

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15325-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Name	Function	Input Type	Output Type	Description
RC3/ANC3/C1IN3-/C2IN3-/CCP2 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
331.7020110.710003	ANC3	AN	-	ADC Channel C3 input.
	C1IN3-	AN		Comparator 1 positive input.
	C2IN3-	AN	-	Comparator 2 positive input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	CLCIN0 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCC3	TTL/ST	_	Interrupt-on-change input.
RC4/ANC4/TX1 ⁽¹⁾ /CK1 ⁽¹⁾ /CLCIN1 ⁽¹⁾ /	RC4	TTL/ST	CMOS/OD	General purpose I/O.
10004	ANC4	AN	_	ADC Channel C4 input.
	TX1	_	CMOS	EUSART1 asynchronous transmit.
	CLCIN1 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	CK1 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART1 synchronous mode clock input/output.
	IOCC4	TTL/ST	_	Interrupt-on-change input.
RC5/ANC5/CCP1 ⁽¹⁾ /RX1 ⁽¹⁾ /DT1 ⁽¹⁾ /	RC5	TTL/ST	CMOS/OD	General purpose I/O.
10005	ANC5	AN	_	ADC Channel C5 input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	RX1 ⁽¹⁾	TTL/ST	_	EUSART1 Asynchronous mode receiver data input.
	DT1 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART1 Synchronous mode data input/output.
	IOCC5	TTL/ST	_	Interrupt-on-change input.
VDD	VDD	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.

TABLE 1-2: PIC16(L)F15325 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN
 = Analog input or output TTL
 CMOS
 = CMOS compatible input or output
 OD
 = Open-Drain

 TTL
 = TTL compatible input HV
 = High Voltage
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-3 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address		
PIC16(L)F15325/45	8192	1FFFh		

4.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

	Bank 60		Bank 61		Bank 62		Bank 63
1E41h	_	1EC1h	_	1F41h	—	1FC1h	_
1E42h	_	1EC2h	_	1F42h	_	1FC2h	_
1E43h	_	1EC3h	ADACTPPS	1F43h	ANSELB ⁽¹⁾	1FC3h	_
1E44h	_	1EC4h	_	1F44h	WPUB ⁽¹⁾	1FC4h	_
1E45h	_	1EC5h	SSP1CLKPPS	1F45h	ODCONB ⁽¹⁾	1FC5h	_
1E46h	_	1EC6h	SSP1DATPPS	1F46h	SLRCONB ⁽¹⁾	1FC6h	_
1E47h	_	1EC7h	SSP1SSPPS	1F47h	INLVLB ⁽¹⁾	1FC7h	_
1E48h	_	1EC8h	_	1F48h	IOCBP ⁽¹⁾	1FC8h	_
1E49h	_	1EC9h	_	1F49h	IOCBN ⁽¹⁾	1FC9h	_
1E4Ah	_	1ECAh	_	1F4Ah	IOCBF ⁽¹⁾	1FCAh	_
1E4Bh	_	1ECBh	RXDT1PPS	1F4Bh	_	1FCBh	_
1E4Ch	—	1ECCh	TXCK1PPS	1F4Ch	—	1FCCh	—
1E4Dh	_	1ECDh	RXD2TPPS	1F4Dh	—	1FCDh	_
1E4Eh	_	1ECEh	TXCK2PPS	1F4Eh	ANSELC	1FCEh	_
1E4Fh	_	1ECFh	_	1F4Fh	WPUC	1FCFh	_
1E50h	_	1ED0h	_	1F50h	ODCONC	1FD0h	_
1E51h	_	1ED1h	—	1F51h	SLRCONC	1FD1h	—
1E52h	_	1ED2h	—	1F52h	INLVLC	1FD2h	—
1E53h	—	1ED3h	—	1F53h	IOCCP	1FD3h	—
1E54h	—	1ED4h	—	1F54h	IOCCN	1FD4h	—
1E55h	—	1ED5h	—	1F55h	IOCCF	1FD5h	—
1E56h	—	1ED6h	—	1F56h	—	1FD6h	—
1E57h	_	1ED7h	_	1F57h	—	1FD7h	_
1E58h	_	1ED8h	_	1F58h	_	1FD8h	_
1E59h	_	1ED9h	_	1F59h	_	1FD9h	_
1E5Ah	_	1EDAh	_	1F5Ah	_	1FDAh	_
1E5Bh	—	1EDBh	—	1F5Bh	—	1FDBh	—
1E5Ch	—	1EDCh	—	1F5Ch	—	1FDCh	—
1E5Dh	—	1EDDh	_	1F5Dh	—	1FDDh	—
1E5Eh	—	1EDEh	_	1F5Eh	—	1FDEh	_
1E5Fh	—	1EDFh	_	1F5Fh	—	1FDFh	_
1E60h	—	1EE0h	_	1F60h	—	1FE0h	_
1E61h	—	1EE1h	—	1F61h	—	1FE1h	—
1E62h	_	1EE2h	_	1F62h	—	1FE2h	—
1E63h	_	1EE3h	_	1F63h	—	1FE3h	BSR_ICDSHAD
1E64h	_	1EE4h	_	1F64h	—	1FE4h	STATUS_SHAD
1E65h	_	1EE5h	_	1F65h	—	1FE5h	WREG_SHAD
1E66h	_	1EE6h	_	1F66h	—	1FE6h	BSR_SHAD
1E67h	_	1EE7h	_	1F67h	—	1FE7h	PCLATH_SHAD
1E68h	—	1EE8h	—	1F68h	—	1FE8h	FSR0L_SHAD
1E69h	—	1EE9h	_	1F69h	—	1FE9h	FSR0H_SHAD
1E6Ah	—	1EEAh	—	1F6Ah	—	1FEAh	FSR1L_SHAD
1E6Bh	—	1EEBh	—	1F6Bh	—	1FEBh	FSR1H_SHAD
1E6Ch	—	1EECh	—	1F6Ch	—	1FECh	—
1E6Dh	—	1EEDh	—	1F6Dh	—	1FEDh	STKPTR
1E6Eh	—	1EEEh	—	1F6Eh	—	1FEEh	TOSL
1E6Fh	_	1EEFh	_	1F6Fh	—	1FEFh	TOSH

