



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                  |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | 8051                                                                      |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 18MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, UART/USART                                              |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 18                                                                        |
| Program Memory Size        | 4KB (4K x 8)                                                              |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 256 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 3.6V                                                               |
| Data Converters            | A/D 4x8b; D/A 1x8b                                                        |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 20-TSSOP (0.173", 4.40mm Width)                                           |
| Supplier Device Package    | 20-TSSOP                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc9241fdh-112 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 2.2 Additional features

- A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns for all instructions except multiply and divide when executing at 18 MHz. This is six times the performance of the standard 80C51 running at the same clock frequency. A lower clock frequency for the same performance results in power savings and reduced EMI.
- Serial flash In-Circuit Programming (ICP) allows simple production coding with commercial EPROM programmers. Flash security bits prevent reading of sensitive application programs.
- Serial flash In-System Programming (ISP) allows coding while the device is mounted in the end application.
- In-Application Programming (IAP) of the flash code memory. This allows changing the code in a running application.
- Watchdog timer with separate on-chip oscillator, nominal 400 kHz, calibrated to ± 5 %, requiring no external components. The watchdog prescaler is selectable from eight values.
- High-accuracy internal RC oscillator option, with clock doubler option, allows operation without external oscillator components. The RC oscillator option is selectable and fine tunable.
- Clock switching on the fly among internal RC oscillator, watchdog oscillator, external clock source provides optimal support of minimal power active mode with fast switching to maximum performance.
- Idle and two different power-down reduced power modes. Improved wake-up from Power-down mode (a LOW interrupt input starts execution). Typical power-down current is 1 µA (total power-down with voltage comparators disabled).
- Active-LOW reset. On-chip power-on reset allows operation without external reset components. A software reset function is also available.
- Configurable on-chip oscillator with frequency range options selected by user programmed flash configuration bits. Oscillator options support frequencies from 20 kHz to the maximum operating frequency of 18 MHz.
- Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator allowing it to perform an oscillator fail detect function.
- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.
- High current sourcing/sinking (20 mA) on eight I/O pins (P0.3 to P0.7, P1.4, P1.6, P1.7). All other port pins have high sinking capability (20 mA). A maximum limit is specified for the entire chip.
- Port 'input pattern match' detect. Port 0 may generate an interrupt when the value of the pins match or do not match a programmable pattern.
- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.
- Only power and ground connections are required to operate the P89LPC9201/9211/922A1/9251 when internal reset option is selected.
- Four interrupt priority levels.
- Eight keypad interrupt inputs, plus two additional external interrupt inputs.
- Schmitt trigger port inputs.
- Second data pointer.
- Emulation support.

8-bit microcontroller with 8-bit ADC

### 3. Ordering information

| Table 1. Ordering | information |                                                                        |          |
|-------------------|-------------|------------------------------------------------------------------------|----------|
| Type number       | Package     |                                                                        |          |
|                   | Name        | Description                                                            | Version  |
| P89LPC9201FDH     | TSSOP20     | plastic thin shrink small outline package; 20 leads; body width 4.4 mm | SOT360-1 |
| P89LPC9211FDH     | TSSOP20     | plastic thin shrink small outline package; 20 leads; body width 4.4 mm | SOT360-1 |
| P89LPC922A1FDH    | TSSOP20     | plastic thin shrink small outline package; 20 leads; body width 4.4 mm | SOT360-1 |
| P89LPC922A1FN     | DIP20       | plastic dual in-line package; 20 leads (300 mil)                       | SOT146-1 |
| P89LPC9241FDH     | TSSOP20     | plastic thin shrink small outline package; 20 leads; body width 4.4 mm | SOT360-1 |
| P89LPC9251FDH     | TSSOP20     | plastic thin shrink small outline package; 20 leads; body width 4.4 mm | SOT360-1 |

#### 3.1 Ordering options

#### Table 2. Ordering options

| Type number    | Flash memory | Temperature range | Frequency       |
|----------------|--------------|-------------------|-----------------|
| P89LPC9201FDH  | 2 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |
| P89LPC9211FDH  | 4 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |
| P89LPC922A1FDH | 8 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |
| P89LPC922A1FN  | 8 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |
| P89LPC9241FDH  | 4 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |
| P89LPC9251FDH  | 8 kB         | –40 °C to +85 °C  | 0 MHz to 18 MHz |

