

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam3n1cb-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2 System I/O Lines

Table 6-1 lists the SAM3N system I/O lines shared with PIO lines. These pins are software configurable as general purpose I/O or system pins. At startup, the default function of these pins is always used.

CCFG_SYSIO Bit No.	Default Function After Reset	Other Function	Constraints For Normal Start	Configuration		
12	ERASE	PB12	Low Level at startup ⁽¹⁾			
7	TCK/SWCLK	PB7	_	In Matrix User Interface Registers (refer to		
6	TMS/SWDIO	PB6	_	System I/O Configuration Register in Section 2: "Bus Matrix (MATRIX)")		
5	TDO/TRACESWO	PB5	_			
4	TDI	PB4	_			
-	PA7	XIN32	_	(2)		
_	PA8	XOUT32	_			
-	PB9	XIN	_	(3)		
_	PB8	XOUT	_			

Table 6-1. System I/O Configuration Pin List

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode.

- 2. Refer to Section 17.4.2 "Slow Clock Generator".
- 3. Refer to Section 24.5.3 "3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator".

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 "Signal Description List".

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to Section 12. "Debug and Test Features".

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to Section 12. "Debug and Test Features".

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3N series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see Section 20. "Fast Flash Programming Interface (FFPI)". For more on the manufacturing and test mode, refer to Section 12. "Debug and Test Features".

31	30	29	28	27	26	25	24
			IP[[11]			
23	22	21	20	19	18	17	16
			IP[10]			
15	14	13	12	11	10	9	8
			IP	[9]			
7	6	5	4	3	2	1	0
			IP	[8]			
11 20 7 5 IDD1							
11.20.7.5 IPR1							
31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
			IP	[6]			
15	14	13	12	11	10	9	8
			IP	[5]			
7	6	5	4	3	2	1	0
			IP	[4]			
11 20 7 6 IPP0							
11.20.7.0 11 10							
31	30	29	28	27	26	25	24
			IP	ျ			
23	22	21	20	19	18	17	16
			IP	[2]			
15	14	13	12	11	10	9	8
			IP	[1]			
7	6	5	4	3	2	1	0
			IP	[0]			

• Priority, byte offset 3

- Priority, byte offset 2
- Priority, byte offset 1
- Priority, byte offset 0

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt. The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See "The CMSIS mapping of the Cortex-M3 NVIC registers" on page 144 for more information about the IP[0] to IP[32] interrupt priority array, that provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt *N* as follows:

- the corresponding IPR number, M, is given by M = N DIV 4
- the byte offset of the required Priority field in this register is N MOD 4, where:
 - byte offset 0 refers to register bits[7:0]

- byte offset 1 refers to register bits[15:8]
- byte offset 2 refers to register bits[23:16]
- byte offset 3 refers to register bits[31:24].

Atmel

11.21.11.1 Memory Management Fault Status Register

The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7	6	5	4	3	2	1	0
MMARVALID	Rese	rved	MSTKERR	MUNSTKERR	Reserved	DACCVIOL	IACCVIOL

• MMARVALID

Memory Management Fault Address Register (MMAR) valid flag:

0 = value in MMAR is not a valid fault address

1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value has been overwritten.

MSTKERR

Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has not written a fault address to the MMAR.

MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault address to the MMAR.

DACCVIOL

Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the MMAR with the address of the attempted access.

IACCVIOL

Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written a fault address to the MMAR.

12.5 Functional Description

12.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during powerup, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15 k Ω ,so that it can be left unconnected for normal operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state during the duration of the whole operation.

12.5.2 Debug Architecture

Figure 12-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds five functional units for debug:

- SWJ-DP (Serial Wire/JTAG Debug Port)
- FPB (Flash Patch Breakpoint)
- DWT (Data Watchpoint and Trace)
- ITM (Instrumentation Trace Macrocell)
- TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further details on SWJ-DP see the Cortex M3 technical reference manual.

12.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight[™] debug port. It combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and enables SW-DP.

Atmel

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

It is possible to clear lock bits previously set. Then the locked region can be erased or programmed. The unlock sequence is:

- The Clear Lock command (CLB) and a page number to be unprotected are written in the Flash Command Register.
- When the unlock completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.
- If the lock bit number is greater than the total number of lock bits, then the command has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC). The Get Lock Bit status sequence is:

- The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is meaningless.
- Lock bits can be read by the software application in the EEFC_FRR register. The first word read
 corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as it is meaningful.
 Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock region is locked.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

19.3.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product definition section for information on the GPNVM Bit Action.

