

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15345t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: MEMORY ACCESS PARTITION

		Partition				
REG	Address	<u>BBEN</u> = 1 SAFEN = 1	<u>BBEN</u> = 1 SAFEN = 0	<u>BBEN</u> = 0 SAFEN = 1	<u>BBEN</u> = 0 SAFEN = 0	
	00 0000h ••• Last Boot Block Memory Address		APPLICATION	BOOT BLOCK ⁽⁴⁾	BOOT BLOCK ⁽⁴⁾	
PFM	Last Boot Block Memory Address + 1 ⁽¹⁾ ••• Last Program Memory Address - 80h	APPLICATION BLOCK ⁽⁴⁾	BLOCK ⁽⁴⁾	APPLICATION	APPLICATION BLOCK ⁽⁴⁾	
	Last Program Memory Address - 7Fh ⁽²⁾ ••• Last Program Memory Address		SAF ⁽⁴⁾	BLOCK ⁽⁴⁾	SAF ⁽⁴⁾	
CONF IG	Config Memory Address ⁽³⁾		COI	NFIG	1	

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0> given in Table 5-1.

2: Last Program Memory Address is the Flash size given in Table 4-1.

3: Config Memory Address are the address locations of the Configuration Words given in Table 13-2.

4: Each memory block has a corresponding write protection fuse defined by the WRTAPP, WRTB and WRTC bits in the Configuration Word (Register 5-4).

5.2 Register Definitions: Configuration Words

REGISTER	5-1: CC	NFIGURATIO	N WORD 1:	OSCILLATO	DRS		
		R/P-1	U-1	R/P-1	U-1	U-1	R/P-1
		FCMEN	_	CSWEN	_	_	CLKOUTEN
		bit 13					bit
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1
_	RSTOSC2	RSTOSC1	RSTOSC0	_	FEXTOSC2	FEXTOSC1	FEXTOSC0
bit 7	11010002	1010001	1010000		TEXTOODE		bit
Legend:							
R = Readable	bit	P = Programma	able bit	x = Bit is unkn	own	U = Unimpleme '1'	nted bit, read as
'0' = Bit is clea	ared	'1' = Bit is set		W = Writable b	bit	n = Value when Erase	blank or after Bul
bit 13	FCMEN: Fail- 1 = FSCM ti 0 = FSCM ti		or Enable bit				
bit 12	Unimplemen	ted: Read as '1'					
bit 11	1 = Writing t	ck Switch Enable to NOSC and NDI SC and NDIV bits	✓ is allowed	nged by user sof	tware		
bit 10-9	Unimplemen	ted: Read as '1'					
	1 = CLKOUT	<u>= EC (high, mid or</u> function is disable function is enable ored.	ed; I/O or oscill	ator function on			
bit 7	-	ted: Read as '1'					
bit 6-4	This value is 111 = EXTO 110 = HFIN 101 = LFIN 100 = SOS 011 = Rese 010 = EXTO 011 = Rese 010 = EXTO	С	value for COSC r FEXTOSC bits Q = 3'b010 with EXTOSC of with EXTOSC of	C and selects the s (device manufa operating per FE operating per FE	acturing default) XTOSC bits	ed by user softwa	re.
bit 3		ted: Read as '1'					
bit 2-0	FEXTOSC<2 111 = EC (110 = EC (101 = EC (100 = Osci 011 = Rese 010 = HS (001 = XT (:0>:FEXTOSC Ex External Clock) at External Clock) fo External Clock) be Ilator not enabled erved (do not use) Crystal oscillator) ; Crystal oscillator) ;	ove 8 MHz; PF r 100 kHz to 8 ľ elow 100 kHz above 4 MHz; F above 100 kHz,	M set to high po MHz; PFM set to PFM set to high below 4 MHz; F	wer (device manu medium power power PFM set to mediur	, , , , , , , , , , , , , , , , , , ,	

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

5.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

5.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 5.4** "Write **Protection**" for more information.