3 of 75

**NXP Semiconductors** 

8-bit microcontroller with 8-bit ADC

#### 6.2 Pin description

| Table 3. Pin des | cription          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|-------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Pin               | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | TSSOP20,<br>DIP20 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P0.0 to P0.7     |                   | I/O  | <b>Port 0:</b> Port 0 is an 8-bit I/O port with a user-configurable output type. During reset<br>Port 0 latches are configured in the input only mode with the internal pull-up<br>disabled. The operation of Port 0 pins as inputs and outputs depends upon the port<br>configuration selected. Each port pin is configured independently. Refer to <u>Section</u><br><u>7.16.1 "Port configurations"</u> and <u>Table 12 "Static characteristics"</u> for details.<br>The Keypad Interrupt feature operates with Port 0 pins.<br>All pins have Schmitt trigger inputs.<br>Port 0 also provides various special functions as described below: |
| P0.0/CMP2/       | 1                 | 1/0  | PO 0 — Port 0 bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KBI0             | •                 | 0    | CMP2 — Comparator 2 output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                   |      | <b>KBIO</b> — Keyboard input 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P0.1/CIN2B/      | 20                | I/O  | <b>P0.1</b> — Port 0 bit 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KBI1/AD10        |                   | 1    | <b>CIN2B</b> — Comparator 2 positive input B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                   | 1    | KBI1 — Keyboard input 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                   | 1    | AD10 — ADC1 channel 0 analog input. (P89LPC9241/9251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P0.2/CIN2A/      | 19                | I/O  | <b>P0.2</b> — Port 0 bit 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KBI2/AD11        |                   | I    | <b>CIN2A</b> — Comparator 2 positive input A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                   | I    | KBI2 — Keyboard input 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                   | I    | AD11 — ADC1 channel 1 analog input. (P89LPC9241/9251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P0.3/CIN1B/      | 18                | I/O  | P0.3 — Port 0 bit 3. High current source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KBI3/AD12        |                   | I    | CIN1B — Comparator 1 positive input B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                   | I    | KBI3 — Keyboard input 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                   | I    | AD12 — ADC1 channel 2 analog input. (P89LPC9241/9251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P0.4/CIN1A/      | 17                | I/O  | P0.4 — Port 0 bit 4. High current source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KBI4/DAC1/AD13   |                   | I    | CIN1A — Comparator 1 positive input A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                   | I    | KBI4 — Keyboard input 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                   | 0    | DAC1 — Digital-to-analog converter output 1. (P89LPC9241/9251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                   | Ι    | AD13 — ADC1 channel 3 analog input. (P89LPC9241/9251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P0.5/CMPREF/     | 16                | I/O  | P0.5 — Port 0 bit 5. High current source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KBI5             |                   | I    | <b>CMPREF</b> — Comparator reference (negative) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                   | I    | KBI5 — Keyboard input 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

8-bit microcontroller with 8-bit ADC

| Symbol          | Pin<br>TSSOP20,<br>DIP20 | Туре | Description                                                                                                                                                                                                                                                                                                                     |
|-----------------|--------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.0/XTAL2/     | 7                        | I/O  | <b>P3.0</b> — Port 3 bit 0.                                                                                                                                                                                                                                                                                                     |
| CLKOUT          |                          | 0    | <b>XTAL2</b> — Output from the oscillator amplifier (when a crystal oscillator option is selected via the flash configuration).                                                                                                                                                                                                 |
|                 |                          | 0    | <b>CLKOUT</b> — CPU clock divided by 2 when enabled via SFR bit (ENCLK -TRIM.6).<br>It can be used if the CPU clock is the internal RC oscillator, watchdog oscillator or<br>external clock input, except when XTAL1/XTAL2 are used to generate clock source<br>for the RTC/system timer.                                       |
| P3.1/XTAL1      | 6                        | I/O  | <b>P3.1</b> — Port 3 bit 1.                                                                                                                                                                                                                                                                                                     |
|                 |                          | 1    | <b>XTAL1</b> — Input to the oscillator circuit and internal clock generator circuits (when selected via the flash configuration). It can be a port pin if internal RC oscillator or watchdog oscillator is used as the CPU clock source, <b>and</b> if XTAL1/XTAL2 are not used to generate the clock for the RTC/system timer. |
| V <sub>SS</sub> | 5                        | I    | Ground: 0 V reference.                                                                                                                                                                                                                                                                                                          |
| V <sub>DD</sub> | 15                       | I    | <b>Power supply:</b> This is the power supply voltage for normal operation as well as Idle and Power-down modes.                                                                                                                                                                                                                |

 Table 3.
 Pin description ...continued

[1] Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.

# Table 4.Special function registers - P89LPC9201/9211/922A1\* indicates SFRs that are bit addressable.

| Name                 | Description                           | SFR    | Bit functions and addresses |      |      |      |      |     |       |       | Reset value   |          |
|----------------------|---------------------------------------|--------|-----------------------------|------|------|------|------|-----|-------|-------|---------------|----------|
|                      |                                       | addr.  | MSB                         |      |      |      |      |     |       | LSB   | Hex           | Binary   |
|                      | Bit a                                 | ddress | E7                          | E6   | E5   | E4   | E3   | E2  | E1    | E0    |               |          |
| ACC*                 | Accumulator                           | E0H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| AUXR1                | Auxiliary<br>function<br>register     | A2H    | CLKLP                       | EBRR | ENT1 | ENT0 | SRST | 0   | -     | DPS   | 00            | 0000 00  |
|                      | Bit a                                 | ddress | F7                          | F6   | F5   | F4   | F3   | F2  | F1    | F0    |               |          |
| B*                   | B register                            | F0H    |                             |      |      |      |      |     |       |       | 00            | 0000 000 |
| BRGR0 <sup>[2]</sup> | Baud rate<br>generator 0<br>rate low  | BEH    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| BRGR1印               | Baud rate<br>generator 0<br>rate high | BFH    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| BRGCON               | Baud rate<br>generator 0<br>control   | BDH    | -                           | -    | -    | -    | -    | -   | SBRGS | BRGEN | 00 <u>[2]</u> | XXXX XX( |
| CMP1                 | Comparator 1 control register         | ACH    | -                           | -    | CE1  | CP1  | CN1  | OE1 | CO1   | CMF1  | 00[1]         | xx00 00  |
| CMP2                 | Comparator 2 control register         | ADH    | -                           | -    | CE2  | CP2  | CN2  | OE2 | CO2   | CMF2  | 00[1]         | xx00 00  |
| DIVM                 | CPU clock<br>divide-by-M<br>control   | 95H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| DPTR                 | Data pointer<br>(2 bytes)             |        |                             |      |      |      |      |     |       |       |               |          |
| DPH                  | Data pointer<br>high                  | 83H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| DPL                  | Data pointer<br>low                   | 82H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| FMADRH               | Program flash address high            | E7H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |
| FMADRL               | Program flash                         | E6H    |                             |      |      |      |      |     |       |       | 00            | 0000 00  |

