

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	112
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f723zet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. STM32F722xx and STM32F723xx features and peripheral counts (continued)

Peripherals	STM32F72xRx	STM32F72xlx									
Operating voltage	1.7 to 3.6 V ⁽⁸⁾										
Operating temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C										
	Junction temperature: -40 to + 125 °C										
Package	LQFP64 ⁽⁹⁾	LQFP100 ⁽⁹⁾ WLCSP100 ⁽¹⁰⁾	LQFP144 UFBGA144 ⁽¹⁰⁾	UFBGA176 LQFP176							

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

2. On the STM32F723xx device packages, except the 176-pin ones, the TIM12 is not available, so there are 9 generalpurpose timers.

3. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I²S audio mode.

4. USB OTG HS with the ULPI on the STM32F722xx devices and with integrated HS PHY on the STM32F723xx devices.

5. The SDMMC2 supports a dedicated power rail for clock, command and data 0..4 lines, feature available starting from 144 pin package.

6. The SDMMC2 is not available on the STM32F723Vx devices.

 216 MHz maximum frequency for - 40°C to + 85°C ambient temperature range (200 MHz maximum frequency for - 40°C to + 105°C ambient temperature range).

8. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.15.2: Internal reset OFF).

9. Available only on the STM32F722xx devices.

10. Available only on the STM32F723xx devices.

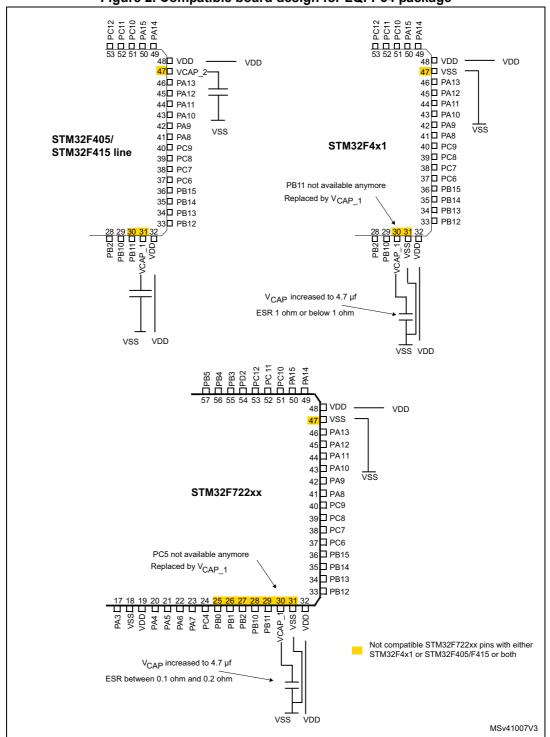
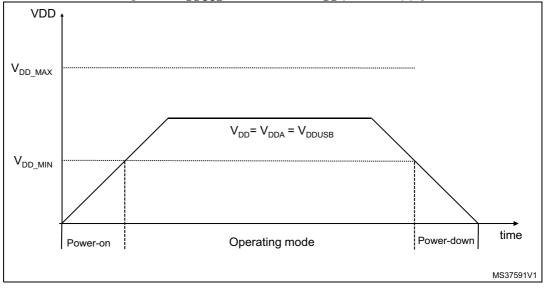
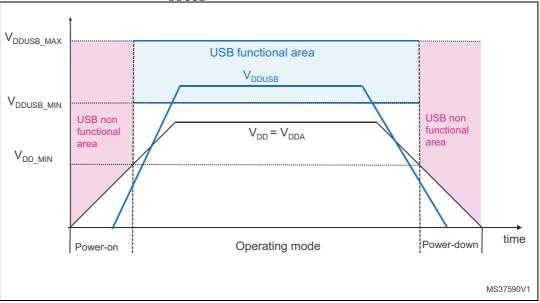


Figure 2. Compatible board design for LQFP64 package


The STM32F722xx LQFP144, UFBGA176 and LQFP176 packages are fully pin to pin compatible with the STM32F4xx devices.