5.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRTAPP, WRTSAF, WRTB, WRTC bits in Configuration Words (Register 5-4) define whether the corresponding region of the program memory block is protected or not.

5.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16(L)F153xx Memory Programming Specification" (DS40001838).

REGISTER 17-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7						•	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Res			other Resets

bit 7-0

'1' = Bit is set

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

'0' = Bit is cleared

REGISTER 17-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7							bit 0

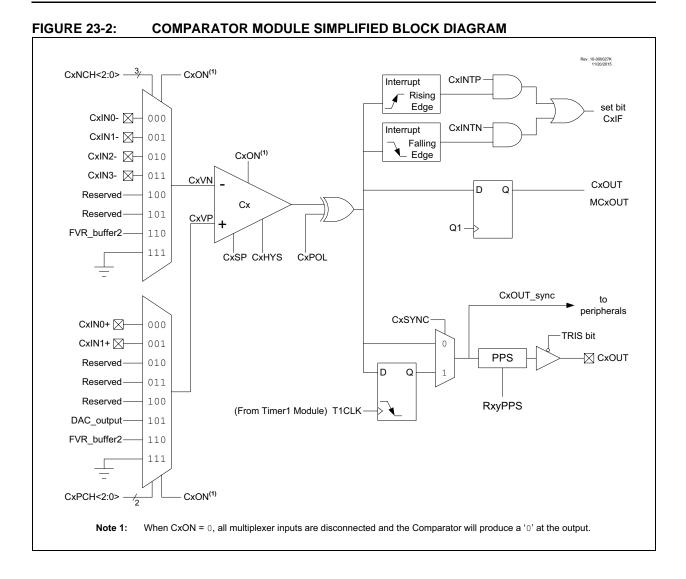
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER


R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0 **IOCCF<7:0>:** Interrupt-on-Change PORTC Flag bits

- 1 = An enabled change was detected on the associated pin
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change

Note 1: Present only on the PIC16(L)F15345 20-pin devices.

FIGURE 26-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	← Cleared by hardware c ← Cleared by hardware c falling edge of TxGVAL Counting enabled on rising edge of selected source	n -
Selected gate		
ТхСКІ		
TxGVAL		
TMRxH:TMRxL Count	$N \qquad \qquad$	
TMRxGIF	Set by hardware on Cleared by software falling edge of TxGVAL> Cleared by software	

27.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 27-3.

FIGURE 27-3:	TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10-000005 47/2010	
CKPS	0b010	
		L L
PRx	1	
	01.000.4	٦
OUTPS	0b0001	
TMRx_clk		-
TMRx)
TMRx_postscaled		_
TMRxIF	(1) (1)	-
Note 1: 2:	Synchronization may take as many as 2 instruction cycles	

28.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

The Capture/Compare/PWM modules available are shown in Table 28-1.

TABLE 28-1: A	VAILABLE CCP	MODULES
---------------	--------------	---------

Device	CCP1	CCP2
PIC16(L)F15325/45	•	•

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
T2CON	ON	CKPS<2:0>					OUTPS<3:0>			
T2TMR	Holding Regi	Holding Register for the 8-bit TMR2 Register							290*	
T2PR	TMR2 Period	TMR2 Period Register							290*	
RxyPPS	—	_	—		R	xyPPS<4:0>			200	
CWG1ISM	—	_	—	— — IS<3:0>					356	
CLCxSELy	_	_	LCxDyS<5:0>					367		
TRISA	—	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	178	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	189	

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.
 * Page with Register information.