# **NXP Semiconductors**

P89LPC9201/9211/922A1/9241/9251 8-bit microcontroller with 8-bit ADC

#### Table 4.Special function registers - P89LPC9201/9211/922A1\* indicates SFRs that are bit addressable. P89LPC9

| Name   | Description                                | SFR    | Bit function | ns and addr | esses   |         |         |         |         |       | Reset value      |           |
|--------|--------------------------------------------|--------|--------------|-------------|---------|---------|---------|---------|---------|-------|------------------|-----------|
|        |                                            | addr.  | MSB          |             |         |         |         |         |         | LSB   | Hex              | Binary    |
| PCON   | Power control register                     | 87H    | SMOD1        | SMOD0       | -       | BOI     | GF1     | GF0     | PMOD1   | PMOD0 | 00               | 0000 0000 |
| PCONA  | Power control register A                   | B5H    | RTCPD        | -           | VCPD    | -       | I2PD    | -       | SPD     | -     | 00 <u>[1]</u>    | 0000 0000 |
|        | Bit a                                      | ddress | D7           | D6          | D5      | D4      | D3      | D2      | D1      | D0    |                  |           |
| PSW*   | Program status<br>word                     | D0H    | CY           | AC          | F0      | RS1     | RS0     | OV      | F1      | Р     | 00               | 0000 0000 |
| PT0AD  | Port 0 digital input disable               | F6H    | -            | -           | PT0AD.5 | PT0AD.4 | PT0AD.3 | PT0AD.2 | PT0AD.1 | -     | 00               | xx00 000x |
| RSTSRC | Reset source register                      | DFH    | -            | BOIF        | BOF     | POF     | R_BK    | R_WD    | R_SF    | R_EX  | [3]              |           |
| RTCCON | RTC control                                | D1H    | RTCF         | RTCS1       | RTCS0   | -       | -       | -       | ERTC    | RTCEN | 60 <u>[1][6]</u> | 011x xx00 |
| RTCH   | RTC register<br>high                       | D2H    |              |             |         |         |         |         |         |       | 00 <u>[6]</u>    | 0000 0000 |
| RTCL   | RTC register<br>low                        | D3H    |              |             |         |         |         |         |         |       | 00 <u>[6]</u>    | 0000 0000 |
| SADDR  | Serial port<br>address<br>register         | A9H    |              |             |         |         |         |         |         |       | 00               | 0000 0000 |
| SADEN  | Serial port<br>address enable              | B9H    |              |             |         |         |         |         |         |       | 00               | 0000 0000 |
| SBUF   | Serial Port data<br>buffer register        | 99H    |              |             |         |         |         |         |         |       | xx               | XXXX XXXX |
|        | Bit a                                      | ddress | 9F           | 9E          | 9D      | 9C      | 9B      | 9A      | 99      | 98    |                  |           |
| SCON*  | Serial port<br>control                     | 98H    | SM0/FE       | SM1         | SM2     | REN     | TB8     | RB8     | TI      | RI    | 00               | 0000 0000 |
| SSTAT  | Serial port<br>extended<br>status register | BAH    | DBMOD        | INTLO       | CIDIS   | DBISEL  | FE      | BR      | OE      | STINT | 00               | 0000 0000 |
| SP     | Stack pointer                              | 81H    |              |             |         |         |         |         |         |       | 07               | 0000 0111 |
| TAMOD  | Timer 0 and 1 auxiliary mode               | 8FH    | -            | -           | -       | T1M2    | -       | -       | -       | T0M2  | 00               | xxx0 xxx0 |

**NXP Semiconductors** 

P89LPC9201/9211/922A1/9241/9251

8-bit microcontroller with 8-bit ADC

Product data sheet

Rev. 2.1 — 27 August 2012

16 of 75

#### Special function registers - P89LPC9201/9211/922A1 Table 4. P89LPC9

\* indicates SFRs that are bit addressable.