- The V_{DDUSB} rising and falling time rate specifications must be respected
- In the operating mode phase, V_{DDUSB} could be lower or higher than V_{DD}.
 - If the USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by V_{DDUSB} are operating between $V_{DDUSB\ MIN}$ and $V_{DDUSB\ MAX}.$

- The V_{DDUSB} supplies both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by V_{DDUSB}.

- If the USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DD_MIN} and $V_{DD_MAX}.$

Figure 7. V_{DDUSB} connected to V_{DD} power supply

Figure 8. V_{DDUSB} connected to external power supply

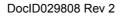
On the STM32F7x3xx devices, the USB OTG HS sub-system uses an additional power supply pin:

 The VDD12OTGHS pin is the output of PHY HS regulator (1.2V). An external capacitor of 2.2 µF must be connected on the VDD12OTGHS pin.

2.15 **Power supply supervisor**

2.15.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled.


The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, V_{POR/PDR} or V_{BOR}, without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.15.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to V_{SS} . Refer to *Figure 9: Power supply supervisor interconnection with internal reset OFF*.

All the RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.18 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

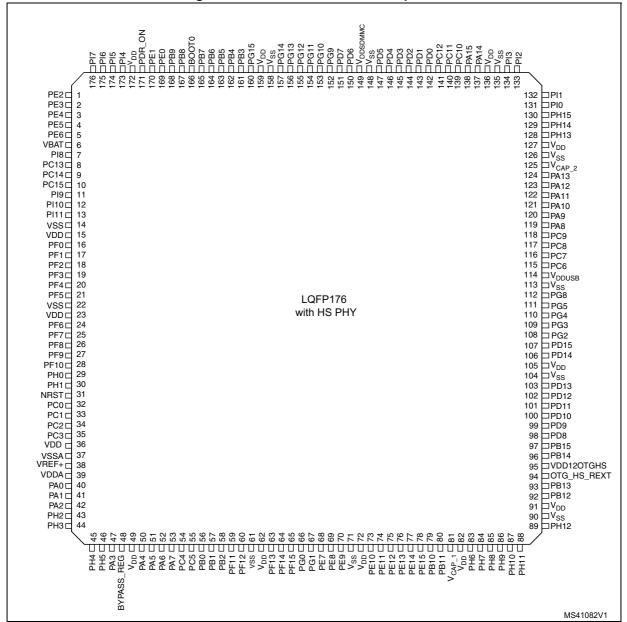
The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup and the LPTIM1 asynchronous interrupt).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode


• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.

The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

Figure 21. STM32F723xx LQFP176 pinout

1. The above figure shows the package top view.

DocID029808 Rev 2

					Table '	10. S ⁻	ГМ32	=722x	x and	d STM32F723xx	pin a	and b	all d	efinition (continued)		
				Pin N	lumbei	r										
	STN	132F7	22xx			STM	32F72	3xx				<i>a</i>				
LQFP64	LQFP100	LQFP144	UFBGA176	LQFP176	WLCSP100	UFBGA176	UFBGA144	LQFP144	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	-	20	L3	26	-	L3	G3	20	26	PF8	I/O	FT	-	SPI5_MISO, SAI1_SCK_B, UART7_RTS, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6	
-	-	21	L2	27	-	L2	G2	21	27	PF9 I/O FT - SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT		ADC3_IN7				
-	-	22	L1	28	-	L1	G1	22	28	PF10	I/O	FT	-	EVENTOUT	ADC3_IN8	
5	12	23	G1	29	G10	G1	D1	23	29	PH0-OSC_IN	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁵⁾	
6	13	24	H1	30	H10	H1	E1	24	30	PH1-OSC_OUT	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁵⁾	
7	14	25	J1	31	G9	J1	F1	25	31	NRST	I/O	RS T	-	-	-	
8	15	26	M2	32	F8	M2	H1	26	32	PC0	I/O FT (4) SAI2_FS_B, (5) OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT		OTG_HS_ULPI_STP,	ADC1_IN10, ADC2_IN10, ADC3_IN10		
9	16	27	М3	33	H9	М3	H2	27	33	PC1	I/O	FT	(5)	TRACED0, SPI2_MOSI/I2S2_SD, SAI1_SD_A, EVENTOUT	ADC1_IN11, ADC2_IN11, ADC3_IN11, RTC_TAMP3, WKUP3	

