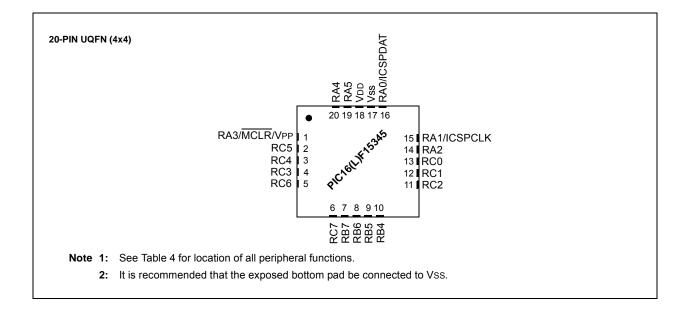


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

EXE

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15325-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

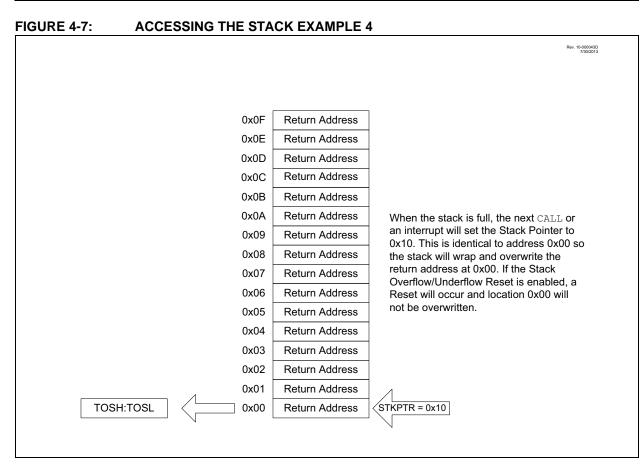

IADLE 4	Bank 60	_,	Bank 61	, _,	Bank 62		Bank 63
1E0Ch	_	1E8Ch	_	1F0Ch	_	1F8Ch	_
1E0Dh	_	1E8Dh	_	1F0Dh	_	1F8Dh	_
1E0Eh	_	1E8Eh	_	1F0Eh	_	1F8Eh	_
1E0Fh	CLCDATA	1E8Fh	PPSLOCK	1F0Fh	_	1F8Fh	_
1E10h	CLC1CON	1E90h	INTPPS	1F10h	RA0PPS	1F90h	_
1E11h	CLC1POL	1E91h	TOCKIPPS	1F11h	RA1PPS	1F91h	_
1E12h	CLC1SEL0	1E92h	T1CKIPPS	1F12h	RA2PPS	1F92h	_
1E13h	CLC1SEL1	1E93h	T1GPPS	1F13h	RA3PPS	1F93h	_
1E14h	CLC1SEL2	1E94h	_	1F14h	RA4PPS	1F94h	_
1E15h	CLC1SEL3	1E95h	_	1F15h	RA5PPS	1F95h	_
1E16h	CLC1GLS0	1E96h	_	1F16h		1F96h	_
1E17h	CLC1GLS1	1E97h	_	1F17h	_	1F97h	_
1E18h	CLC1GLS2	1E98h	_	1F18h	_	1F98h	_
1E19h	CLC1GLS3	1E99h		1F19h	_	1F99h	_
1E1Ah	CLC2CON	1E9Ah	_	1F1Ah	_	1F9Ah	_
1E1Bh	CLC2POL	1E9Bh	_	1F1Bh	_	1F9Bh	_
1E1Ch	CLC2SEL0	1E9Ch	T2INPPS	1F1Ch	RB4PPS ⁽¹⁾	1F9Ch	
					RB5PPS ⁽¹⁾		
1E1Dh	CLC2SEL1	1E9Dh		1F1Dh		1F9Dh	
1E1Eh	CLC2SEL2	1E9Eh		1F1Eh	RB6PPS ⁽¹⁾	1F9Eh	—
1E1Fh	CLC2SEL3	1E9Fh	_	1F1Fh	RB7PPS ⁽¹⁾	1F9Fh	_
1E20h	CLC2GLS0	1EA0h	—	1F20h	RC0PPS	1FA0h	—
1E21h	CLC2GLS1	1EA1h	CCP1PPS	1F21h	RC1PPS	1FA1h	_
1E22h	CLC2GLS2	1EA2h	CCP2PPS	1F22h	RC2PPS	1FA2h	_