| Name   | Description S                           | SFR    | Bit functions and addresses |       |        |        |        |        |        |        | Reset value |           |
|--------|-----------------------------------------|--------|-----------------------------|-------|--------|--------|--------|--------|--------|--------|-------------|-----------|
|        |                                         | addr.  | MSB                         |       |        |        |        |        |        | LSB    | Hex         | Binary    |
|        | Bit a                                   | ddress | 8F                          | 8E    | 8D     | 8C     | 8B     | 8A     | 89     | 88     |             |           |
| TCON*  | Timer 0 and 1 control                   | 88H    | TF1                         | TR1   | TF0    | TR0    | IE1    | IT1    | IE0    | IT0    | 00          | 0000 0000 |
| TH0    | Timer 0 high                            | 8CH    |                             |       |        |        |        |        |        |        | 00          | 0000 0000 |
| TH1    | Timer 1 high                            | 8DH    |                             |       |        |        |        |        |        |        | 00          | 0000 0000 |
| TL0    | Timer 0 low                             | 8AH    |                             |       |        |        |        |        |        |        | 00          | 0000 0000 |
| TL1    | Timer 1 low                             | 8BH    |                             |       |        |        |        |        |        |        | 00          | 0000 0000 |
| TMOD   | Timer 0 and 1 mode                      | 89H    | T1GATE                      | T1C/T | T1M1   | T1M0   | TOGATE | T0C/T  | T0M1   | TOMO   | 00          | 0000 0000 |
| TRIM   | Internal<br>oscillator trim<br>register | 96H    | RCCLK                       | ENCLK | TRIM.5 | TRIM.4 | TRIM.3 | TRIM.2 | TRIM.1 | TRIM.0 | [5][6]      |           |
| WDCON  | Watchdog<br>control register            | A7H    | PRE2                        | PRE1  | PRE0   | -      | -      | WDRUN  | WDTOF  | WDCLK  | [4][6]      |           |
| WDL    | Watchdog load                           | C1H    |                             |       |        |        |        |        |        |        | FF          | 1111 1111 |
| WFEED1 | Watchdog<br>feed 1                      | C2H    |                             |       |        |        |        |        |        |        |             |           |
| WFEED2 | Watchdog<br>feed 2                      | СЗН    |                             |       |        |        |        |        |        |        |             |           |

[<sup>§</sup> [1] All ports are in input only (high-impedance) state after power-up.

[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.

[3] The RSTSRC register reflects the cause of the P89LPC9201/9211/922A1 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is x011 0000.

[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset. Other resets will not affect WDTOF.

[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

The only reset sources that affect these SFRs are power-on reset and watchdog reset. [6]

P89LPC9201/9211/922A1/9241/9251

**NXP Semiconductors** 

Table 5. Extended special function registers - P89LPC9201/9211/922A1[1]

| Name  |    | Description                              | SFR   | Bit function | ns and addr | esses |        |        |       |         |         | Reset value |           |
|-------|----|------------------------------------------|-------|--------------|-------------|-------|--------|--------|-------|---------|---------|-------------|-----------|
|       |    |                                          | addr. | MSB          |             |       |        |        |       |         | LSB     | Hex         | Binary    |
| BODCF | G  | BOD<br>configuration<br>register         | FFC8H | -            | -           | -     | -      | -      | -     | BOICFG1 | BOICFG0 | [2]         |           |
| CLKCO | N  | CLOCK Control register                   | FFDEH | CLKOK        | -           | -     | XTALWD | CLKDBL | FOSC2 | FOSC1   | FOSC0   | <u>[3]</u>  |           |
| RTCDA | TH | Real-time clock<br>data register<br>high | FFBFH |              |             |       |        |        |       |         |         | 00          | 0000 0000 |
| RTCDA | TL | Real-time clock data register low        | FFBEH |              |             |       |        |        |       |         |         | 00          | 0000 0000 |

[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A, @DPTR and MOVX @DPTR, A instructions are used to access these extended SFRs.

[2] The BOICFG1/0 will be copied from UCFG1.5 and UCFG1.3 when power-on reset.

CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit comes from UCFG2.7.

n provided in this document is subject to legal disc Rev. 2.1 — 27 August 2012

[3]

Product data sheet

#### Table 6.Special function registers - P89LPC9241/9251 ...continued\* indicates SFRs that are bit addressable. P89LPC9

|                      | Name   | Description                                | SFR    | Bit function | ns and addr | esses   |         |         |         |          |          | Reset            | /alue     |
|----------------------|--------|--------------------------------------------|--------|--------------|-------------|---------|---------|---------|---------|----------|----------|------------------|-----------|
|                      |        |                                            | addr.  | MSB          |             |         |         |         |         |          | LSB      | Hex              | Binary    |
| •                    | P3M1   | Port 3 output<br>mode 1                    | B1H    | -            | -           | -       | -       | -       | -       | (P3M1.1) | (P3M1.0) | 03 <u>[1]</u>    | xxxx xx11 |
|                      | P3M2   | Port 3 output<br>mode 2                    | B2H    | -            | -           | -       | -       | -       | -       | (P3M2.1) | (P3M2.0) | 00 <u>[1]</u>    | xxxx xx00 |
|                      | PCON   | Power control<br>register                  | 87H    | SMOD1        | SMOD0       | -       | BOI     | GF1     | GF0     | PMOD1    | PMOD0    | 00               | 0000 0000 |
|                      | PCONA  | Power control<br>register A                | B5H    | RTCPD        | -           | VCPD    | ADPD    | I2PD    | -       | SPD      | -        | 00 <u>[1]</u>    | 0000 0000 |
|                      |        | Bit a                                      | ddress | D7           | D6          | D5      | D4      | D3      | D2      | D1       | D0       |                  |           |
| All informatic       | PSW*   | Program status<br>word                     | D0H    | CY           | AC          | F0      | RS1     | RS0     | OV      | F1       | Р        | 00               | 0000 0000 |
| on provided          | PT0AD  | Port 0 digital<br>input disable            | F6H    | -            | -           | PT0AD.5 | PT0AD.4 | PT0AD.3 | PT0AD.2 | PT0AD.1  | -        | 00               | xx00 000x |
| in this docu         | RSTSRC | Reset source<br>register                   | DFH    | -            | BOIF        | BOF     | POF     | R_BK    | R_WD    | R_SF     | R_EX     | [3]              |           |
| ment is              | RTCCON | RTC control                                | D1H    | RTCF         | RTCS1       | RTCS0   | -       | -       | -       | ERTC     | RTCEN    | 60 <u>[1][6]</u> | 011x xx00 |
| subject to I         | RTCH   | RTC register<br>high                       | D2H    |              |             |         |         |         |         |          |          | 00 <u>[6]</u>    | 0000 0000 |
| egal disclair        | RTCL   | RTC register<br>low                        | D3H    |              |             |         |         |         |         |          |          | 00 <u>[6]</u>    | 0000 0000 |
| ners.                | SADDR  | Serial port<br>address<br>register         | A9H    |              |             |         |         |         |         |          |          | 00               | 0000 0000 |
|                      | SADEN  | Serial port<br>address enable              | B9H    |              |             |         |         |         |         |          |          | 00               | 0000 0000 |
|                      | SBUF   | Serial Port data<br>buffer register        | 99H    |              |             |         |         |         |         |          |          | xx               | XXXX XXXX |
| 0                    |        | Bit a                                      | ddress | 9F           | 9E          | 9D      | 9C      | 9B      | 9A      | 99       | 98       |                  |           |
| NXP B.V. 20          | SCON*  | Serial port control                        | 98H    | SM0/FE       | SM1         | SM2     | REN     | TB8     | RB8     | TI       | RI       | 00               | 0000 0000 |
| 012. All rights rese | SSTAT  | Serial port<br>extended<br>status register | BAH    | DBMOD        | INTLO       | CIDIS   | DBISEL  | FE      | BR      | OE       | STINT    | 00               | 0000 0000 |