62/229

5

66/229

DocID029808 Rev 2

	Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued) Pin Number						
Pin N	lumber						
~~	0714005300						

	STM32F722xx				STM	32F72	3xx									
LQFP64	LQFP100	LQFP144	UFBGA176	LQFP176	WLCSP100	UFBGA176	UFBGA144	LQFP144	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
25	34	46	R5	56	F5	R5	L4	46	56	PB0	PB0 I/O FT (4) TIM1_CH2N, TIM3_CH3, (5) TIM8_CH2N, UART4_CTS, OTG_HS_ULPI_D1, EVENTOUT		ADC1_IN8, ADC2_IN8			
26	35	47	R4	57	G5	R4	M4	47	57	PB1	I/O	FT	(4) (5)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, EVENTOUT	ADC1_IN9, ADC2_IN9	
27	36	48	M6	58	K6	M6	J5	48	58	PB2	I/O	FT	-	SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, EVENTOUT	-	
-	-	49	R6	59	-	R6	M5	49	59	PF11	I/O	FT	-	SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, EVENTOUT	-	
-	-	50	P6	60	-	P6	L5	50	60	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-	
-	-	51	M8	61	-	M8	-	51	61	VSS	S	-	-	-	-	
-	-	52	N8	62	-	N8	G5	52	62	VDD	S	-	-	-	-	
-	-	53	N6	63	-	N6	K5	53	63	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-	
-	-	54	R7	64	-	R7	M6	54	64	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-	
-	-	55	P7	65	-	P7	L6	55	65	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-	
-	-	56	N7	66	-	N7	K6	56	66	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-	
-	-	57	M7	67	-	M7	J6	57	67	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-	

68/229

DocID029808 Rev 2

				•	Table	10. ST	ГМЗ2Р	722x	x and	STM32F723xx	pin a	nd b	all d	lefinition (continued)		
				Pin N	lumbe	r										
	STN	132F7	22xx	1		STM	32F72	3xx	1			ø				
LQFP64	LQFP100	LQFP144	UFBGA176	LQFP176	WLCSP100	UFBGA176	UFBGA144	LQFP144	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	44	67	P11	77	K4	P11	L8	67	77	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, SAI2_MCK_B, FMC_D11,, EVENTOUT	-	
-	45	68	R11	78	F4	R11	M8	68	78	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, EVENTOUT	-	
28	46	69	R12	79	G3	R12	M9	69	79	PB10	I/O	FTf	(4)	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, EVENTOUT	-	
29	47	70	R13	80	H3	R13	M10	70	80	PB11	I/O	FTf	(4)	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, EVENTOUT	-	
30	48	71	M10	81	J3	M10	H7	71	81	VCAP_1	S	-	-	-	-	
31	49	-	-	-	K3	-	-	-	-	VSS	S	-	-	-	-	
32	50	72	N10	82	K2	N10	G7	72	82	VDD	S	-	-	-	-	
-	-	-	M11	83	-	M11	-	-	83	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, FMC_SDNE1, EVENTOUT	-	
-	-	-	N12	84	-	N12	-	-	84	PH7	I/O FTF - I2C3_SCL, SPI5_MISO, FMC_SDCKE1, EVENTOUT		-			
-	-	-	M12	85	-	M12	-	-	85	PH8	I/O	FTf	-	I2C3_SDA, FMC_D16, EVENTOUT	-	

