4: PIC16(L)F15325/45 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register
	(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	_	10Ch	—	18Ch	SSP1BUF	20Ch	TMR1L	28Ch	TMR2	30Ch	CCPR1L	38Ch	PWM6DCL
00Dh	PORTB ⁽²⁾	08Dh	—	10Dh	—	18Dh	SSP1ADD	20Dh	TMR1H	28Dh	PR2	30Dh	CCPR1H	38Dh	PWM6DCH
00Eh	PORTC	08Eh		10Eh	—	18Eh	SSP1MASK	20Eh	T1CON	28Eh	T2CON	30Eh	CCP1CON	38Eh	PWM6CON
00Fh	—	08Fh	_	10Fh	—	18Fh	SSP1STAT	20Fh	T1GCON	28Fh	T2HLT	30Fh	CCP1CAP	38Fh	—
010h	—	090h	_	110h	—	190h	SSP1CON1	210h	T1GATE	290h	T2CLK	310h	CCPR2L	390h	—
011h	_	091h	—	111h	—	191h	SSP1CON2	211h	T1CLK	291h	T2ERS	311h	CCPR2H	391h	—
012h	TRISA	092h	—	112h	—	192h	SSP1CON3	212h	—	292h	—	312h	CCP2CON	392h	—
013h	TRISB ⁽²⁾	093h	—	113h	—	193h	—	213h	—	293h	—	313h	CCP2CAP	393h	—
014h	TRISC	094h	_	114h	—	194h	—	214h	—	294h	—	314h	PWM3DCL	394h	—
015h	—	095h	_	115h	—	195h	—	215h	—	295h	—	315h	PWM3DCH	395h	—
016h	—	096h	_	116h	—	196h	—	216h	—	296h	—	316h	PWM3CON	396h	—
017h		097h	—	117h	—	197h	—	217h	—	297h	—	317h	—	397h	—
018h	LATA	098h	_	118h	—	198h	—	218h	—	298h	—	318h	PWM4DCL	398h	—
019h	LATB ⁽²⁾	099h	—	119h	RC1REG1	199h	—	219h	—	299h	—	319h	PWM4DCH	399h	—
01Ah	LATC	09Ah		11Ah	TX1REG1	19Ah	—	21Ah	—	29Ah	—	31Ah	PWM4CON	39Ah	—
01Bh	_	09Bh	ADRESL	11Bh	SP1BRG1L	19Bh	—	21Bh	—	29Bh	—	31Bh	_	39Bh	—
01Ch	—	09Ch	ADRESH	11Ch	SP1BRG1H	19Ch	—	21Ch	—	29Ch	—	31Ch	PWM5DCL	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	RC1STA1	19Dh	—	21Dh	—	29Dh	—	31Dh	PWM5DCH	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh	TX1STA1	19Eh	—	21Eh	—	29Eh	—	31Eh	PWM5CON	39Eh	—
01Fh		09Fh	ADACT	11Fh	BAUD1CON1	19Fh	—	21Fh	—	29Fh	—	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
			General												
			Purpose												
	General		Register												
	Purpose		80 Bytes												
	Register												,,		· · j · · ·
	96 Bytes														
		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
		0F0h	Common RAM	170h	Common RAM	1F0h	Common RAM	270h	Common RAM	2F0h	Common RAM	370h	Common RAM	3F0h	Common RAM
			Accesses												
07Fh		0FFh	70h-7Fh	17Fh	70h-7Fh	1FFh	70h-7Fh	27Fh	70h-7Fh	2FFh	70h-7Fh	37Fh	70h-7Fh	3FFh	70h-7Fh

Note 1: Unimplemented locations read as '0'.