**NXP Semiconductors** 

P89LPC9201/9211/922A1/9241/9251

8-bit microcontroller with 8-bit ADC

23 of 75

#### Special function registers - P89LPC9241/9251 ... continued Table 6. PLPC

| Name   | Description                             | SFR    | Bit function | ns and addre | esses  |        |        |        |        |        | Reset         | value     |
|--------|-----------------------------------------|--------|--------------|--------------|--------|--------|--------|--------|--------|--------|---------------|-----------|
|        |                                         | addr.  | MSB          |              |        |        |        |        |        | LSB    | Hex           | Binary    |
| SP     | Stack pointer                           | 81H    |              |              |        |        |        |        |        |        | 07            | 0000 011  |
| TAMOD  | Timer 0 and 1<br>auxiliary mode         | 8FH    | -            | -            | -      | T1M2   | -      | -      | -      | T0M2   | 00            | xxx0 xxx( |
|        | Bit a                                   | ddress | 8F           | 8E           | 8D     | 8C     | 8B     | 8A     | 89     | 88     |               |           |
| TCON*  | Timer 0 and 1 control                   | 88H    | TF1          | TR1          | TF0    | TR0    | IE1    | IT1    | IE0    | IT0    | 00            | 0000 000  |
| TH0    | Timer 0 high                            | 8CH    |              |              |        |        |        |        |        |        | 00            | 0000 000  |
| TH1    | Timer 1 high                            | 8DH    |              |              |        |        |        |        |        |        | 00            | 0000 000  |
| TL0    | Timer 0 low                             | 8AH    |              |              |        |        |        |        |        |        | 00            | 0000 000  |
| TL1    | Timer 1 low                             | 8BH    |              |              |        |        |        |        |        |        | 00            | 0000 000  |
| TMOD   | Timer 0 and 1<br>mode                   | 89H    | T1GATE       | T1C/T        | T1M1   | T1M0   | TOGATE | T0C/T  | T0M1   | T0M0   | 00            | 0000 000  |
| TRIM   | Internal<br>oscillator trim<br>register | 96H    | RCCLK        | ENCLK        | TRIM.5 | TRIM.4 | TRIM.3 | TRIM.2 | TRIM.1 | TRIM.0 | <u>[5][6]</u> |           |
| WDCON  | Watchdog control register               | A7H    | PRE2         | PRE1         | PRE0   | -      | -      | WDRUN  | WDTOF  | WDCLK  | [4][6]        |           |
| WDL    | Watchdog load                           | C1H    |              |              |        |        |        |        |        |        | FF            | 1111 1111 |
| WFEED1 | Watchdog<br>feed 1                      | C2H    |              |              |        |        |        |        |        |        |               |           |
| WFEED2 | Watchdog<br>feed 2                      | СЗН    |              |              |        |        |        |        |        |        |               |           |

[3] The RSTSRC register reflects the cause of the P89LPC9241/9251 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is x011 0000.

After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset. [4] Other resets will not affect WDTOF.

On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register. [5]

[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.

CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit comes from UCFG2.7

Rev. 2.1 27 August 2012

# 24 of 75

© NXP B.V. 2012. AI

#### 7.17.1 Brownout detection

The brownout detect function determines if the power supply voltage drops below a certain level. Enhanced brownout detection has 3 independent functions: BOD reset, BOD interrupt and BOD FLASH.

BOD reset is always on except in total Power-down mode. It could not be disabled in software. BOD interrupt may be enabled or disabled in software. BOD FLASH is always on, except in Power-down modes and could not be disabled in software.