The set GPNVM bit sequence is:

- Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the SGPB command and the number of the GPNVM bit to be set.
- When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.
- If the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect. The result of the SGPB command can be checked by running a GGPB (Get GPNVM Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:

• A Command Error: a bad keyword has been written in the EEFC_FCR register.

It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:

- Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with CGPB and the number of the GPNVM bit to be cleared.
- When the clear completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.
- If the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

• A Command Error: a bad keyword has been written in the EEFC_FCR register.

23.3 Block Diagram

Figure 23-1. Block Diagram

25.15.10 PMC Master Clock Register

Name:	PMC_MCKR						
Address:	0x400E0430						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-	_	_	_	_	-	_
23	22	21	20	19	18	17	16
_	-	_	-	_	_	_	-
15	14	13	12	11	10	9	8
-	-	—	PLLDIV2	-	-	-	-
7	6	5	4	3	2	1	0
_		PRES		_	_	C	SS

This register can only be written if the WPEN bit is cleared in "PMC Write Protection Mode Register" on page 366.

CSS: Master Clock Source Selection

Value	Name Description		
0	SLOW_CLK	Slow Clock is selected	
1	MAIN_CLK Main Clock is selected		
2	PLL_CLK	PLL Clock is selected	
3	_	Reserved	

• PRES: Processor Clock Prescaler

Value	Name	Description		
0	CLK	Selected clock		
1	CLK_2	Selected clock divided by 2		
2	CLK_4	Selected clock divided by 4		
3	CLK_28	Selected clock divided by 8		
4	CLK_16	Selected clock divided by 16		
5	CLK_32	Selected clock divided by 32		
6	CLK_64	Selected clock divided by 64		
7	CLK_3	Selected clock divided by 3		

• PLLDIV2: PLL Divisor by 2

PLLDIV2	PLL Clock Division
0	PLL clock frequency is divided by 1
1	PLL clock frequency is divided by 2

27.7.3 PIO Status Register

Name: PIO_PSR

Addresses: 0x400E0E08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	- 11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: PIO Status

0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

30. Universal Asynchronous Receiver Transceiver (UART)

30.1 Description

The Universal Asynchronous Receiver Transmitter features a two-pin UART that can be used for communication and trace purposes and offers an ideal medium for in-situ programming solutions. Moreover, the association with two peripheral DMA controller (PDC) channels permits packet handling for these tasks with processor time reduced to a minimum.

30.2 Embedded Characteristics

- Two-pin UART
 - Implemented Features are USART Compatible
 - Independent Receiver and Transmitter with a Common Programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Interrupt Generation
 - Support for Two PDC Channels with Connection to Receiver and Transmitter

30.3 Block Diagram

Figure 30-1. UART Functional Block Diagram

Table 30-1. UART Pin Description

Pin Name	Description	Туре
URXD	UART Receive Data	Input
UTXD	UART Transmit Data	Output

30.5.2.4 Receiver Overrun

If UART_RHR has not been read by the software (or the Peripheral Data Controller or DMA Controller) since the last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in UART_SR is set. OVRE is cleared when the software writes the control register UART_CR with the bit RSTSTA (Reset Status) at 1.

Figure 30-6. Receiver Overrun

30.5.2.5 Parity Error

Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with the field PAR in UART_MR. It then compares the result with the received parity bit. If different, the parity error bit PARE in UART_SR is set at the same time the RXRDY is set. The parity bit is cleared when the control register UART_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status command is written, the PARE bit remains at 1.

Figure 30-7. Parity Error

30.5.2.6 Receiver Framing Error

When a start bit is detected, it generates a character reception when all the data bits have been sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error) bit in UART_SR is set at the same time the RXRDY bit is set. The FRAME bit remains high until the control register UART_CR is written with the bit RSTSTA at 1.

Figure 30-8. Receiver Framing Error

Figure 31-13. Timeguard Operations

Table 31-10 indicates the maximum length of a timeguard period that the transmitter can handle in relation to the function of the Baud Rate.