1E23h	CLC2GLS3	1EA3h	_	1F23h	RC3PPS	1FA3h	_
1E24h	CLC3CON	1EA4h	—	1F24h	RC4PPS	1FA4h	—
1E25h	CLC3POL	1EA5h	—	1F25h	RC5PPS	1FA5h	—
1E26h	CLC3SEL0	1EA6h	—	1F26h	RC6PPS ⁽¹⁾	1FA6h	—
1E27h	CLC3SEL1	1EA7h	_	1F27h	RC7PPS ⁽¹⁾	1FA7h	_
1E28h	CLC3SEL2	1EA8h		1F28h	_	1FA8h	_
1E29h	CLC3SEL3	1EA9h	_	1F29h	_	1FA9h	_
1E2Ah	CLC3GLS0	1EAAh	_	1F2Ah	_	1FAAh	_
1E2Bh	CLC3GLS1	1EABh	_	1F2Bh	_	1FABh	_
1E2Ch	CLC3GLS2	1EACh	_	1F2Ch	_	1FACh	_
1E2Dh	CLC3GLS3	1EADh		1F2Dh	_	1FADh	_
1E2Eh	CLC4CON	1EAEh		1F2Eh	_	1FAEh	_
1E2Fh	CLC4POL	1EAFh	_	1F2Fh	_	1FAFh	_
1E30h	CLC4SEL0	1EB0h	_	1F30h	_	1FB0h	_
1E31h	CLC4SEL1	1EB1h	CWG1PPS	1F31h	_	1FB1h	_
1E32h	CLC4SEL2	1EB2h	_	1F32h	_	1FB2h	_
1E33h	CLC4SEL3	1EB3h	_	1F33h	_	1FB3h	_
1E34h	CLC4GLS0	1EB4h	_	1F34h	_	1FB4h	_
1E35h	CLC4GLS1	1EB5h	_	1F35h	_	1FB5h	_
1E36h	CLC4GLS2	1EB6h	_	1F36h	_	1FB6h	_
1E37h	CLC4GLS3	1EB7h		1F37h	_	1FB7h	_
1E38h	_	1EB8h		1F38h	ANSELA	1FB8h	_
1E39h	_	1EB9h		1F39h	WPUA	1FB9h	_
1E3Ah		1EBAh		1F3Ah	ODCONA	1FBAh	_
1E3Ah	_	1EBBh	CLCIN0PPS	1F3An	SLRCONA	1FBBh	_
1E3Dh		1EBCh	CLCIN1PPS	1F3Dh	INLVLA	1FBCh	
1E3Dh	_	1EBDh	CLCIN2PPS	1F3Dh	IOCAP	1FBDh	_
1E3Dh		1EBDh	CLCIN3PPS		IOCAP	1FBEh	_
1E3En		1EBEN		1F3Eh 1F3Fh	IOCAN	1FBEh	_
1E3Fn 1E40h	_	1EBFN	_	1F3Fn 1F40h		1FC0h	_
	_	IECUII		164011		11 0011	

TABLE 4-8: PIC16(L)F15325/45 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Present only in PIC16(L)F15345.

