

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Active
ARM® Cortex®-M7
32-Bit Single-Core
216MHz
CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
140
512KB (512K x 8)
FLASH
-
256K x 8
1.7V ~ 3.6V
A/D 24x12b; D/A 2x12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
176-LQFP
176-LQFP (24x24)
https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f722iet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design for LQFP100 package	16
Figure 2.	Compatible board design for LQFP64 package	17
Figure 3.	Compatible board design for LQFP144 package	18
Figure 4.	Compatible board design for LQFP176 package	18
Figure 5.	STM32F722xx and STM32F723xx block diagram	19
Figure 6.	STM32F722xx and STM32F723xx AXI-AHB bus matrix architecture ⁽¹⁾	22
Figure 7.	VDDUSB connected to VDD power supply	27
Figure 8.	VDDUSB connected to external power supply	27
Figure 9.	Power supply supervisor interconnection with internal reset OFF	29
Figure 10.	PDR ON control with internal reset OFF	29
Figure 11.		32
Figure 12.	Startup in regulator OFF: slow Vpp slope	
0.	- power-down reset risen after V_{CAP} $_{2}$ stabilization	33
Figure 13.	Startup in regulator OFF mode: fast Vpp slope	
	- power-down reset risen before $V_{CAP} = \sqrt{V_{CAP}} = 2$ stabilization	33
Figure 14.	STM32F722xx LQFP64 pinout	. 48
Figure 15.	STM32F722xx LQFP100 pinout	. 49
Figure 16	STM32E723xx WI CSP100 ballout (with OTG PHY HS)	50
Figure 17	STM32F722xx I QFP144 pinout	51
Figure 18	STM32F723xx I QEP144 pinout	6 1
Figure 19	STM32E723xx UEBGA144 ballout (with OTG PHY HS)	
Figure 20	STM32F722xx I QEP176 ninout	54
Figure 21	STM32F723xx LQEP176 pinout	
Figure 22	STM32E723xx LERGA176 ballout	56
Figure 23	STM32E723xx UEBGA176 ballout (with OTG PHY HS)	57
Figure 24		97
Figure 25	Pin loading conditions	102
Figure 26	Pin input voltage	102
Figure 27	STM32E722xx nower supply scheme	102
Figure 28	STM32F723vv nower supply scheme	104
Figure 20.	Current consumption measurement scheme	105
Figure 30		100
Figure 31	Typical $V_{P,T}$ current consumption (RTC ON/BKP SRAM OFF and	. 105
rigule 51.	I SE in low drive mode)	122
Figure 32	Typical $V_{P,r,T}$ current consumption (RTC ON/BKP SRAM OFF and	. 122
i igule 52.	I SE in medium low drive mode)	122
Figure 33	Typical V ₋ current consumption (PTC ON/BKP SPAM OFF and	. 122
i igule 55.	I SE in medium high drive mode)	122
Eiguro 34	Typical V ourrent consumption (PTC ON/PKD SPAM OFF and	. 125
Figure 54.	I SE in high drive mode)	102
Eiguro 25	Lise III flight drive flidde)	. 123
Figure 55.	I SE in high modium drive mode)	104
Figure 26	Lise in high medium drive mode)	124
Figure 30.		102
Figure 37.		101
Figure 38.		. 134
Figure 39.		. 135
Figure 40.		. 136
Figure 41.		. 137

These features make the STM32F722xx and STM32F723xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control,
- Medical equipment,
- Industrial applications: PLC, inverters, circuit breakers,
- Printers, and scanners,
- Alarm systems, video intercom, and HVAC,
- Home audio appliances,
- Mobile applications, Internet of Things,
- Wearable devices: smartwatches.

