

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15345-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F15325/45

TABLE 1: PIC16(L)F153XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KW)	Program Flash Memory (KB)	Storage Area Flash (B)	Data SRAM (bytes)	I/OPins	10-bit ADC	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C-SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC16(L)F15313	(C)	2	3.5	224	256	6	5	1	1	1	2	Υ	2/4	1	1	4	Y	Y	Y	Y	1/1	Υ	Y	Ι
PIC16(L)F15323	(C)	2	3.5	224	256	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15324	(D)	4	7	224	512	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15325	(B)	8	14	224	1024	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15344	(D)	4	7	224	512	18	17	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15345	(B)	8	14	224	1024	18	17	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15354	(A)	4	7	224	512	25	24	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15355	(A)	8	14	224	1024	25	24	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15356	(E)	16	28	224	2048	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15375	(E)	8	14	224	1024	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15376	(E)	16	28	224	2048	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Y	Υ	Ι
PIC16(L)F15385	(E)	8	14	224	1024	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Y	Υ	2/2	Y	Υ	Ι
PIC16(L)F15386	(E)	16	28	224	2048	44	43	1	2	1	2	Y	2/4	1	1	4	Υ	Υ	Υ	Υ	2/2	Υ	Υ	Ι

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

ote:	For other small form	-factor package availability and marking information, visit v
E:	DS40001866	PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin
D:	Future Release	PIC16(L)F15324/44 Data Sheet, 14/20-Pin
C:	Future Release	PIC16(L)F15313/23 Data Sheet, 8/14-Pin
B:	DS40001865	PIC16(L)F15325/45 Data Sheet, 14/20-Pin
A :	DS40001853	PIC16(L)F15354/5 Data Sheet, 28-Pin

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging or contact your local sales office.

14/16-PIN ALLOCATION TABLE (PIC16(L)F15325) (CONTINUED) TABLE 3:

							•	• •											
I/O ⁽²⁾	14-Pin PDIP/SOIC/TSSOP	16-Pin QFN/UQFN	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWG	CWG	dSSM	ZCD	EUSART	CLC	CLKR	Interrupt	dn-llud	Basic
OUT ⁽²⁾	—	-	—	-	C10UT	NCO10UT	-	TMR0	CCP1	PWM3OUT	CWG1A	SDO1	—	DT1 ⁽³⁾ DT2 ⁽³⁾	CLC1OUT	CLKR	_	—	—
	—	-	—	Ι	C2OUT	—	-	-	CCP2	PWM4OUT	CWG1B	SCK1	—	CK1 CK2	CLC2OUT	—	_	—	—
	—	-	_	_	_	_	_	_	_	PWM5OUT	CWG1C	SCL1 ^(3,4)	-	TX1 TX2	CLC3OUT	—	_	—	—
	_	—	_	_	_	_	_	_	_	PWM6OUT	CWG1D	SDA1 ^(3,4)	—	_	CLC4OUT	—	_	—	_

1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note

2: All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

3:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP[™] Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 39.0 "Development Support"**.