TABLE 4-8:PIC16(L)F15325/45 MEMORY MAP, BANKS 60, 61, 62, AND 63 (CONTINUED)

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only in PIC16(L)F15345.

PIC16(L)F15325/45

			Rev. 10-0000438 7/30/2013
	0x0'	=	7
	0x0	E	-
	0x0	D	-
	0x0/		-
	0x0	3	-
	0x0 /	Α	-
	0x0	Э	This figure shows the stack configuration
	0x0	3	after the first CALL or a single interrupt.
	0x0	7	return address will be placed in the
	0x0	6	 Program Counter and the Stack Pointer decremented to the empty state (0x1E)
	0x0	5	
	0x0	4	1
	0x0	3	7
	0x0	2	
	0x0	1	
			┤ / └─────
TOSH:TO	ACCESSING THE ST	ACK EXAMPLE	3
TOSH:TO		ACK EXAMPLE	STKPTR = 0x00 3 Rev: 19-000410 7/202013
тоѕн:то URE 4-6:			3 Rev. 10.000050C 7902013
URE 4-6:	ACCESSING THE S	F	3 Rev. 10.000015 7/002013
тоян:то URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	F	3 Rev. 10.00013C 7002013
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	F	3 Rev. 10.000010 7/002013
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	F	3 After seven CALLS or six CALLS and an interrupt the stack looks like the figure on
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	F	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0	F C C C C C C C C C C C C C C C C C C C	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and non the stack
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	F C C B A 9 B A B A B A B A B A B A B A B A B	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	F C C B A 9 C C C C C C C C C C C C C C C C C C	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
URE 4-6:	ACCESSING THE ST	Return Address F E D C B A 9 8 7 6 Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0 0x1 0x0	Return Address CACK EXAMPLE F E D C B A 9 8 7 6 Return Address 5	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	Return Address CACK EXAMPLE F E D C B A 9 8 7 6 Return Address 5 Return Address 4 Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
URE 4-6:	SL 0x0 ACCESSING THE ST 0x0 0x0 0x0	Return Address CACK EXAMPLE F E D C B A 9 8 7 6 Return Address 5 Return Address 4 Return Address 3 Return Address	3 Re: 10000000 7000010 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
URE 4-6:	ACCESSING THE ST 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	Return Address CACK EXAMPLE F E D C B A 9 8 7 6 Return Address 5 Return Address 4 Return Address 3 Return Address 2 Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
URE 4-6: TOSH:TO	ACCESSING THE S 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	Return Address CACK EXAMPLE F E D C B A 9 8 7 6 Return Address 5 Return Address 3 Return Address 2 Return Address 1	3 Rev 10000002 7000010 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>		NDIV<3:0>				113
OSCCON2	—		COSC<2:0> CDIV<3:0>			OSC<2:0> CDIV<3:0>			
OSCCON3	CWSHOLD	SOSCPWR		ORDY	NOSCR	_	_	_	114
OSCFRQ	—	_	_	_	_	HFFRQ<2:0>			
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	115
OSCTUNE	_	_		HFTUN<5:0>					118
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_	116