Baud Rate	Bit time	Timeguard		
Bit/sec	μs	ms		
1 200	833	212.50		
9 600	104	26.56		
14400	69.4	17.71		
19200	52.1	13.28		
28800	34.7	8.85		
33400	29.9	7.63		
56000	17.9	4.55		
57600	17.4	4.43		
115200	8.7	2.21		

 Table 31-10.
 Maximum Timeguard Length Depending on Baud Rate

31.7.3.8 Receiver Time-out

The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed to 0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR remains to 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter is decremented at each bit period and reloaded each time a new character is received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user can either:

- Stop the counter clock until a new character is received. This is performed by writing the Control Register (US_CR) with the STTTO (Start Time-out) bit to 1. In this case, the idle state on RXD before a new character is received will not provide a time-out. This prevents having to handle an interrupt before a character is received and allows waiting for the next idle state on RXD after a frame is received.
- Obtain an interrupt while no character is received. This is performed by writing US_CR with the RETTO (Reload and Start Time-out) bit to 1. If RETTO is performed, the counter starts counting down immediately

Figure 33-4. Non Overlapped Center Aligned Waveforms

Note: 1. See Figure 33-5 on page 645 for a detailed description of center aligned waveforms.

When center aligned, the internal channel counter increases up to CPRD and decreases down to 0. This ends the period.

When left aligned, the internal channel counter increases up to CPRD and is reset. This ends the period.

Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a left aligned channel.

Waveforms are fixed at 0 when:

- CDTY = CPRD and CPOL = 0
- CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:

- CDTY = 0 and CPOL = 0
- CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the channel output level. Changes on channel polarity are not taken into account while the channel is enabled.

34.7.6 ADC Channel Disable Register

Name:	ADC_CHDR						
Address:	0x40038014						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	_	-	-	-
23	22	21	20	19	18	17	16
-	-	—	-	—	—	-	-
15	14	13	12	11	10	9	8
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
7	6	5	4	3	2	1	0
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

This register can only be written if the WPEN bit is cleared in "ADC Write Protect Mode Register" on page 691.

• CHx: Channel x Disable

0 = No effect.

1 = Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled then reenabled during a conversion, its associated data and its corresponding EOC and OVRE flags in ADC_SR are unpredictable.

34.7.9 ADC Interrupt Enable Register

Name:	ADC_IER						
Address:	0x40038024						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	_	_	RXBUFF	ENDRX	COMPE	GOVRE	DRDY
23	22	21	20	19	18	17	16
_	-	-	—	-	-	—	—
15	14	13	12	11	10	9	8
EOC15	EOC14	EOC13	EOC12	EOC11	EOC10	EOC9	EOC8
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

• EOCx: End of Conversion Interrupt Enable x

• DRDY: Data Ready Interrupt Enable

• GOVRE: General Overrun Error Interrupt Enable

- COMPE: Comparison Event Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- **RXBUFF: Receive Buffer Full Interrupt Enable** 0 = No effect.
- 1 = Enables the corresponding interrupt.

36.8.3.2 SPI Timings

SPI timings are given for the following domains:

- 3.3V domain: V_{DDIO} from 3.0V to 3.6V, maximum external capacitor = 30 pF
- 1.8V domain: V_{DDIO} from 1.65V to 1.95V, maximum external capacitor = 30 pF