Figure 5 shows the general block diagram of the device family

Peripherals		STM32F72xRx		STM32	F72xVx	STM32F72xZx		STM32F72xlx	
Flash memory in Kbytes		256	512	256	512	256	512	256	512
	System	256(176+16+64)							
SRAM in Kbytes	Instruction				1	6			
	Backup				2	1			
FMC memory controller		Ν	lo			Ye	s ⁽¹⁾		
Quad-SPI				•	Ye	es			
	General-purpose				10	(2)			
T	Advanced-control				2	2			
limers	Basic				2	2			
	Low-power	Ν	lo				1		
Random number generate			•	Ye	es				
	SPI / I ² S	3/3 (sin	nplex) ⁽³⁾	4/3 (simplex) ⁽³⁾ 5/3 (simplex) ⁽³⁾					
	l ² C	3							
	USART/UART	4/2 4/4							
	USB OTG FS	Yes							
Communication	USB OTG HS ⁽⁴⁾	Yes							
interfaces	USB OTG PHY HS controller (USBPHYC)	No Yes ⁽¹⁰⁾							
	CAN			•	-	1			
	SAI	2							
	SDMMC1				Ye	es			
	SDMMC2	Ν	lo			Yes	(5)(6)		
GPIOs		5	0	82 in STM 79 in STM	32F722xx 32F723xx	114 in STM 112 in STM	//32F722xx //32F723xx	140 in STN 138 in STN	//32F722xx //32F723xx
12-bit ADC				•	3	3			
Number of channels		16				24			
12-bit DAC Number of channels		Yes 2							
Maximum CPU frequency		216 MHz ⁽⁷⁾							

Table 2. STM32F722xx and STM32F723xx features and peripheral counts

2.7 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support a circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. The configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDMMC
- ADC
- SAI
- Quad-SPI

Figure 9. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see Figure 10).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal when connected to V_{SS}.

STM32F722xx STM32F723xx

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	108	216
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

Table 6.	Timer	feature	comparison
	111101	reature	companison

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

SAI1 and SAI2 can be served by the DMA controller

2.25 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve an error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU and USB interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I^2S/SAI flow with an external PLL (or Codec output).

2.26 Audio PLL (PLLSAI)

An additional PLL dedicated to audio is used for the SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

2.27 SD/SDIO/MMC card host interface (SDMMC)

SDMMC host interfaces are available, that support MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDMMC Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

The SDMMC can be served by the DMA controller

2.28 Controller area network (bxCAN)

The CAN is compliant with the 2.0A and B (active) specifications with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. The CAN has three transmit mailboxes, two receive FIFOs with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated to the CAN.

- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

Universal Serial Bus controller on-the-go High-Speed PHY controller (USBPHYC) only on STM32F723xx devices.

The USB HS PHY controller:

- Sets the PHYPLL1/2 values for the PHY HS
- Sets the other controls on the PHY HS
- Controls and monitors the USB PHY's LDO

2.31 Random number generator (RNG)

All the devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.32 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

A Fast I/O handling allows a maximum I/O toggling up to 108 MHz.

2.33 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In the scan mode, an automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	PC13	PE3	PE2	PE1	PE0	PB4	PB3	PD6	PD7	PA15	PA14	PA13
в	PC14- OSC32_IN	PE4	PE5	PE6	PB9	PB5	PG15	PG12	PD5	PC11	PC10	PA12
с	PC15- OSC32_OUT	VBAT	PF0	PF1	PB8	PB6	PG14	PG11	PD4	PC12	VDDUSB	PA11
D	PH0 - OSC_IN	vss	VDD	PF2	BOOT0	PB7	PG13	PG10	PD3	PD1	PA10	PA9
E	PH1 - OSC_OUT	PF3	PF4	PF5	PDR_ON	vss	vss	PG9	PD2	PD0	PC9	PA8
F	NRST	PF7	PF6	VDD	VDD	VDD	VDD	VDD	VDD	VDD	PC8	PC7
G	PF10	PF9	PF8	VSS	VDD	VDD	VDD	VSS	VCAP_2	vss	PG8	PC6
н	PC0	PC1	PC2	PC3	BYPASS_ REG	VSS	VCAP_1	PE11	PD11	VDD12OTG HS	OTG_HS _REXT	PG5
J	VSSA	PA0	PA4	PC4	PB2	PG1	PE10	PE12	PD10	PG4	PG3	PG2
к	VREF-	PA1	PA5	PC5	PF13	PG0	PE9	PE13	PD9	PD13	PD14	PD15
L	VREF+	PA2	PA6	PB0	PF12	PF15	PE8	PE14	PD8	PD12	PB14	PB15
Μ	VDDA	PA3	PA7	PB1	PF11	PF14	PE7	PE15	PB10	PB11	PB12	PB13