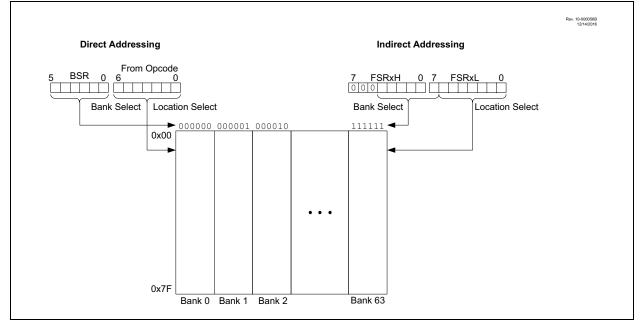
PIC16(L)F15325/45

4.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words (Register 5-2) is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

4.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.


The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional/Banked Data Memory
- Linear Data Memory
- Program Flash Memory

4.6.1 TRADITIONAL/BANKED DATA MEMORY

The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0x1FFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 4-9: TRADITIONAL/BANKED DATA MEMORY MAP

8.3 Register Definitions: Brown-out Reset Control

Legend:

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

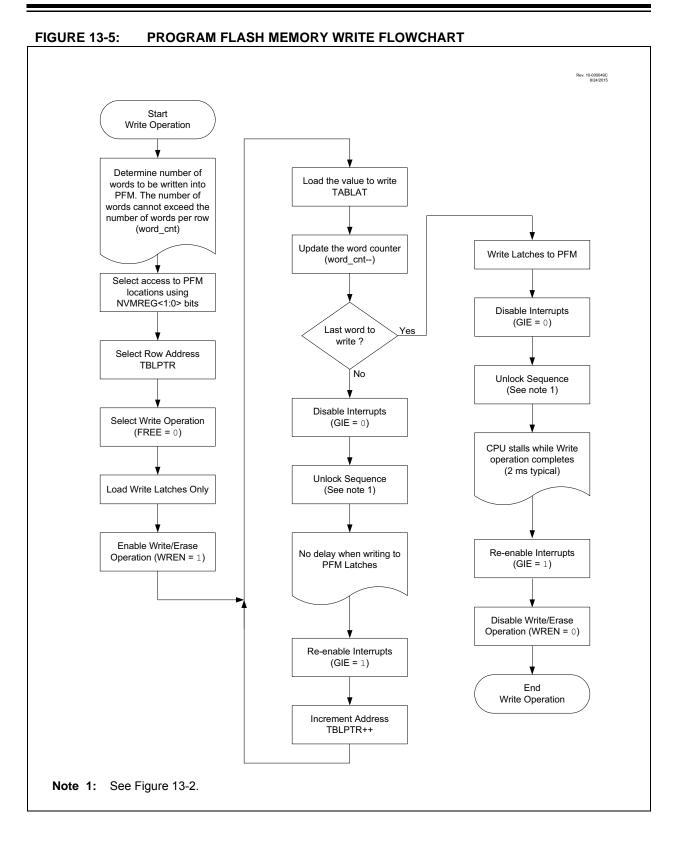
R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	_	—	—	—	—	—	BORRDY
bit 7							bit 0

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	If BOREN <1:0> in Configuration Words $\neq 01$:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active

0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.