Symbol	Parameter	Conditions	Min	Max	Unit
SDI	MISO Satur time before SPCK rises (master)	3.3V Domain	14.2		
		1.8V Domain	17		
6 DI	MISO Hold time after SPCK rises (master)	3.3V Domain	0	0	
3F11		1.8V Domain	0		
SDI	SPCK riging to MOSI Doloy (master)	3.3V Domain	-2.7	2.6	
3F12	SFOR TISING TO MOST Delay (master)	1.8V Domain	-3.6	3.4	
SDI	MISO Satur time before SPCK falls (master)	3.3V Domain	14.4		
3F13		1.8V Domain	17		
201	MISO Hold time ofter SDCK falls (master)	3.3V Domain	0		
3P1 ₄		1.8V Domain	0		
201	SPCK falling to MOSI Dalay (master)	3.3V Domain	-2.4	2.8	
3815	SPCK failing to MOSI Delay (master)	1.8V Domain	-3.4	3.6	-
0.51	SPCK falling to MISO Delay (alove)	3.3V Domain	4.4	15.4	
5P16	SPCK failing to MISO Delay (slave)	1.8V Domain	4.6	18.5	
		3.3V Domain	0		1
5PI7	MOSI Setup time before SPCK fises (slave)	1.8V Domain	0		1
201	MOSI Hold time offer SDCK rises (alove)	3.3V Domain	1.8		ns
5818	NOSI Hold lime alter SPCK lises (slave)	1.8V Domain	1.6		
201	SPCK riging to MISO Delay (alaya)	3.3V Domain	4.9	15.4	
3PI9	SPCK fishing to MISO Delay (slave)	1.8V Domain	5.2	18.3	
	MORI Catura time hafare CROK falls (alaus)	3.3V Domain	0		1
5PI ₁₀	NOSI Setup time before SPCK fails (slave)	1.8V Domain	0		
201	MOSt Hold time offer SDCK falls (clave)	3.3V Domain	1.9		
3PI ₁₁		1.8V Domain	2		1
	NPCC actum to CPC/(vising (aloug)	3.3V Domain	6.3		
5PI ₁₂	NPCS setup to SPCK rising (slave)	1.8V Domain	6.4		1
SPI ₁₃		3.3V Domain	0		1
	NPCS hold after SPCK failing (slave)	1.8V Domain	0		
		3.3V Domain	6.4		1
591 ₁₄	NPCS setup to SPCK failing (slave)	1.8V Domain	6.4		1
		3.3V Domain	0		1
SPI ₁₅	NPUS nota after SPUK falling (slave)	1.8V Domain	0		1

Table 36-39. SPI Timings

Note that in SPI master mode the SAM3N does not sample the data (MISO) on the opposite edge where data clocks out (MOSI) but the same edge is used as shown in Figure 36-16 and Figure 36-17.

36.8.5 Two-wire Serial Interface Characteristics

Table 36-41 describes the requirements for devices connected to the Two-wire Serial Bus. For timing symbols refer to Figure 36-23.

Table 36-41. Two-wire Serial Bus Requireme
--

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{IL}	Input Low-voltage		-0.3	$0.3 imes V_{DDIO}$	V	
V _{IH}	Input High-voltage		$0.7 imes V_{DDIO}$	V _{CC} + 0.3	V	
V _{hys}	Hysteresis of Schmitt Trigger Inputs		0.150	_	V	
V _{OL}	Output Low-voltage	3 mA sink current	-	0.4	V	
t _r	Rise Time for both TWD and TWCK		$20 + 0.1C_{b}^{(1)(2)}$	300	ns	
t _{fo}	Output Fall Time from V_{IHmin} to V_{ILmax}	10 pF < C _b < 400 pF Figure 36-23	$20 + 0.1 C_{b}^{(1)(2)}$	250	ns	
C _i ⁽¹⁾	Capacitance for each I/O Pin		-	10	pF	
f _{тwcк}	TWCK Clock Frequency		0	400	kHz	
Du	Value of Dulling mariatory	f _{TWCK} ≤ 100 kHz		1000ns ÷ C _b	Ω	
кр	value of Pull-up resistor	f _{тwcк} > 100 kHz	(V _{DDIO} - 0.4V) ÷ 3mA	300ns ÷ C _b		
		f _{TWCK} ≤ 100 kHz	(3)	_	μs	
t _{LOW}	Low Period of the TWCK clock	f _{тwcк} > 100 kHz	(3)	_		
		f _{TWCK} ≤ 100 kHz	(4)	_		
t _{HIGH}	High period of the TWCK clock	f _{тwcк} > 100 kHz	(4)	_	- μs	
		f _{TWCK} ≤ 100 kHz	t _{HIGH}	_	μs	
ι _{h(start)}	Hold Time (repeated) START condition	f _{TWCK} > 100 kHz	t _{HIGH}	_		
	Set-up time for a repeated START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	_	μs	
^t su(start)	condition	f _{TWCK} > 100 kHz	t _{HIGH}	_		
	Data hald time	f _{TWCK} ≤ 100 kHz	0	$3\times t_{\text{CPMCK}}{}^{(5)}$	μs	
^L h(data)		f _{TWCK} > 100 kHz	0	$3\times t_{\text{CPMCK}}{}^{(5)}$		
t _{su(data)}		$f_{TWCK} \le 100 \text{ kHz}$	t_{LOW} - 3 × t_{CPMCK} ⁽⁵⁾	_	ns	
	Data setup time	f _{TWCK} > 100 kHz	t_{LOW} - 3 × t_{CPMCK} ⁽⁵⁾	_		
t _{su(stop)}	Satur time for STOP condition	$f_{TWCK} \le 100 \text{ kHz}$	t _{HIGH}	_	μs	
		f _{TWCK} > 100 kHz	t _{HIGH}	_		
	Bus free time between a STOP and	f _{TWCK} ≤ 100 kHz	t _{LOW}	_	μs	
^L BUF	START condition	f _{TWCK} > 100 kHz	t _{LOW}	_		