Note 1: Present on PIC16(L)F15345 only.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN ^(1, 2)	REN)<1:0>	LSAC	<1:0>	_	_
bit 7							bit 0
Legend:							
HC = Bit is cleared	by hardware			HS = Bit is se	et by hardware	9	
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, rea	ad as 'O'	
u = Bit is unchange	ed	x = Bit is unk	nown	-n/n = Value a	at POR and B	OR/Value at al	I other Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on conc	dition	
bit 7 SHUTDOWN: Auto-Shutdown Event Status bit 1 = An Auto-Shutdown state is in effect 0 = No Auto-shutdown event has occurred							
bit 6	REN: Auto-R 1 = Auto-res 0 = Auto-res		bit				
bit 5-4	LSBD<1:0>: CWG1B and CWG1D Auto-Shutdown State Control bits 11 =A logic '1' is placed on CWG1B/D when an auto-shutdown event is present 10 =A logic '0' is placed on CWG1B/D when an auto-shutdown event is present 01 =Pin is tri-stated on CWG1B/D when an auto-shutdown event is present 00 =The inactive state of the pin, including polarity, is placed on CWG1B/D after the required dead- band interval						
bit 3-2	 LSAC<1:0>: CWG1A and CWG1C Auto-Shutdown State Control bits 11 =A logic '1' is placed on CWG1A/C when an auto-shutdown event is present 10 =A logic '0' is placed on CWG1A/C when an auto-shutdown event is present 01 =Pin is tri-stated on CWG1A/C when an auto-shutdown event is present 00 =The inactive state of the pin, including polarity, is placed on CWG1A/C after the required dead- band interval 						
bit 1-0 Unimplemented: Read as '0'							
	Note 1: This bit may be written while EN = 0 (CWG1CON0 register) to place the outputs into the shutdown configuration.						

REGISTER 30-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

U-1	U-1	U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—	—	AS4E	AS3E	AS2E	AS1E	AS0E			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
u = Bit is und	changed	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value de	pends on condit	ion				
bit 7-5	Unimplemen	ted: Read as ')'							
bit 4	AS4E: CLC2	Output bit								
		1 = LC2_out shut-down is enabled								
	0 = LC2_out	shut-down is d	isabled							
bit 3	AS3E: Compa	arator C2 Outp	ut bit							
		1 = C2 output shut-down is enabled 0 = C2 output shut-down is disabled								
L:1 0	•									
bit 2	•	arator C1 Outp								
	•	1 = C1 output shut-down is enabled 0 = C1 output shut-down is disabled								
bit 2	AS1E: TMR2 Postscale Output bit									
5112		1 = TMR2 Postscale shut-down is enabled								
0 = TMR2 Postscale shut-down is disabled										
bit 0 AS0E: CWG1 Input Pin bit										
		selected by CV								
	0 = Input pin	selected by CV	VG1PPS shut	-down is disab	led					

REGISTER 30-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N			
bit 7							bit (
Legend:						(a)				
R = Readable		W = Writable			nented bit, read					
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		Noto 2 Doto 4 1	True (non inve	rtad) bit						
		Gate 2 Data 4 1 (true) is gated i		,						
		(true) is not gate								
bit 6		Gate 2 Data 4 I								
		(inverted) is ga	•							
	0 = CLCIN3 (inverted) is not gated into CLCx Gate 2									
bit 5	LCxG3D3T: 0	LCxG3D3T: Gate 2 Data 3 True (non-inverted) bit								
	1 = CLCIN2 (1 = CLCIN2 (true) is gated into CLCx Gate 2								
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 2						
bit 4	LCxG3D3N:	Gate 2 Data 3	Negated (inver	rted) bit						
		 CLCIN2 (inverted) is gated into CLCx Gate 2 CLCIN2 (inverted) is not gated into CLCx Gate 2 								
		, ,	•							
bit 3		Gate 2 Data 2 T	· ·							
		(true) is gated i (true) is not gat								
bit 2		Gate 2 Data 2								
		(inverted) is ga	• ·	,						
		(inverted) is no								
bit 1		Sate 2 Data 1 1	•							
		N0 (true) is gated into CLCx Gate 2								
	0 = CLCIN0	(true) is not gat	ted into CLCx	Gate 2						
bit 0	LCxG3D1N:	Gate 2 Data 1 I	Negated (inver	rted) bit						
		(inverted) is ga								
	0 = CLCIN0	(inverted) is no	t gated into Cl	Cx Gate 2						