12.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 12-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0
-	-			WDTPS<4:0>(1)			SWDTEN
bit 7							bit C
Legend:							
R = Reada	ble bit	W = Writable b	pit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all ot	her Resets
1' = Bit is s	set	ʻ0' = Bit is clea	red	q = Value dep	ends on condit	ion	
bit 7-6	Unimplome	ntod. Dood oo 'o	3				
	-	ented: Read as '0 0>: Watchdog Tin		alaat hita(1)			
bit 5-1		Prescale Rate	ner Prescale S				
				tom (a) (1.20)			
	•	eserved. Results	in minimum in	iterval (1:32)			
	•						
	•						
	10011 = R	eserved. Results	in minimum in	terval (1:32)			
	10010 = 1	:8388608 (2 ²³) (II	nterval 256s no	ominal)			
	10010 = 1:8388608 (2 ²³) (Interval 256s nominal) 10001 = 1:4194304 (2 ²²) (Interval 128s nominal)						
	10000 = 1:2097152 (2 ²¹) (Interval 64s nominal)						
	01111 = 1	:1048576 (2 ²⁰) (lı	nterval 32s nor	minal)			
	01110 = 1	:524288 (2 ¹⁹) (Int :262144 (2 ¹⁸) (Int	terval 16s nom	inal)			
	01101 = 1	:262144 (2 ¹⁰) (Ini	terval 8s nomin	nal)			
		:131072 (2 ¹⁷) (Int :65536 (Interval 2					
		:32768 (Interval 2		eset value)			
		:16384 (Interval 5	,	d)			
		:8192 (Interval 25					
		:4096 (Interval 12					
	00110 = 1	:2048 (Interval 64	ms nominal)				
		:1024 (Interval 32	,				
		:512 (Interval 16)	,				
		:256 (Interval 8 m	,				
		:128 (Interval 4 m					
		:64 (Interval 2 ms :32 (Interval 1 ms	,				
oit O		Software Enable/		tchdog Timer bi	it		
	If WDTE<1:			U U			
	This bit is ig						
	If WDTE<1:						
	1 = WDT is						
	0 = WDT is						
	If WDTE<1:						
	This bit is ig	nored.					

- **Note 1:** Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - **3:** When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

PIC16(L)F15325/45

14.5 Register Definitions: PORTB

REGISTER 14-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	
RB7	RB6	RB5	RB4	—	—	—	_	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				

0	
'1' = Bit is set	'0' = Bit is cleared

bit 7-4	RB<7:4> : PORTB I/O Value bits ⁽¹⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. The actual I/O pin values are read from the PORTB register.

REGISTER 14-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	_	—	_	—
bit 7	•						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB Tri-State Control bit 1 = PORTB pin configured as an input (tri-stated)
bit 3-0	 PORTB pin configured as an output Unimplemented: Read as '0'

16.0 PERIPHERAL MODULE DISABLE

The PIC16(L)F15325/45 provides the ability to disable selected modules, placing them into the lowest possible Power mode.

For legacy reasons, all modules are ON by default following any Reset.

16.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset:
 - Writing to SFRs is disabled
 - Reads return 00h

16.2 Enabling a module

When the register bit is cleared, the module is reenabled and will be in its Reset state; SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

16.3 Disabling a Module

When a module is disabled, all the associated PPS selection registers (Registers xxxPPS Register 15-1, 15-2, and 15-3), are also disabled.

16.4 System Clock Disable

Setting SYSCMD (PMD0, Register 16-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

18.3 **Register Definitions: FVR Control**

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFVF	R<1:0>
bit 7							bit 0

Legend:					
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is un	changed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is se	et	'0' = Bit is cleared	q = Value depends on condition		
bit 7	1 = Fixed	Fixed Voltage Reference Ena I Voltage Reference is enable I Voltage Reference is disable	ed		
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	s ready for use		
bit 5	1 = Temp	mperature Indicator Enable to perature Indicator is enabled perature Indicator is disabled	pit ⁽³⁾		
bit 4	1 = Temp	Temperature Indicator Range erature in High Range erature in Low Range	e Selection bit ⁽³⁾		
bit 3-2					
bit 1-0	11 = ADC 10 = ADC 01 = ADC	I: 0>: ADC FVR Buffer Gain 5 FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	96V)(2) 48V) ⁽²⁾		
	VRRDY is alv	vays '1'. Reference output cannot exc	eed VDD.		
	•	•	Module " for additional information.		

See Section 19.0 "Temperature Indicator Module" for additional information.