Note: 1. Required only for $f_{TWCK} > 100 \text{ kHz}$.

2. C_b = capacitance of one bus line in pF. Per I2C Standard, C_b Max = 400pF

3. The TWCK low Period is defined as follows: $t_{LOW} = ((CLDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$

4. The TWCK high period is defined as follows: $t_{HIGH} = ((CHDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$

5. $t_{CPMCK} = MCK$ bus period

739

37. Mechanical Characteristics

Figure 37-1. 100-lead LQFP Package Mechanical Drawing

CONTROL DIMENSIONS ARE IN MILLIMETERS.

SAMBOI	М	ILLIMET	ER	INCH			
STMBUL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А			1.60			0.063	
A1	0.05	_	0.15	0.002		0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	1	6.00 B	SC.	0.630 BSC.			
D1	1-	4.00 B	SC.	0.	0.551 BSC.		
E	1	6.00 B	SC.	0.	0.630 BSC.		
E1	1.	4.00 B	SC.	0.	551 BS	SC.	
R2	0.08	—	0.20	0.003	—	0.008	
R1	0.08	—		0.003		—	
θ	0"	3.5*	7 °	0"	3.5*	7*	
θ1	0°	—	_	0.	—	—	
θ₂	11°	12"	1.3°	11*	12°	13	
θ3	11*	12*	13*	11*	12*	13*	
С	0.09	—	0.20	0.004		0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L 1	1	.00 RE	F	0.039 REF			
S	0.20	—		0.008		—	
b	0.17	0.20	0.27	0.007	0.008	0.011	
е	0.50 BSC.			0.020 BSC.			
D2	12.00			0.472			
E2	12.00			0.472			
TOLERANCES OF FO		RM AND POSITION					
aaa	0.20			0.008			
bbb	0.20			0.008			
ССС	0.08			0.003			
ddd	0.08			0.003			

Note: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.

Table 37-1. Device and 100-lead LQFP Package Maximum Weight

SAM3N4/2/1	800	mg
Table 37-2. 100-lead LQFP Package Reference		
JEDEC Drawing Reference	MS-026	
JESD97 Classification	e3	

Table 37-3. 100-lead LQFP Package Characteristics

Moisture Sensitivity Level	3

This package respects the recommendations of the NEMI User Group.

C: make al	Millimeter			Inch			
Symbol	Min	Nom	Max	Min	Nom	Max	
А	-	_	1.60	_	-	0.063	
A1	0.05	_	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D		9.00 BSC			0.354 BSC		
D1		7.00 BSC			0.276 BSC		
E		9.00 BSC			0.354 BSC		
E1		7.00 BSC			0.276 BSC		
R2	0.08	_	0.20	0.003	-	0.008	
R1	0.08	_	_	0.003	-	_	
q	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	_	0°	-	_	
θ2	11°	12°	13°	11°	12°	13°	
θ3	11°	12°	13°	11°	12°	13°	
с	0.09	_	0.20	0.004	-	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REF		0.039 REF			
S	0.20	-	_	0.008	-	_	
b	0.17	0.20	0.27	0.007	0.008	0.011	
е		0.50 BSC.			0.020 BSC.		
D2		5.50			0.217		
E2	5.50			0.217			
Tolerances of Form and Position							
aaa	0.20			0.008			
bbb	0.20			0.008			
ссс	0.08			0.003			
ddd	0.08			0.003			

Table 37-8. 48-lead LQFP Package Dimensions (in mm)

38. Marking

All devices are marked with the Atmel logo and the ordering code.

Additional marking may be in one of the following formats:

where

- "YY": manufactory year
- "WW": manufactory week
- "V": revision
- "XXXXXXXXX": lot number