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	_	CSWEN	_	_	CLKOUTEN	00
CONFIGT	7:0		F	RSTOSC<2:0>			I	EXTOSC<2:0	>	80

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

EXAMPLE 13-5: DEVICE ID ACCESS

; This	his write routine assumes the following:							
; 1. A	; 1. A full row of data are loaded, starting at the address in DATA_ADDR							
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,								
; store	; stored in little endian format							
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL								
; 4. A	; 4. ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)							
; 5. N	5. NVM interrupts are not taken into account							
	BANKSEL	NVMADRH						
	MOVF	ADDRH,W						
	MOVWF	NVMADRH	; Load initial address					
	MOVF	ADDRL,W						
	MOVWF	NVMADRL						
	MOVLW	LOW DATA_ADDR	; Load initial data address					
	MOVWF	FSROL						
	MOVLW	HIGH DATA_ADDR						
	MOVWF	FSROH						
	BCF	NVMCON1,NVMREGS	; Set PFM as write location					
	BSF	NVMCON1,WREN	; Enable writes					
	BSF	NVMCON1,LWLO	; Load only write latches					
TOOD								
LOOP	NOTITI							
	MOVIW	FSRU++	. Tool floor data both					
	MOVWF	NVMDATL ; Load first data byte						
	MOVIW	FSRU++	· Lood accord data buta					
	MOVWF	NVMDATH	, Load Second data byte					
	CALL	UNLOCK_SEQ	; If not, go load latch					
	INCF	NVMADRL, F	; Increment address					
	MOVF	NVMADRL,W						
	XORLW	0x1F	; Check if lower bits of address are 00000					
	ANDLW	0x1F	; and if on last of 32 addresses					
	BTFSC	STATUS , Z	; Last of 32 words?					
	GOTO	START_WRITE	; If so, go write latches into memory					
	GOTO	LOOP						
START_W	RITE							
	BCF	NVMCON1,LWLO	; Latch writes complete, now write memory					
	CALL	UNLOCK_SEQ	; Perform required unlock sequence					
	BCF	NVMCON1,LWLO	; Disable writes					
UNI OCK	CEO.							
OMPOCK_		550						
		INTCON CIE	: Digable interrupts					
	DOT	MIMCON2	, preadre interrupts					
	MOVI M	A A D	, begin antock sequence					
	MOVINE	AAII MMACON2						
	MUVWF							
	BOF	INVICONI, WR	I The leaf accurate complete the such is in the					
	BSF	INTCON, GIE	, UNLOCK sequence complete, re-enable interrupts					
	return							

© 2016 Microchip Technology Inc.