Figure 19. STM32F723xx UFBGA144 ballout (with OTG PHY HS)

1. The above figure shows the package top view.

4 Memory mapping

The memory map is shown in Figure 24.

DocID029808 Rev 2

Bus	Boundary address	Peripheral
	0x4008 0000- 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 6800- 0x4003 FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0X4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0X4002 3400 - 0X4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
ALIDI	0x4002 2400 - 0x4002 2FFF	Reserved
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0X4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 13. STM32F722xx and STM32F723xx register boundary addresses⁽¹⁾ (continued)

Symbol	Ratings	Min	Мах	Unit				
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/				
V _{SSX} -V _{SS}	Variations between all the different ground $pins^{(3)}$	-	50					
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	n 5.3.18: naximum ectrical	-				

Table 14. Voltage characteristics (continued)

1. All main power (V_{DD}, V_{DDA}, V_{DDSDMMC}, V_{DDUSB}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

3. Include VREF- pin.

Symbol	Ratings	Max.	Unit
Σl _{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	300	
Σ I _{VSS}	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	- 300	
ΣI_{VDDUSB}	Total current into V _{DDUSB} power line (source)	25	
$\Sigma I_{VDDSDMMC}$	Total current into V _{DDSDMMC} power line (source)	60	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VDDSDMMC}	Maximum current into V _{DDSDMMC} power line (source): PG[12:9], PD[7:6]	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	- 100	
	Output current sunk by any I/O and control pin		mA
١O	Output current sourced by any I/Os and control pin		
	Total output current sunk by sum of all I/O and control pins ⁽²⁾		
ΣI _{IO}	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT, FTf, RST and B pins ⁽³⁾	- 5/+0	
^I INJ(PIN)	Injected current on TTa pins ⁽⁴⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	1

Table 15. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 14: Voltage characteristics* for the values of the maximum allowed input voltage.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

- 7. The over-drive mode is not supported when the internal regulator is OFF.
- 8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 9. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 10. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Table	18.	Limitations	depending	on the	operating	power	supply range	

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	216 MHz with 9 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	216 MHz with 8 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁴⁾	Conversion time up to 2.4 Msps	30 MHz	216 MHz with 7 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF).

4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

Note: The VCAP2 pin is not available on the LQFP64 package.

1. Legend: ESR is the equivalent series resistance.

Symbol	Parameter	Conditions						
CEXT	Capacitance of external capacitor	2.2 µF						
ESR	ESR of external capacitor	< 2 Ω						

Table 19. VCAP1/VCAP2 operating conditions⁽¹⁾

1. When bypassing the voltage regulator, the two 2.2 μ F V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

Table 20. VCAP1 operating conditions in the LQFP64 package⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	4.7 μF
ESR	ESR of external capacitor	between 0.1 Ω and 0.2 Ω

 When bypassing the voltage regulator, the 4.7 μF V_{CAP} capacitor is not required and should be replaced by two 100 nF decoupling capacitors.

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A .

Table 21. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
+	V _{DD} rise time rate	20	~	uc//
٩VDD	V _{DD} fall time rate	20	~	μs/v

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A.