2: Present only in PIC16(L)F15345.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (0	Continued)										
1F38h	ANSELA	-	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	11 1111	11 1111
1F39h	WPUA	—	-	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000
1F3Ah	ODCONA	—	—	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	00 0000	00 0000
1F3Bh	SLRCONA	—	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	11 1111	11 1111
1F3Ch	INLVLA	—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
1F3Dh	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
1F3Eh	IOCAN	—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
1F3Fh	IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
1F40h					Unimple	mented				—	—
1F41h					Unimple	mented				—	—
1F42h			Unimplemented								—
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	—	—	—	1 1111	1 1111
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—	0 0000	0 0000
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—	0 0000	0 0000
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—	1 1111	1 1111
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—	1 1111	1 1111
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	0 0000	0 0000
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	0 0000	0 0000
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—	0 0000	0 0000
1F4Bh	_				Unimple	mented				—	—
1F4Ch	_				Unimple	mented				—	—
1F4Dh	_				Unimple	mented				—	—
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F6Fh	_	Unimplemented									_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15325/45

Legend:

Note 1:

Present only in PIC16(L)F15345.

FIGURE 10-2:	INTERRUPT LA	TENCY									
						Rev. 10-000289E 8/31/2016					
	$OSC1 \wedge \wedge$										
INT pin Valid Interrupt window ⁽¹⁾ 1 Cycle Instruction at PC											
Fetch P		PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006					
Execute PC	C - 21 PC - 1 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005					
	Indeterminate Latency										
Note 1: An inte 2: Since	errupt may occur at any ti an interrupt may occur a	ime during the in ny time during th	terrupt window ie interrupt wind	dow, the actual lat	ency can vary.						

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1					
	(4)			- 	
INT pin		. (1)	1	1 1 1	<u> </u>
INTF	, (1) (5)		Interrupt Latency ⁽²⁾	, , , ,	
GIE				1	
INSTRUCTION					
PC	(PC	PC + 1	PC + 1	X 0004h	X0005h
Instruction (Fetched	Inst (PC)	Inst (PC + 1)	—	Inst (0004h)	Inst (0005h)
Instruction (Executed	Inst (PC – 1)	Inst (PC)	Forced NOP	Forced NOP	Inst (0004h)
Note 1: IN	NTF flag is sampled here	e (every Q1).			
2: A	synchronous interrupt la atency is the same whe	atency = 3-5 Tcy. Sy ther Inst (PC) is a sing	nchronous latency = 3 gle cycle or a 2-cycle in	8-4 TCY, where TCY = struction.	instruction cycle time.
3: F	or minimum width of INT	f pulse, refer to AC sp	ecifications in Section	37.0 "Electrical Spe	cifications".

4: INTF may be set any time during the Q4-Q1 cycles.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	178
TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	178
LATA	_	_	LATA5	LATA4	—	LATA2	LATA1	LATA0	179
ANSELA	_	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	179
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	180
ODCONA	_	_	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	180
SLRCONA	_	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	181
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	181

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- The I²C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I²C and SMBus specific input buffers implemented (I²C mode disables INLVL and sets thresholds that are specific for I^2C). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	BCF INTCON, GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	MOVLW 0x55
	MOVWF PPSLOCK
	MOVLW 0xAA
	MOVWF PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	BSF PPSLOCK, PPSLOCKED
;	restore interrupts
	BSF INTCON, GIE

15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 and Table 15-2.

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		321	
CCP2CON	EN	—	OUT	FMT		MODE	<3:0>		321	
INTCON	GIE	PEIE	—	—	—	_		INTEDG	124	
PIE1	OSFIE	CSWIE	—	—	—	_	-	ADIE	126	
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	134	
PR2	Timer2 Mod	ule Period Re	gister							
TMR2	Holding Reg	ister for the 8	-bit TMR2 Re	gister						
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		310	
T2CLKCON	—	—	—	— CS<3:0>						
T2RST		—	—	_	— RSEL<3:0>					
T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			311	

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

30.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

30.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 30-9.

30.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the deadband counters. This is demonstrated in Figure 30-3.