REGISTER 31-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

TABLE 31-4:	SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)
-------------	---

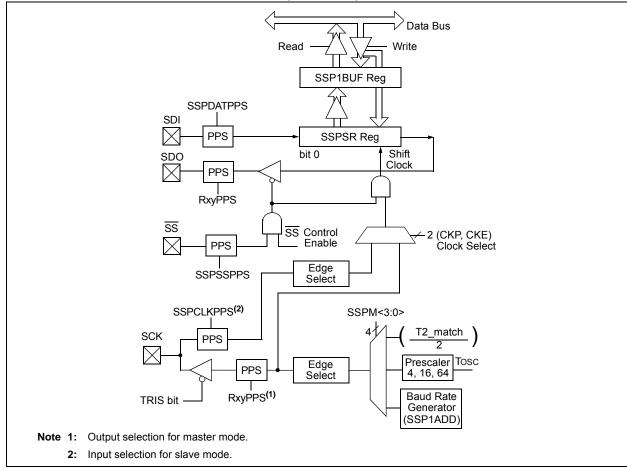
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLC4GLS1	—	_	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	369
CLC4GLS2	_	_	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	370
CLC4GLS3	_	_	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	371
CLCIN0PPS	_	_		CLCIN0PPS<5:0>					
CLCIN1PPS	_	_		CLCIN1PPS<5:0>					
CLCIN2PPS	_	_	CLCIN2PPS<5:0>						199
CLCIN3PPS	_	_		CLCIN3PPS<5:0>					

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

32.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1) MODULE

32.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

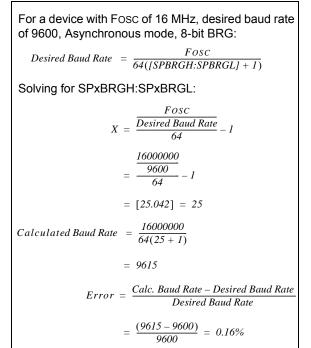
- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 32-1 is a block diagram of the SPI interface module.

33.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.


Table 33-1 contains the formulas for determining the baud rate. Example 33-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 33-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

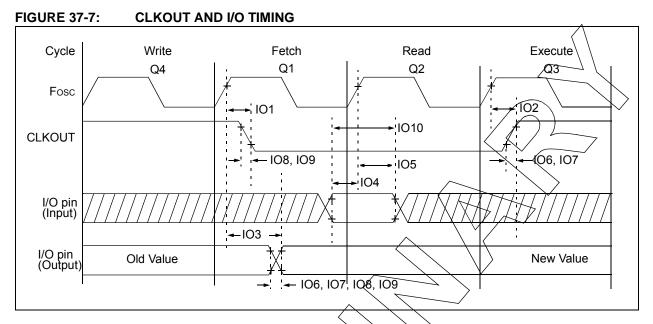
Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 33-1: CALCULATING BAUD RATE ERROR

37.2 Standard Operating Conditions

37.2 Standard Operating Conditions	
The standard operating conditions for any device are defined as:	
Operating Voltage: $VDDMIN \le VDD \le VDDMAX$ Operating Temperature:TA_MIN \le TA \le TA_MAX	
VDD — Operating Supply Voltage ⁽¹⁾	
PIC16LF15325/45	
VDDMIN (Fosc ≤ 16 MHz) +1.8V	
VDDMIN (Fosc ≤ 32 MHz)	
VDDMAX	
PIC16F15325/45	
VDDMIN (Fosc ≤ 16 MHz)	
VDDMIN (Fosc ≤ 32 MHz)	
VDDMAX	
TA — Operating Ambient Temperature Range	
Industrial Temperature	
Ta_min	
Ta_max	
Extended Temperature	
TA_MIN	
Ta_max	
Note 1: See Parameter Supply Voltage, DS Characteristics: Supply Voltage.	