		Default		Remapp	able to Pins o	f PORTx	
NAME	Name	Location at	(xxxPPS<4:0>)	PIC16(L)F15345			
		POR	(PORTA	PORTB	PORTC	
INT	INTPPS	RA2	00010	٠	•	•	
T0CKI	T0CKIPPS	RA2	00010	•	•	•	
T1CKI	T1CKIPSS	RA5	00101	•	•	•	
T1G	T1GPPS	RA4	00100	•	•	•	
T2IN	T2INPPS	RA5	00101	•	•	•	
CCP1	CCP1PPS	RC5	10101	٠	•	•	
CCP2	CCP2PPS	RC3	10011	٠	•	•	
CWG1IN	CWG1INPPS	RA2	00010	•	•	•	
CLCIN0	CLCIN0PPS	RC3	00010	•	•	•	
CLCIN1	CLCIN1PPS	RC4	10011	•	•	•	
CLCIN2	CLCIN2PPS	RC1	01100	•	•	•	
CLCIN3	CLCIN3PPS	RA5	01101	•	•	•	
ADACT	ADACTPPS	RC2	10010	•	•	•	
SCK1/SCL1	SSP1CLKPPS	RB6	01110	•	•	•	
SDI1/SDA1	SSP1DATPPS	RB4	01100	•	•	•	
SS1	SSP1SS1PPS	RC6	10110	•	•	•	
RX1/DT1	RX1PPS	RB5	01101	•	•	•	
CK1	TX1PPS	RB7	01111	•	•	•	
RX2/DT2	RX2PPS	RC1	10001	•	•	•	
CK2	TX2PPS	RC0	10000	•	•	٠	

TABLE 15-2	PPS INPUT SIGNAL	ROUTING	OPTIONS ()F15345)
				, 10040,

20.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

20.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin will be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 14.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

20.1.2 CHANNEL SELECTION

There are several channel selections available:

- Seven Port A channels
- Seven Port B channels
- · Seven Port C channels
- Temperature Indicator
- · DAC output
- Fixed Voltage Reference (FVR)
- · AVss (Ground)

The CHS<5:0> bits of the ADCON0 register (Register 20-1) determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 20.2 "ADC Operation"** for more information.

20.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADPREF bit of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 18.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

20.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS<2:0> bits of the ADCON1 register. There are seven possible clock options:

- · Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- ADCRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 20-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 37-13 for more information. Table 20-1 gives examples of appropriate ADC clock selections.

Note: Unless using the ADCRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

REGISTER 20-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			ADRE	S<9:2>				
bit 7							bit 0	
Legend:								
R = Readable	= Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

'1' = Bit is set

REGISTER 20-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

'0' = Bit is cleared

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u R/W-x/u R/W-x/u R/W-x/u			R/W-x/u	R/W-x/u
ADRES	S<1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

Lower two bits of 10-bit conversion resu

bit 5-0 Reserved: Do not use.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_			—	_	INTEDG	124
PIE1	OSFIE	CSWIE	_	—	—	—	_	ADIE	126
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	134
TRISA	_	_	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	178
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	184
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	189
ANSELA	_	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	179
ANSELB ⁽¹⁾	_	_		ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	185
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	190
ADCON0			CHS<	5:0>		233			
ADCON1	ADFM		ADCS<2:0>		—	—	ADPREF	<1:0>	234
ADACT	—	—		—		ADA	ACT<3:0>		235
ADRESH				ADRE	SH<7:0>				236
ADRESL				ADRE	ESL<7:0>				236
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR<	<1:0>	220
DAC1CON1	—	_	-			DAC1R<4	:0>		242
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	115

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: Present on PIC16(L)F15345 only.

23.12 Register Definitions: Comparator Control

R/W-0/0	R-0/0	U-0	R/W-0/0	<u>U-0</u>	U-0	R/W-0/0	R/W-0/0		
ON	OUT	—	POL	<u> </u>		HYS	SYNC		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	DR/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	ON: Compara	ator Enable bit							
	1 = Comparat	tor is enabled							
	0 = Comparat	tor is disabled a	and consumes	no active pow	er				
bit 6	OUT: Comparator Output bit								
	If CxPOL = 1	(inverted polar	<u>ity):</u>						
	1 = CxVP < C								
	0 = CXVF > 0 If CxPOL = 0	(noninverted n	olarity).						
	$\frac{1 - C_{X} - C_{Z}}{1 - C_{X} - C_{X}}$	CxVN	olanty).						
	0 = CxVP < 0	CxVN							
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	POL: Compa	rator Output Po	plarity Select b	it					
	1 = Comparat	tor output is inv	verted						
	0 = Comparat	tor output is no	t inverted						
bit 3-2	Unimplemen	ted: Read as '	0'						
bit 1	HYS: Compa	rator Hysteresi	s Enable bit						
	1 = Compara	ator hysteresis	enabled						
	0 = Comparator hysteresis disabled								
bit 0	SYNC: Comp	parator Output S	Synchronous N	Node bit					
	1 = Compara	tor output to T	imer1 and I/C	pin is synchro	onous to chan	ges on Timer1	clock source.		
	Output updated on the falling edge of Timer1 clock source.								
	0 = Comparator output to time r and i/O pin is asynchronous								