REGISTER 22-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0 R/W-0/0 <t< th=""><th>Lonondi</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Lonondi							
NCO1ACC<7:0>								
	bit 7							bit 0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0				NCO1A	CC<7:0>			
	R/W-0/0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1ACC<7:0>: NCO1 Accumulator, Low Byte

REGISTER 22-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | NCO1ACC | C<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| L | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NOC1ACC<15:8>: NCO1 Accumulator, High Byte

REGISTER 22-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

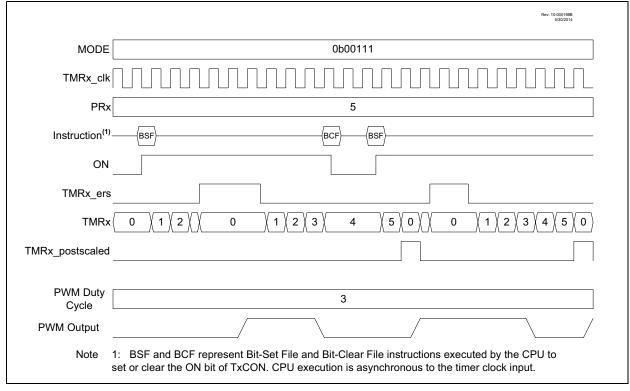
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	—		NCO1AC	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.


27.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 27-7. Selecting MODE<4:0> = 0.0110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 0.0111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

27.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 10110)
- High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

27.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			SSP1N	ISK<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1		7:1>: Mask bits					
		eived address b				I ² C address m	atch
	0 = The received address bit n is not used to detect I ² C address match						
bit 0	SSP1MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address						
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):						
	1 = The received address bit 0 is compared to SSP1ADD<0> to detect I^2C address match						
	0 = The received address bit 0 is not used to detect I^2C address match						
	I ² C Slave mode, 7-bit address:						

REGISTER 32-5: SSP1MSK: SSP1 MASK REGISTER

MSK0 bit is ignored.

REGISTER 32-6: SSP1ADD: MSSP1 ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSP1AD | D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSP1ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSP1ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSP1ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSP1ADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

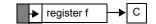
Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

36.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.				


ADDLW	Add literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.				

wrap-around.

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift		
Syntax:	[label]ASRF f{,d}		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,		
Status Affected:	C, Z		
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		

ADDWFC ADD W and CARRY bit to f

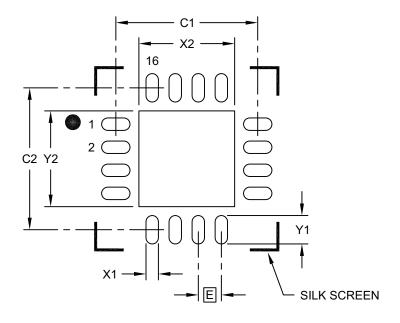
Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

37.2 Standard Operating Conditions

37.2 Standard Operating Conditions	
The standard operating conditions for any device are defined as:	
Operating Voltage: $VDDMIN \le VDD \le VDDMAX$ Operating Temperature:TA_MIN \le TA \le TA_MAX	
VDD — Operating Supply Voltage ⁽¹⁾	
PIC16LF15325/45	
VDDMIN (Fosc ≤ 16 MHz) +1.8V	
VDDMIN (Fosc ≤ 32 MHz)	
VDDMAX	
PIC16F15325/45	
VDDMIN (Fosc ≤ 16 MHz)	
VDDMIN (Fosc ≤ 32 MHz)	
VDDMAX	
TA — Operating Ambient Temperature Range	
Industrial Temperature	
Ta_min	
Ta_max	
Extended Temperature	
TA_MIN	
Ta_max	
Note 1: See Parameter Supply Voltage, DS Characteristics: Supply Voltage.	

TABLE 37-9: PLL SI	PECIFICATIONS
--------------------	---------------

Standar	d Operatir	ng Conditions (unless otherwise stated) VD	D ≥ 2.5V			$\langle \rangle$	
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz	\searrow
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1
PLL03	TPLLST	PLL Lock Time from Start-up	_	200 🦯	$\langle - \rangle$	_µ\$	-
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_ \	0.25	~%/	
*	These p	arameters are characterized but not tested.					


These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			2.70
Optional Center Pad Length	Y2			2.70
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X16)	X1			0.35
Contact Pad Length (X16)	Y1			0.80

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A