STM32F722xx STM32F723xx

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM									
PB7	NADV	NADV	-	-									
PF6	-	-	-	-									
PF7	-	-	-	-									
PF8	-	-	-	-									
PF9	-	-	-	-									
PF10	-	-	-	-									
PG6	-	-	-	-									
PG7	-	-	INT	-									
PE0	NBL0	NBL0	-	NBL0									
PE1	NBL1	NBL1	-	NBL1									
PI4	NBL2	-	-	NBL2									
PI5	NBL3	-	-	NBL3									
PG8	-	-	-	SDCLK									
PC0	-	-	-	SDNWE									
PF11	-	-	-	SDNRAS									
PG15	-	-	-	SDNCAS									
PH2	-	-	-	SDCKE0									
PH3	-	-	-	SDNE0									
PH6	-	-	-	SDNE1									
PH7	-	-	-	SDCKE1									
PH5	-	-	-	SDNWE									
PC2	-	-	-	SDNE0									
PC3	-	-	-	SDCKE0									
PB5	-	-	-	SDCKE1									
PB6	-	-	-	SDNE1									

Table 11. FMC pin definition (continued)

5

.

DocID029808 Rev 2

87/229

			Та	ble 12. S	6TM32F72	2xx and	STM32F7	23xx alt	ernate fun	ction mapp	oing (cont	inued)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/1 1/LPTIM1	I2C1/2/3/U SART1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/5	SPI2/I2S2/ SPI3/I2S3/ SPI3/I2S3/ SAI1/ UART4	SPI2/I2S2/S PI3/I2S3/US ART1/2/3/UA RT5	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2_ HS/OTG1_ FS	SDMMC2	UART7/F MC/SDM MC1/ OTG2_FS	SYS
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_RT S	SAI2_FS_B	CAN1_TX	OTG_FS_D P	-	-	EVEN TOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
Port A	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PA15	JTDI	TIM2_CH1 /TIM2_ET R	-	-	-	SPI1_NSS /I2S1_WS	SPI3_NSS /I2S3_WS	-	UART4_RTS	-	-	-	-	EVEN TOUT
	PB0	-	TIM1_CH2 N	TIM3_CH3	TIM8_CH2 N	-	-	-	-	UART4_CTS		OTG_HS_U LPI_D1	-	-	EVEN TOUT
	PB1	-	TIM1_CH3 N	TIM3_CH4	TIM8_CH3 N	-	-	-	-	-		OTG_HS_U LPI_D2	-	-	EVEN TOUT
	PB2	-	-	-	-	-	-	SAI1_SD_ A	SPI3_MOSI/I 2S3_SD		QUADSPI_ CLK	-	-	-	EVEN TOUT
	PB3	JTDO/TR ACESWO	TIM2_CH2	-	-	-	SPI1_SCK /I2S1_CK	SPI3_SCK /I2S3_CK	-	-	-	SDMMC2_ D2	-	-	EVEN TOUT
Port B	PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MIS O	SPI3_MIS O	SPI2_NSS/I2 S2_WS	-	-	SDMMC2_ D3	-	-	EVEN TOUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMB A	SPI1_MO SI/I2S1_S D	SPI3_MO SI/I2S3_S D	-	-	-	OTG_HS_U LPI_D7	-	FMC_SDC KE1	EVEN TOUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	-	QUADSPI_ BK1_NCS	-	FMC_SDN E1	EVEN TOUT
	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	-	-	FMC_NL	EVEN TOUT
	PB8	-	-	TIM4_CH3	TIM10_CH 1	I2C1_SCL	-	-	-	-	CAN1_RX	SDMMC2_ D4	-	SDMMC1 _D4	EVEN TOUT

DocID029808 Rev 2

93/229

Table 12. STM32F722xx and STM32F723xx alternate function mappi	ng (continued)
--	----------------