BOD reset and BOD interrupt, each has four trip voltage levels. BOE1 bit (UCFG1.5) and BOE0 bit (UCFG1.3) are used as trip point configuration bits of BOD reset. BOICFG1 bit and BOICFG0 bit in register BODCFG are used as trip point configuration bits of BOD interrupt. BOD reset voltage should be lower than BOD interrupt trip point. BOD FLASH is used for flash programming/erase protection and has only 1 trip voltage of 2.4 V. Please refer to *P89LPC9201/9211/922A1/9251 User manual* for detail configurations.

If brownout detection is enabled the brownout condition occurs when  $V_{DD}$  falls below the brownout trip voltage and is negated when  $V_{DD}$  rises above the brownout trip voltage.

For correct activation of brownout detect, the  $V_{DD}$  rise and fall times must be observed. Please see <u>Table 12 "Static characteristics"</u> for specifications.

#### 7.17.2 Power-on detection

The Power-on detect has a function similar to the brownout detect, but is designed to work as power comes up initially, before the power supply voltage reaches a level where brownout detect can work. The POF flag in the RSTSRC register is set to indicate an initial power-up condition. The POF flag will remain set until cleared by software.

#### 7.18 Power reduction modes

The P89LPC9201/9211/922A1/9241/9251 supports three different power reduction modes. These modes are Idle mode, Power-down mode, and total Power-down mode.

#### 7.18.1 Idle mode

Idle mode leaves peripherals running in order to allow them to activate the processor when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle mode.

#### 7.18.2 Power-down mode

The Power-down mode stops the oscillator in order to minimize power consumption. The P89LPC9201/9211/922A1/9241/9251 exits Power-down mode via any reset, or certain interrupts. In Power-down mode, the power supply voltage may be reduced to the data retention supply voltage  $V_{DDR}$ . This retains the RAM contents at the point where Power-down mode was entered. SFR contents are not guaranteed after  $V_{DD}$  has been lowered to  $V_{DDR}$ , therefore it is highly recommended to wake-up the processor via reset in this case.  $V_{DD}$  must be raised to within the operating range before the Power-down mode is exited.

#### 7.20.6 Timer overflow toggle output

Timers 0 and 1 can be configured to automatically toggle a port output whenever a timer overflow occurs. The same device pins that are used for the T0 and T1 count inputs are also used for the timer toggle outputs. The port outputs will be a logic 1 prior to the first timer overflow when this mode is turned on.

#### 7.21 RTC/system timer

The P89LPC9201/9211/922A1/9241/9251 has a simple RTC that allows a user to continue running an accurate timer while the rest of the device is powered down. The RTC can be a wake-up or an interrupt source. The RTC is a 23-bit down counter comprised of a 7-bit prescaler and a 16-bit loadable down counter. When it reaches all logic 0s, the counter will be reloaded again and the RTCF flag will be set. The clock source for this counter can be either the CPU clock (CCLK) or the XTAL oscillator. Only power-on reset and watchdog reset will reset the RTC and its associated SFRs to the default state.

The 16-bit loadable counter portion of the RTC is readable by reading the RTCDATL and RTCDATH registers.

#### 7.22 UART

The P89LPC9201/9211/922A1/9241/9251 has an enhanced UART that is compatible with the conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The P89LPC9201/9211/922A1/9241/9251 does include an independent baud rate generator. The baud rate can be selected from the oscillator (divided by a constant), Timer 1 overflow, or the independent baud rate generator. In addition to the baud rate generation, enhancements over the standard 80C51 UART include Framing Error detection, automatic address recognition, selectable double buffering and several interrupt options. The UART can be operated in four modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU clock/16.

#### 7.22.1 Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted or received, LSB first. The baud rate is fixed at  $\frac{1}{16}$  of the CPU clock frequency.

#### 7.22.2 Mode 1

10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored in RB8 in special function register SCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the baud rate generator (described in <u>Section 7.22.5 "Baud</u> rate generator and selection").

#### 7.22.3 Mode 2

11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data bits (LSB first), a programmable 9<sup>th</sup> data bit, and a stop bit (logic 1). When data is transmitted, the 9<sup>th</sup> data bit (TB8 in SCON) can be assigned the value of logic 0 or logic 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is received, the 9<sup>th</sup> data bit goes into RB8 in special function register SCON, while the stop bit is not saved. The baud rate is programmable to either  $\frac{1}{16}$  or  $\frac{1}{32}$  of the CPU clock frequency, as determined by the SMOD1 bit in PCON.

8-bit microcontroller with 8-bit ADC

#### 7.28.6 ICP

ICP is performed without removing the microcontroller from the system. The ICP facility consists of internal hardware resources to facilitate remote programming of the P89LPC9201/9211/922A1/9241/9251 through a two-wire serial interface. The NXP ICP facility has made in-circuit programming in an embedded application - using commercially available programmers - possible with a minimum of additional expense in components and circuit board area. The ICP function uses five pins. Only a small connector needs to be available to interface your application to a commercial programmer in order to use this feature. Additional details may be found in the *P89LPC9201/9211/922A1/9241/9251 User manual*.

#### 7.28.7 IAP

IAP is performed in the application under the control of the microcontroller's firmware. The IAP facility consists of internal hardware resources to facilitate programming and erasing. The NXP IAP has made in-application programming in an embedded application possible without additional components. Two methods are available to accomplish IAP. A set of predefined IAP functions are provided in a Boot ROM and can be called through a common interface, PGM\_MTP. Several IAP calls are available for use by an application program to permit selective erasing and programming of flash sectors, pages, security bits, configuration bytes, and device ID. These functions are selected by setting up the microcontroller's registers before making a call to PGM\_MTP at FF03H. The Boot ROM occupies the program memory space at the top of the address space from FF00H to FEFFH, thereby not conflicting with the user program memory space.