	Bank 60		Bank 61		Bank 62		Bank 63
1E0Ch	_	1E8Ch	_	1F0Ch	_	1F8Ch	_
1E0Dh	—	1E8Dh	—	1F0Dh		1F8Dh	—
1E0Eh	—	1E8Eh	—	1F0Eh		1F8Eh	—
1E0Fh	CLCDATA	1E8Fh	PPSLOCK	1F0Fh	—	1F8Fh	—
1E10h	CLC1CON	1E90h	INTPPS	1F10h	RA0PPS	1F90h	—
1E11h	CLC1POL	1E91h	TOCKIPPS	1F11h	RA1PPS	1F91h	—
1E12h	CLC1SEL0	1E92h	T1CKIPPS	1F12h	RA2PPS	1F92h	—
1E13h	CLC1SEL1	1E93h	T1GPPS	1F13h	RA3PPS	1F93h	—
1E14h	CLC1SEL2	1E94h	_	1F14h	RA4PPS	1F94h	_
1E15h	CLC1SEL3	1E95h		1F15h	RA5PPS	1F95h	_
1E16h	CLC1GLS0	1E96h	_	1F16h		1F96h	_
1E17h	CLC1GLS1	1E97h	_	1F17h		1F97h	_
1E18h	CLC1GLS2	1E98h	_	1F18h	_	1F98h	_
1E19h	CLC1GLS3	1E99h	_	1F19h		1F99h	_
1E1Ah	CLC2CON	1E9Ah	_	1F1Ah	_	1F9Ah	_
1E1Bh	CLC2POL	1E9Bh	_	1F1Bh	_	1F9Bh	_
1E1Ch	CLC2SEL0	1E9Ch	T2INPPS	1F1Ch	RB4PPS ⁽¹⁾	1F9Ch	_
1E1Dh	CLC2SEL1	1E9Dh	_	1F1Dh	RB5PPS ⁽¹⁾	1F9Dh	_
1F1Fh	CLC2SEL2	1F9Fh	_	1F1Fh	RB6PPS ⁽¹⁾	1F9Eh	_
1E1Eb	CLC2SEL3	1E0Eh	_	1E1Eb	RB7PPS(1)	1F9Fh	_
1E20h	CLC2GLS0	1E40b	_	1E20b	RCOPPS	1EA0b	_
1E21h	CLC2GLS1	1EA1h	CCP1PPS	1E21h	RC1PPS	1EA1b	_
1E22h	CLC2GLS1	1EA2h	CCP2PPS	1E22h	RC2PPS	1EA2h	_
1E23h	CLC2GLS3	1EA3h	_	1F23h	RC3PPS	1FA3h	_
1E24h	CLC3CON	1EA4h	_	1F24h	RC4PPS	1FA4h	_
1E25h	CLC3POL	1EA5h	_	1E25h	RC5PPS	1FA5h	_
1E26h	CLC3SEL0	1EA6h	_	1F26h	RC6PPS ⁽¹⁾	1FA6h	_
1E27h	CLC3SEL1	1EA7h	_	1F27h	RC7PPS ⁽¹⁾	1FA7h	_
1E28h	CLC3SEL2	1EA8h	_	1F28h		1FA8h	_
1E29h	CLC3SEL3	1EA9h	_	1F29h	_	1FA9h	_
1E2Ah	CLC3GLS0	1EAAh	_	1F2Ah	_	1FAAh	—
1E2Bh	CLC3GLS1	1EABh	_	1F2Bh	_	1FABh	—
1E2Ch	CLC3GLS2	1EACh	_	1F2Ch	_	1FACh	_
1E2Dh	CLC3GLS3	1EADh	_	1F2Dh	_	1FADh	_
1E2Eh	CLC4CON	1EAEh	_	1F2Eh	_	1FAEh	_
1E2Fh	CLC4POL	1EAFh	_	1F2Fh	_	1FAFh	_
1E30h	CLC4SEL0	1EB0h	_	1F30h	_	1FB0h	_
1E31h	CLC4SEL1	1EB1h	CWG1PPS	1F31h		1FB1h	—
1E32h	CLC4SEL2	1EB2h	—	1F32h		1FB2h	—
1E33h	CLC4SEL3	1EB3h	—	1F33h	—	1FB3h	—
1E34h	CLC4GLS0	1EB4h	—	1F34h	—	1FB4h	—
1E35h	CLC4GLS1	1EB5h	—	1F35h	—	1FB5h	—
1E36h	CLC4GLS2	1EB6h	—	1F36h	—	1FB6h	—
1E37h	CLC4GLS3	1EB7h	—	1F37h	—	1FB7h	—
1E38h	—	1EB8h	—	1F38h	ANSELA	1FB8h	—
1E39h	_	1EB9h	—	1F39h	WPUA	1FB9h	_
1E3Ah	-	1EBAh	_	1F3Ah	ODCONA	1FBAh	_
1E3Bh	_	1EBBh	CLCIN0PPS	1F3Bh	SLRCONA	1FBBh	_
1E3Ch	_	1EBCh	CLCIN1PPS	1F3Ch	INLVLA	1FBCh	_
1E3Dh	—	1EBDh	CLCIN2PPS	1F3Dh	IOCAP	1FBDh	_
1E3Eh	—	1EBEh	CLCIN3PPS	1F3Eh	IOCAN	1FBEh	_
1E3Fh	—	1EBFh	_	1F3Fh	IOCAF	1FBFh	_
1E40h	—	1EC0h	—	1F40h	—	1FC0h	—

TABLE 4-8: PIC16(L)F15325/45 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Present only in PIC16(L)F15345.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 3												
	CPU CORE REGISTERS; see Table 4-3 for specifics											
18Ch	SSP1BUF	Synchronous Serial P	ort Receive Buffer/	Transmit Register						XXXX XXXX	XXXX XXXX	
18Dh	SSP1ADD		ADD<7:0>									
18Eh	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111	
18Fh	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000	
190h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000	
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000	
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000	
193h 19Fh	_			_	_							

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

8.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 8-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Wait for release of BOR ⁽¹⁾ (BORRDY = 1)
1.0	v	Awake	Active	Waits for release of BOR (BORRDY = 1)
TO	X	Sleep	Disabled	Waits for BOR Reset release
0.1	1	х	Active	Waits for BOR Reset release (BORRDY = 1)
UI	0	х	Disabled	Paging immediately (POPPDV =)
00	х	х	Disabled	Begins inimediately (BORRDT = x)

TABLE 8-1: BOR OPERATING MODES

Note 1: In this specific case, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

8.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0
	_	NVMIF	NCO1IF			_	CWG1IF
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	NVMIF: Nonv	olatile Memory	(NVM) Interru	upt Flag bit			
	1 = The reque 0 = NVM inter	ested NVM ope rrupt not assert	eration has cor ted	npleted			
bit 4	NCO1IF: Num	nerically Contro	olled Oscillator	r (NCO) Interru	upt Flag bit		
	1 = The NCO	has rolled ove	r				
	0 = No NCO i	nterrupt event	has occurred				
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	CWG1IF: CW	/G1 Interrupt F	lag bit				
	1 = CWG1 ha	is gone into sh	utdown				
	0 = CWG1 is	operating norm	nally, or interru	ipt cleared			

REGISTER 10-17: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

12.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Configurable window size from 12.5 to 100
 percent of the time-out period
- Multiple Reset conditions
- Operation during Sleep

14.3 Register Definitions: PORTA

U-0	U-0	R/W-x/u	R/W-x/u	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-1: PORTA: PORTA REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RA<5:0>: PORTA I/O Value bits ⁽¹⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns of actual I/O pin values.