30.6 Rising Edge and Reverse Dead Band

CWG1DBR controls the rising edge dead-band time at the leading edge of CWG1A (Half-Bridge mode) or the leading edge of CWG1B (Full-Bridge mode). The CWG1DBR value is double-buffered. When EN = 0, the CWG1DBR register is loaded immediately when CWG1DBR is written. When EN = 1, then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

30.7 Falling Edge and Forward Dead Band

CWG1DBF controls the dead-band time at the leading edge of CWG1B (Half-Bridge mode) or the leading edge of CWG1D (Full-Bridge mode). The CWG1DBF value is double-buffered. When EN = 0, the CWG1DBF register is loaded immediately when CWG1DBF is written. When EN = 1 then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 30-6 and Figure 30-7 for examples.

30.9 CWG Steering Mode

In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG1OCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG1OCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 30.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

30.9.1 STEERING SYNCHRONIZATION

Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 30-10 and Figure 30-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 30-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

REGISTER 30-8: CWG1CLK: CWG1 CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0				
-		—	—	—	—	—	CS				
bit 7 bit 0											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

|--|

bit 0

CS: CWG1 Clock Selection bit

1 = HFINTOSC 16 MHz is selected

0 = Fosc is selected

REGISTER 30-9: CWG1ISM: CWG1 INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	IS<3:0>				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4	Unimplemented: Read as '0'
---------	----------------------------

bit 3-0	IS<3:0>:	CWG1 Input Selection bits
	1111 =	Reserved. No channel connected.
	1110 =	Reserved. No channel connected.
	1101 =	LC4_out
	1100 =	LC3_out
	1011 =	LC2_out
	1010 =	LC1_out
	1001 =	Comparator C2 out
	1000 =	Comparator C1 out
	0111 =	NCO1 output
	0110 =	PWM6_out
	0101 =	PWM5_out
	0100 =	PWM4_out
	0011 =	PWM3_out
	0010 =	CCP2_out
	0001 =	CCP1_out
	0000 =	CWG11CLK

32.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSP1STAT)
- MSSP Control register 1 (SSP1CON1)
- MSSP Control register 3 (SSP1CON3)
- MSSP Data Buffer register (SSP1BUF)
- MSSP Address register (SSP1ADD)
- MSSP Shift register (SSP1SR) (Not directly accessible)

SSP1CON1 and SSP1STAT are the control and status registers in SPI mode operation. The SSP1CON1 register is readable and writable. The lower six bits of the SSP1STAT are read-only. The upper two bits of the SSP1STAT are read/write.

In one SPI master mode, SSP1ADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 32.7 "Baud Rate Generator"**.

SSP1SR is the shift register used for shifting data in and out. SSP1BUF provides indirect access to the SSP1SR register. SSP1BUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSP1SR and SSP1BUF together create a buffered receiver. When SSP1SR receives a complete byte, it is transferred to SSP1BUF and the SSP1IF interrupt is set.

During transmission, the SSP1BUF is not buffered. A write to SSP1BUF will write to both SSP1BUF and SSP1SR.

© 2016 Microchip Technology Inc.

33.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.

FIGURE 33-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

C4903 (ruhuhuhu Bitisetera	puhuhuhu seer	huhuhu	yvvv.	hynnh	futuri	uhuhuh	hin		AUNUAUNU; Adieared
8038558		. 34	,	····· · · · · · · · · · · · · · · · · ·	,	·/····································				, , , , , , , , , , , , , , , , , , ,
56666 Geo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99999999999999999999999999999999 1 1	9 1 1 2			3 3 3 		UUUUUUUU	fig 	2)
HXXXII I						(38)	arad dae ta	çiser Roud	er jacostata	
Ull. Street, Street			IIIIIIIIIIIIIIIIII See selestee taxee st	HIIIIIIIIIIIIII MARINA						

FIGURE 33-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

 $\Omega^{*}_{\rm c}$. The SUSARY reveales is its wide the Vibit bit is set.