REGISTER 23-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

27.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 10.000 1998 \$500/2014	
MODE	0b00001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx(0 (1)(2)(3)(4)(5)(0)(1)(2)(3)(4)(5)(0)(1)	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CCP1CON	EN	—	OUT	FMT		MODE<3:0>					
CCP2CON	EN	—	OUT	FMT		MODE	<3:0>		321		
INTCON	GIE	PEIE	—	—	—	_		INTEDG	124		
PIE1	OSFIE	CSWIE	—	—	—	_	-	ADIE	126		
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	134		
PR2	Timer2 Mod	ule Period Re	gister								
TMR2	Holding Reg	ister for the 8	-bit TMR2 Re	gister							
T2CON	ON		CKPS<2:0>				310				
T2CLKCON	—	—	—	_		CS<	3:0>		309		
T2RST		—	—	_		RSEL	.<3:0>		312		
T2HLT	PSYNC	CKPOL	DL CKSYNC MODE<4:0>								

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N			
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	LCxG1D4T: 0	Gate 0 Data 4 1	rue (non-inve	rted) bit						
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e O						
hit C	0 = CLCIN3	(true) is not gai		Gate U						
DILO	1 = CLCIN3	(inverted) is an	ted into CLCx	Cate 0						
	0 = CLCIN3	(inverted) is ga	t gated into CLCX	_Cx Gate 0						
bit 5	LCxG1D3T:	Gate 0 Data 3 1	rue (non-inve	rted) bit						
	1 = CLCIN2 ((true) is gated i	nto CLCx Gat	e 0						
	0 = CLCIN2 ((true) is not gat	ed into CLCx	Gate 0						
bit 4	LCxG1D3N:	Gate 0 Data 3 I	Negated (inver	rted) bit						
	1 = CLCIN2 (0 = CLCIN2 ((inverted) is gated into CLCx Gate 0 (inverted) is not gated into CLCx Gate 0								
bit 3	LCxG1D2T: 0	Gate 0 Data 2 1	rue (non-inve	rted) bit						
	1 = CLCIN1 ((true) is gated i	nto CLCx Gat	e 0 ´						
	0 = CLCIN1 ((true) is not gat	ted into I CLCx	Gate 0						
bit 2	LCxG1D2N:	Gate 0 Data 2 I	Negated (inver	rted) bit						
	1 = CLCIN1(inverted) is gated into CLCx Gate 0								
1.11.4	0 = CLCIN1 ((inverted) is no		LCx Gate 0						
DIT 1		sate 0 Data 1 I	rue (non-invel	rted) bit						
	1 = CLCINO (0 = CLCINO ((true) is gated into CLCx Gate 0 (true) is not gated into CLCx Gate 0								
bit 0	LCxG1D1N: (Gate 0 Data 1	Negated (inve	rted) bit						
	1 = CLCIN0 ((inverted) is ga	ted into CLCx	Gate 0						
	0 = CLCIN0	(inverted) is no	t gated into CL	_Cx Gate 0						

REGISTER 31-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

Figure 32-2 is a block diagram of the I²C interface module in Master mode. Figure 32-3 is a diagram of the

I²C interface module in Slave mode.