Table 22. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate	Power-up	20	8	
t _{VDD}	V _{DD} fall time rate	Power-down	20	8	uc//
+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ν
^I VCAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

 To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

5.3.5 Reset and power control block characteristics

The parameters given in *Table 23* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Figure 31. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in low drive mode)

Figure 32. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in medium low drive mode)

USB OTG HS and USB OTG HS PHY current consumption (on STM32F723xx devices)

The MCU is placed under the following conditions:

- STM32 MCU is enumerated as a HID device.
- f_{HCLK} = 216 MHz (Scale 1 + over-drive ON), f_{HCLK} = 168 MHz (Scale 2), f_{HCLK} = 144 MHz (Scale 3)
 The given value is calculated by measuring the difference of current consumption in

case:

- USB is configured but no transfer is done.
- USB is configured and there is a transmission on going.
- Ambient operating temperature is 25 °C, $V_{DD} = V_{DDUSB} = 3.3$ V.

Table 37. USB OTG HS and USB OTG PHY HS current consumption

		I _{DD} (Typ)		Unit
	Scale 1	Scale 2	Scale 3	onit
USB OTG HS and USB OTG HS PHY current consumption	50.16	44.92	38.98	mA

5.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 38* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Table	38.	Low-	power	mode	wakeur) timinas
IUNIC	00.			mouc	mancar	, unnings

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	13	13	CPU clock cycles
		Main regulator is ON	14	14.9	
^t wustop ⁽²⁾	Wakeup from Stop mode	Main regulator is ON and Flash memory in Deep power down mode	104.1	107.6	
	normal mode	Low power regulator is ON	21.4	24.2	μs
		Low power regulator is ON and Flash memory in Deep power down mode	111.5	116.5	

• Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{CPU}]	Unit
			inequency band	25/200 MHz	
			0.1 MHz to 30 MHz	23	
S _{EMI} P		Peak level $V_{DD} = 3.6 \text{ V}, T_A = 25 \text{ °C}, LQFP176 \text{ package}, conforming to IEC61967-2 ART/L1-cache OFF, over-drive ON, all peripheral clocks enabled, clock dithering disabled.$	30 MHz to 130 MHz	20	dBuV
	Peak level		130 MHz to 1 GHz	34	uБµv
			1 GHz to 2 GHz	24	
			EMI Level	4	-

Table 58. EMI characteristics

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.

Table 59.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001-2012	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1-2009, all the packages excepted WLCSP100	3	250	V

1. Guaranteed by characterization results.

Т

٦

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 82* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode SPI1,4,5 2.7≤VDD≤3.6	-	-	54 ⁽²⁾	
		Master mode SPI1,4,5 1.71≤VDD≤3.6	-	-	27	
f _{SCK} 1/t _{c(SCK)}		Master transmitter mode SPI1,4,5 1.71≤VDD≤3.6	-	-	54	
	SPI clock frequency	Slave receiver mode SPI1,4,5 1.71≤VDD≤3.6	-	-	54	MHz
		Slave mode transmitter/full duplex SPI1,4,5 2.7≤VDD≤3.6	-	-	50 ⁽³⁾	
		Slave mode transmitter/full duplex SPI1,4,5 1.71≤VDD≤3.6	-	-	37 ⁽³⁾	
		Master & Slave mode SPI2,3 1.71≤VDD≤3.6	-	-	27	
tsu(NSS)	NSS setup time	Slave mode, SPI presc = 2	4xTpclk	-	-	
th(NSS)	NSS hold time	Slave mode, SPI presc = 2	2xTpclk	-	-	ns
tw(SCKH) tw(SCKL)	SCK high and low time	Master mode	Tpclk-1	Tpclk	Tpclk+1	

Table 62. SPI dynamic characteristics '	Table	82.	SPI	dy	namic	characteristics ⁽¹)
---	-------	-----	-----	----	-------	-------------------------------	---

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 81. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.2 LQFP100, 14 x 14 mm low-profile quad flat package information

Figure 82. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

Revision history

Date	Revision	Changes
03-Feb-2017	1	Initial release.
30-Mar-2017	2	Updated cover with the maximum SPI speed at 54 Mbit/s. Updated <i>Figure 14: STM32F722xx LQFP64 pinout</i> .

Table 129. Document revision history