REGISTER 14-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '0'
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

U-0

bit 0

		-	_				
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	
LATB7	LATB6	LATB5	LATB4	—	—	_	
bit 7							

REGISTER 14-11: LATB: PORTB DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	LATB<7:4>: RB<7:4> Output Latch Value bits ⁽¹⁾
---------	---

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register returns actual I/O pin values.

REGISTER 14-12: ANSELB: PORTB ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ANSB<7:4>**: Analog Select between Analog or Digital Function on pins RB<7:4>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.

bit 3-0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

15.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections.

All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 15-1.

FIGURE 15-1: SIMPLIFIED PPS BLOCK DIAGRAM

15.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 15-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, CLC1PPS.

15.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals are (See Section 15.3 "Bidirectional Pins"):

- EUSART (synchronous operation)
- MSSP (I²C)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 15-2.

Note: The notation "Rxy" is a place holder for the pin port and bit identifiers. For example, x and y for PORTA bit 0 would be A and 0, respectively, resulting in the pin PPS output selection register RA0PPS.

REGISTER 23-2:	CMxCON1: COMPARATOR Cx CONTROL REGISTER 1
----------------	---

'0' = Bit is cleared

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	_		INTP	INTN
bit 7		•		•			bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unl		nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	

bit 7-2 bit 1	Unimplemented: Read as '0' INTP: Comparator Interrupt on Positive-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	 INTN: Comparator Interrupt on Negative-Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

'1' = Bit is set

FIGURE 26-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	Set by software Counting enabled on rising edge of selected source	n -
Selected gate source		
ТхСКІ		
TxGVAL		
TMRxH:TMRxL Count	$N \qquad \qquad$	
TMRxGIF	Cleared by software falling edge of TxGVAL → Cleared by software	

27.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next rising TMR2_clk edge and increments

the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

27.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 28.0** "**Capture/Compare/PWM Modules**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 27.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

27.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		321		
CCP2CON	EN	—	OUT	FMT		MODE	<3:0>		321		
INTCON	GIE	PEIE	—	—	—	_		INTEDG	124		
PIE1	OSFIE	CSWIE	—	—	—	_	-	ADIE	126		
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	134		
PR2	Timer2 Mod	ule Period Re	gister								
TMR2	Holding Reg	ister for the 8	-bit TMR2 Re	gister							
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		310		
T2CLKCON	—	—	—	—		309					
T2RST	—	—	—	—		RSEL<3:0>					
T2HLT	PSYNC	CKPOL	CKSYNC	NC MODE<4:0>							

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

FIGURE 32-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC16(L)F15325/45

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	_	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE Act	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832		
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207		
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103		
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25		
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23		
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12		
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_		
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_		

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions					
TH01	θЈΑ	Thermal Resistance Junction to Ambient	70	°C/W	14-pin SPDIP package					
			95.3C	°C/W	14-pin SOIC package					
			100.0	°C/W	14-pin TSSØP package					
			51.5	°C/W	16-pin UQFN 4x4mm package					
			62.2	°C/W	20-pin PDIP package					
			87.3	°C/W	20-pin SSOP package					
			77.7	°C/W	20-pin SOIC package					
			43.0	°C/W\	20-pin UQFN 4x4mm package					
TH02	θJC	Thermal Resistance Junction to Case	32.75	°C/W ∖	14 pin PDIP package					
			31.0	∕_°C/W	14-pin SOIC package					
			24.4	WK2°	14 pin TSSOP package					
			5.4	>€\M ∕	16-pm UQFN 4x4mm package					
			27.5	°C/Ŵ	29-pin PDIP package					
			∕ 31.1	°C/W	20-pin SSOP package					
		<pre></pre>	23,1	°¢∕W	20-pin SOIC package					
		\land	5.3	SC/₩	20-pin UQFN 4x4mm package					
TH03	TJMAX	Maximum Junction Temperature	150	> °C						
TH04	PD	Power Dissipation		V W	PD = PINTERNAL + PI/O					
TH05	PINTERNAL	Internal Power Dissipation	$\langle - \rangle$	W	PINTERNAL = IDD x VDD ⁽¹⁾					
TH06	Pi/o	I/O Power Dissipation	$\setminus \Sigma$	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$					
TH07	Pder	Derated Power	\sim -	W	Pder = PDmax (Тј - Та)/θја ⁽²⁾					

TABLE 37-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS				
Dimensior	Dimension Limits					
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		5.40			
Contact Pad Width	X			0.60		
Contact Pad Length	Y			1.50		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	3.90				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2016 Microchip Technology Inc.