The I²C interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- · 7-bit and 10-bit addressing
- Start and Stop interrupts
- · Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- · Address masking
- · Selectable SDA hold times

FIGURE 32-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

					SYNC	C = 0, BRGH	H = 1, BRC	G16 = 0					
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	RATE Actual % Rate Erro		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	—		—	—			_	_		_		
1200	—	—	—	—	_	_	—	—	—	—	_	—	
2400	—	—	—	—	—	—	—	—	—	_	_		
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	C = 0, BRGH	l = 1, BRG	G16 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	RATE Actual % Rate Error	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	_	_	_		_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	—
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—	_	_	115.2k	0.00	1	_	_	_

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 1					
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	E Actual % SPBR Rate Error value (decima		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

PIC16(L)F15325/45

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\rightarrow \text{INDFn} \\ \text{Effective address is determined by} \\ \bullet \ \text{FSR} + 1 \ (\text{preincrement}) \\ \bullet \ \text{FSR} - 1 \ (\text{predecrement}) \\ \bullet \ \text{FSR} + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ \text{FSR} + 1 \ (\text{all increments}) \\ \bullet \ \text{FSR} - 1 \ (\text{all decrements}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation			
Syntax:	[label] NOP			
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Description:	No operation.			
Words:	1			
Cycles:	1			
Example:	NOP			

RESET	Software Reset			
Syntax:	[label] RESET			
Operands:	None			
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.			
Status Affected:	None			
Description:	This instruction provides a way to execute a hardware Reset by software.			

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE k					
Operands:	None					
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$					
Status Affected:	None					
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.					
Words:	1					
Cycles:	2					
Example:	RETFIE					
	After Interrupt PC = TOS GIE = 1					

TABLE 37-3: POWER-DOWN CURRENT (IPD) ^(1,2)									
PIC16LF15325/45				Standard Operating Conditions (unless otherwise stated)					
PIC16F15325/45			Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param. No.	Symbol	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	VDD	Conditions Note
D200	IPD	IPD Base	—	0.06	2	9	μΑ	3.0	$\langle \langle \rangle$
D200	IPD	IPD Base	—	0.4	4	12	/HA	3.0V	$\langle \rangle$
D200A			_	18	22	27 <	рţА	3.07	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.8	4.0	11.5	\µA	73.0₩	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5.0 <	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.6	<u>_5</u> _	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.8	8.5	15	μÀ	3.0V	
D203	IPD_FVR	FVR	-	33	47	47	μA	3.0V	
D203	IPD_FVR	FVR	—	28	44	44	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	\neg	10	17	19	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	\neq	14	18	> 20	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	-	0.5	4	10	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active	1	250	\searrow		μΑ	3.0V	ADC is converting (4)
D207	IPD_ADCA	ADC - Active	P	280	—	—	μΑ	3.0V	ADC is converting (4)
D208	IPD_CMP	Comparator	$\left\langle \cdot \right\rangle$	30	42	44	μΑ	3.0V	
D208	IPD_CMP	Comparator		33	44	45	μΑ	3.0V	

v(1 2)

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part 2: in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

All peripheral ourrents listed are on a per-peripheral basis if more than one instance of a peripheral is available. 3:

4: ADC clock source is FRC, 5: = F device

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾	<u>×</u>	<u>/xx</u>	<u>xxx</u>	Ex	amples	5:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a)	PIC10 Exter SPDI	6F15325- E/SP ided temperature P package
Device:	PIC16F15325, PIC16F15345,	PIC16LF15325 PIC16LF15345					
Tape and Reel Option:	Blank = Stan T = Tape	dard packaging (tu e and Reel ⁽¹⁾	be or tray)				
Temperature Range:	I = -40 E = -40	°C to +85°C (I °C to +125°C (I	ndustrial) Extended)				
Package: ⁽²⁾	JQ = 16- P = 14- SL = 14- SO = 20- SS = 20- ST = 14- GZ = 20-	ead, 20-lead UQF ead, 20-lead PDIP ead SOIC ead SOIC ead SSOP ead TSSOP ead UQFN	N 4x4x0.5mm		Not	ie 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, C (blank otherwi	ode or Special Rec se)	quirements			2:	www.microchip.com/packaging options may www.microchip.com/packaging for small-form factor package availability, or contact your local Sales Office.