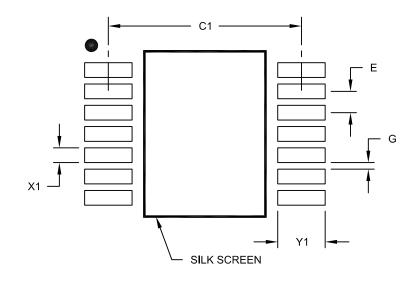

TABLE 37-9: PLL SI	PECIFICATIONS
--------------------	---------------

	•••••	0 0				Δ				
Standar	Standard Operating Conditions (unless otherwise stated) VDD ≥ 2.5 V									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz	\searrow			
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1			
PLL03	TPLLST	PLL Lock Time from Start-up	_	200 🦯	$\langle - \rangle$	_µ\$	-			
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_ \	0.25	~%/				
* These parameters are characterized but not tested.										

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.


TABLE 37-10:	I/O AND CLKOUT TIMING SPECIFICATIONS
--------------	--------------------------------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	> -	-	70	ns	
102*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	_	—	72	ns	
103*	T _{IO_VALID}	Port output valid time (rising edge Fose (Q1 cycle) to port valid)	—	50	70	ns	
104*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	—	—	ns	
105*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	—	—	ns	
106*	TIOR_SLREN	Port I/O rise time, slew rate enabled	_	25	—	ns	VDD = 3.0V
107*	TIOR SLADIS	Port I/O rise time, slew rate disabled	_	5	—	ns	VDD = 3.0V
08*	FIOF SLREN	Port I/O fall time, slew rate enabled	_	25	—	ns	VDD = 3.0V
09*/		Port I/O fall time, slew rate disabled	—	5	—	ns	VDD = 3.0V
	FINT	INT pin high or low time to trigger an interrupt	25	-	_	ns	
011*	T.OC	Interrupt-on-Change minimum high or low time to trigger interrupt	25	—	—	ns	

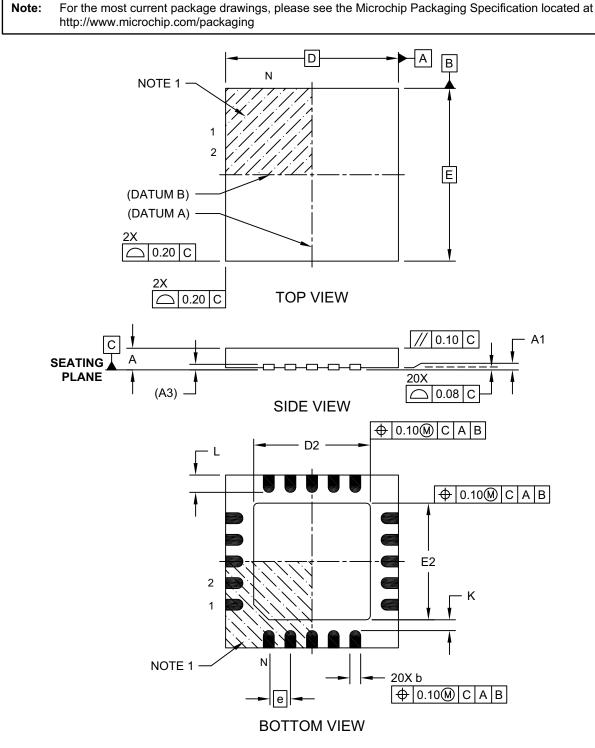
Standard Operating Conditions (unless otherwise st	ate	d	\angle
Standard Operating Conditions (unless otherwise si	ιαις	u)	

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	C1		5.90		
Contact Pad Width (X14)	X1			0.45	
Contact Pad Length (X14)	Y1			1.45	
Distance Between Pads	G	0.20			


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2