33.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

33.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXxIF, the next data byte can be written to TXxREG.

	SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207		
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_		
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_		
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	—	_		

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832		
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207		
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103		
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25		
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23		
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12		
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_		
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_		

PIC16(L)F15325/45

© 2016 Microchip Technology Inc.

DS40001865B-page 455

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CLKREN	_		CLKRE	DC<1:0>	(CLKRDIV<2:0>	•
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CLKREN: Rei	ference Clock	Module Enable	e bit			
	1 = Referen	ce clock modul	e enabled				
	0 = Referen	ce clock modul	e is disabled				
bit 6-5	Unimplement	ted: Read as ')'				
bit 4-3	CLKRDC<1:0	>: Reference (Clock Duty Cy	cle bits ⁽¹⁾			
	11 = Clock ou	tputs duty cycl	e of 75%				
	10 = Clock ou	tputs duty cycl	e of 50%				
	01 = Clock ou	tputs duty cycl	e of 25%				
	00 = Clock ou	itputs duty cycl	e of 0%				
bit 2-0	CLKRDIV<2:0	0>: Reference	Clock Divider	bits			
	111 = Base cl	lock value divid	led by 128				
	110 = Base cl	lock value divid	led by 64				
	101 = Base cl	lock value divid	led by 32				
	011 = Base cl	lock value divid	led by 8				
	010 = Base cl	lock value divid	led by 4				
	001 = Base cl	lock value divid	led by 2				
	000 = Base cl	lock value					

REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

TABLE 37-14: COMPARATOR SPECIFICATIONS

Standard (VDD = 3.0V	Operating Co 7, TA = 25°C	_					
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage		_	±50	mV	VIEM = VDD/2
CM02	VICM	Input Common Mode Range	GND	_	Vdd	V	
CM03	CMRR	Common Mode Input Rejection Ratio	_	50	_	dB ≤	
CM04	VHYST	Comparator Hysteresis	15	25	35	mV	$\langle \langle \rangle$
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600 /	_ns/	
		Response Time, Falling Edge	_	220	500	7 ns	
CMOS6	Тмсv2vo(2)	Mode Change to Valid Output		_	10	NS/	\sim

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-15: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C											
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments				
DSB01	VLSB	Step Size		(VDACREF+ VDACREF-)/32		V					
DSB01	VACC	Absolute Accuracy	$ \nearrow $	\sim >-	± 0.5	LSb					
DSB03*	RUNIT	Unit Resistor Value		5000	_	Ω					
DSB04*	TST	Settling Time ⁽¹⁾	$\langle - \rangle$	✓ –	10	μS					

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard	Standard Operating Conditions (unless otherwise stated)											
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions					
FVR01	VKVR1	1x Gain (1.024V)	-4		+4	%	$\begin{array}{l} V\text{DD} \geq 2.5\text{V}, \ \text{-40}^{\circ}\text{C} \ \text{to} \\ 85^{\circ}\text{C} \end{array}$					
FVR02	VFVR2	2x Gain (2.048V)	-4		+4	%	VDD \ge 2.5V, -40°C to 85°C					
FVR03	XFVR4	4x Gain (4.096V)	-5		+5	%	$\label{eq:VDD} \begin{array}{l} V \text{DD} \geq 4.75 \text{V}, \ \text{-}40^{\circ}\text{C} \\ \text{to} \ 85^{\circ}\text{C} \end{array}$					
FVR04	TFVRST	FVR Start-up Time	—	25		us						
FVR05	FVRA1x/FVRC1x	FVR output voltage for 1x setting stored in the DIA		1024		mV						
FVR06	FVRA2x/FVRC2x	FVR output voltage for 2x setting stored in the DIA		2048		mV						
FVR07	FVRA4x/FVRC4x	FVR output voltage for 4x setting stored in the DIA	_	4096	_	mV						

© 2016 Microchip Technology Inc.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2016 Microchip Technology Inc.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support