In addition, IAP operations can be accomplished through the use of four SFRs consisting of a control/status register, a data register, and two address registers. Additional details may be found in the *P89LPC9201/9211/922A1/9241/9251 User manual*.

#### 7.28.8 ISP

ISP is performed without removing the microcontroller from the system. The ISP facility consists of a series of internal hardware resources coupled with internal firmware to facilitate remote programming of the P89LPC9201/9211/922A1/9241/9251 through the serial port. This firmware is provided by NXP and embedded within each P89LPC9201/9211/922A1/9241/9251 device. The NXP ISP facility has made in-system programming in an embedded application possible with a minimum of additional expense in components and circuit board area. The ISP function uses five pins (V<sub>DD</sub>, V<sub>SS</sub>, TXD, RXD, and RST). Only a small connector needs to be available to interface your application to an external circuit in order to use this feature.

#### 7.28.9 Power-on reset code execution

The P89LPC9201/9211/922A1/9241/9251 contains two special flash elements: the Boot Vector and the Boot Status bit. Following reset, the P89LPC9201/9211/922A1/9241/9251 examines the contents of the Boot Status bit. If the Boot Status bit is set to zero, power-up execution starts at location 0000H, which is the normal start address of the user's application code. When the Boot Status bit is set to a value other than zero, the contents of the Boot Vector are used as the high byte of the execution address and the low byte is set to 00H.

8-bit microcontroller with 8-bit ADC



#### 8.3 Block diagram

#### 8.4 Temperature sensor

An on-chip wide-temperature range temperature sensor is integrated. It provides temperature sensing capability of -40 °C ~ 85 °C. ADC0 is dedicated for the temperature sensor, and the temperature sensor is measured through Anin03. To get an accurate temperature value, it is necessary to get supply voltage by measuring the internal reference voltage V<sub>ref(bg)</sub> first. Please see the *P89LPC9201/9211/922A1/9241/9251 User manual* for detailed usage of temperature sensor.

#### 8.5 ADC operating modes

#### 8.5.1 Fixed channel, single conversion mode

A single input channel can be selected for conversion. A single conversion will be performed and the result placed in the result register which corresponds to the selected input channel. An interrupt, if enabled, will be generated after the conversion completes.

#### 8.5.2 Fixed channel, continuous conversion mode

A single input channel can be selected for continuous conversion. The results of the conversions will be sequentially placed in the four result register. The user may select whether an interrupt can be generated after every four conversions. Additional conversion results will again cycle through the four result register, overwriting the previous results. Continuous conversions continue until terminated by the user.

8-bit microcontroller with 8-bit ADC





Product data sheet

8-bit microcontroller with 8-bit ADC





#### 10.2 Internal RC/watchdog oscillator characteristics

Note: The graphs provided are a statistical summary based on a limited number of samples and only for information purposes. The performance characteristics listed are not tested or guaranteed.





P89LPC92X1 Product data sheet

8-bit microcontroller with 8-bit ADC





#### 12. Other characteristics

#### 12.1 Comparator electrical characteristics

#### Table 17. Comparator electrical characteristics

 $V_{DD} = 2.4$  V to 3.6 V, unless otherwise specified.

 $T_{amb} = -40$  °C to +85 °C for industrial applications, unless otherwise specified.

| Symbol                | Parameter                        | Conditions           | Min         | Тур | Max          | Unit |
|-----------------------|----------------------------------|----------------------|-------------|-----|--------------|------|
| V <sub>IO</sub>       | input offset voltage             |                      | -           | -   | ±20          | mV   |
| V <sub>IC</sub>       | common-mode input voltage        |                      | 0           | -   | $V_{DD}-0.3$ | V    |
| CMRR                  | common-mode rejection ratio      | [;                   | <u>1]</u> _ | -   | -50          | dB   |
| t <sub>res(tot)</sub> | total response time              |                      | -           | 250 | 500          | ns   |
| t <sub>(CE-OV)</sub>  | chip enable to output valid time |                      | -           | -   | 10           | μS   |
| ILI                   | input leakage current            | $0 V < V_I < V_{DD}$ | -           | -   | ±1           | μA   |

[1] This parameter is characterized, but not tested in production.

8-bit microcontroller with 8-bit ADC

#### 18. Contents

| 1        | General description 1                       | 7.18                 |
|----------|---------------------------------------------|----------------------|
| 2        | Features and benefits 1                     | 7.19                 |
| 2.1      | Principal features 1                        | <mark>ا 7.1</mark> 9 |
| 2.2      | Additional features 2                       | <u> </u>             |
| 3        | Ordering information                        | <b>3</b> 7.20        |
| 3.1      | Ordering options 3                          | 3 7.20               |
| 4        | Block diagram 4                             | + 7.2                |
| 5        | Functional diagram                          | <b>i</b> 7.20        |
| 6        | Pinning information                         | 7.20                 |
| 6.1      | Pinning                                     | 7.2                  |
| 6.2      | Pin description                             | ) 7.22               |
| 7        | Functional description 12                   | 2 7.2                |
| 7.1      | Special function registers 12               | <u> </u>             |
| 7.2      | Enhanced CPU 26                             | ) /.Z                |
| 7.3      | Clocks                                      | ) /.Z                |
| 7.3.1    | Clock definitions 26                        | ) /.Z                |
| 7.3.2    | CPU clock (OSCCLK)                          | ) /.Z                |
| 7.4      | Crystal oscillator option                   | ) 7.22               |
| 7.4.1    | Low speed oscillator option 26              | 3 7.22               |
| 7.4.2    | Medium speed oscillator option              | <u>۲.2</u> 2         |
| 7.4.3    | High speed oscillator option                | )<br>                |
| 7.5      | Clock output                                | , 7.22               |
| 7.6      | On-chip RC oscillator option                | 7                    |
| 7.7      | Watchdog oscillator option                  | , 7.2                |
| 7.8      | External clock input option                 | , 7.2 <sup>,</sup>   |
| 7.9      | Clock sources switch on the fly             | , 7.2 <sup>,</sup>   |
| 7.10     | CCI K wake-up delay 28                      | 3 7.24               |
| 7.11     | CCLK modification: DIVM register            | 3 7.24               |
| 7.12     | Low power select                            | 3 7.2                |
| 7 13     | Memory organization 29                      | 7.20                 |
| 7 14     | Data RAM arrangement                        | ý 7.2                |
| 7 15     | Interrupts 29                               | 7.2                  |
| 7 15 1   | External interrupt inputs 30                | , 7.2                |
| 7 16     | I/O ports                                   | 5 7.28               |
| 7 16 1   | Port configurations 32                      | 7.28                 |
| 7 16 1 1 | Quasi-bidirectional output configuration 32 | , 7.28               |
| 7 16 1 2 | Open-drain output configuration             | 7.28                 |
| 7 16 1 3 | Input-only configuration                    | 7.28                 |
| 7 16 1 / | Push-pull output configuration 33           | , 7.28               |
| 7.10.1.4 | Port 0 analog functions                     | , 7.28               |
| 7 16 2   | Additional port features                    | ć 7.28               |
| 7.10.3   | Dower monitoring functions                  | , 7.28               |
| 7 17 1   | Prownout detection                          | , 7.28               |
| 7.17.1   | Downout detection 24                        | 7.28                 |
| 7.11.2   | Power reduction modes                       | 7.29                 |
| 7 10 4   |                                             | 7.3                  |
| 7.10.1   |                                             | +<br>4 8             |
| 7.18.2   | Power-down mode 32                          | + 0                  |

| 83                     | Total Power-down mode                               | 35 |
|------------------------|-----------------------------------------------------|----|
| 9.5<br>9               | Reset                                               | 35 |
| 91                     | Reset vector                                        | 36 |
| 0                      | Timers/counters 0 and 1                             | 36 |
| 0.1                    | Mode 0                                              | 36 |
| 0.2                    | Mode 1                                              | 36 |
| 0.3                    | Mode 2                                              | 36 |
| 0.4                    | Mode 3                                              | 36 |
| 0.5                    | Mode 6                                              | 36 |
| 0.6                    | Timer overflow toggle output                        | 37 |
| 1                      | RTC/system timer                                    | 37 |
| 2                      | UART                                                | 37 |
| 2.1                    | Mode 0                                              | 37 |
| 2.2                    | Mode 1                                              | 37 |
| 2.3                    | Mode 2                                              | 37 |
| 2.4                    | Mode 3                                              | 38 |
| 2.5                    | Baud rate generator and selection                   | 38 |
| 2.6                    | Framing error                                       | 38 |
| 2.7                    | Break detect                                        | 38 |
| 2.8                    | Double buffering                                    | 38 |
| 2.9                    | Transmit interrupts with double buffering           |    |
|                        | enabled (modes 1, 2 and 3)                          | 39 |
| 2.10                   | The 9 <sup>th</sup> bit (bit 8) in double buffering |    |
| _                      | (modes 1, 2 and 3)                                  | 39 |
| 3                      | l <sup>2</sup> C-bus serial interface               | 39 |
| 4                      | Analog comparators                                  | 40 |
| 4.1                    | Internal reference voltage                          | 41 |
| 4.2                    |                                                     | 41 |
| 4.3                    | Comparators and power reduction modes               | 41 |
| 5                      | KBI                                                 | 42 |
| 5                      |                                                     | 42 |
| 1                      |                                                     | 43 |
| 7.1                    |                                                     | 43 |
| 1.Z                    |                                                     | 43 |
| 01                     |                                                     | 43 |
| 0.1<br>ຊ່າ             |                                                     | 43 |
| 0.Z<br>0.2             | Flach organization                                  | 44 |
| 0.0<br>8 /             | Lising flash as data storage                        | 44 |
| 0. <del>4</del><br>8 5 | Elash programming and erasing                       | 44 |
| 0.J<br>8.6             |                                                     | 44 |
| 0.0<br>8 7             |                                                     | 45 |
| 8.8                    | ISP                                                 | 45 |
| 8.9                    | Power-on reset code execution                       | 45 |
| 8.10                   | Hardware activation of the bootloader               | 46 |
| 9                      | User configuration bytes                            | 46 |
| 0                      | User sector security bytes                          | 46 |
| -                      | ADC (P80) PC0241/0251)                              | 16 |
|                        |                                                     | 40 |

#### continued >>