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF1
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/1 1/LPTIM1	I2C1/2/3/U SART1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/5	SPI2/I2S2/ SPI3/I2S3/ SPI3/I2S3/ SAI1/ UART4	SPI2/I2S2/S PI3/I2S3/US ART1/2/3/UA RT5	SAI2/USART 6/UART4/5/7/ 8/OTG1_FS	CAN1/TIM1 2/13/14/QU ADSPI/ FMC/ OTG2_HS	SAI2/QUAD SPI/SDMM C2/OTG2_ HS/OTG1_ FS	SDMMC2	UART7/F MC/SDM MC1/ OTG2_FS	SYS
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	EVE TOL
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	EVE TOL
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	EVE TOL
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	EVE TOL
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	EVE TOL
Port G	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	EVE TOL
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE TOL
	PG7	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	FMC_INT	EVE TOU
	PG8	-	-	-	-	-	-	-	-	USART6_RT S	-	-	-	FMC_SDC LK	EVE TOU
	PG9	-	-	-	-	-	-	-	-	USART6_RX	QUADSPI_ BK2_IO2	SAI2_FS_B	SDMMC2 _D0	FMC_NE2 /FMC_NC E	EVE TOI
	PG10	-	-	-	-	-	-	-	-	-	-	SAI2_SD_B	SDMMC2 _D1	FMC_NE3	EVI TO

Pinouts and pin description

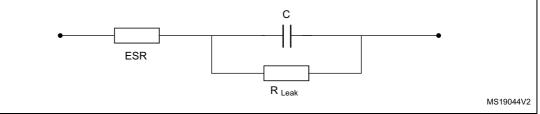
- 7. The over-drive mode is not supported when the internal regulator is OFF.
- 8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 9. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 10. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	216 MHz with 9 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	216 MHz with 8 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁴⁾	Conversion time up to 2.4 Msps	30 MHz	216 MHz with 7 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF).


4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

Note: The VCAP2 pin is not available on the LQFP64 package.

1. Legend: ESR is the equivalent series resistance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 68. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF).

2. Guaranteed by characterization results.

3. V_{REF^+} is internally connected to V_{DDA} and V_{REF^-} is internally connected to $V_{\mathsf{SSA}}.$

4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 68*.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit	
ET	Total unadjusted error		±3	±4		
EO	Offset error	f _{ADC} =18 MHz V _{DDA} = 1.7 to 3.6 V	±2	±3	Ī	
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB	
ED	Differential linearity error	V _{DDA} –V _{REF} < 1.2 V	±1	±2	Ī	
EL	Integral linearity error		±2	±3		

Table 69. ADC static accuracy at f_{ADC} = 18 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V,	±1.5	±4	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

1. Guaranteed by characterization results.

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit			
t _{w(NE)}	FMC_NE low time	9Thclk - 1	9Thclk + 1				
t _{w(NWE)}	FMC_NWE low time	7Thclk -0.5	7Thclk + 0.5	ns			
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6Thclk + 2	-				
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4Thclk - 1	-				

1. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 65 through *Figure 68* represent synchronous waveforms and *Table 102* through *Table 105* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
- CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified.

In all timing tables, the T_{HCLK} is the HCLK clock period.

- For 2.7 V≤V_{DD}≤3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at CL=30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD}<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).

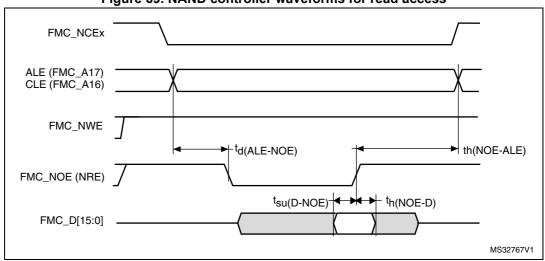


Figure 69. NAND controller waveforms for read access

Figure 70. NAND controller waveforms for write access

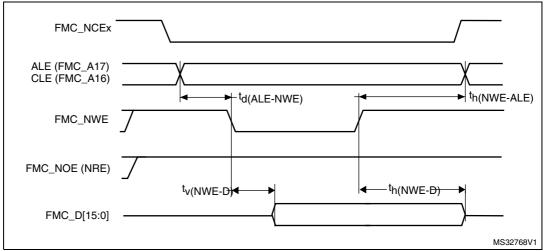
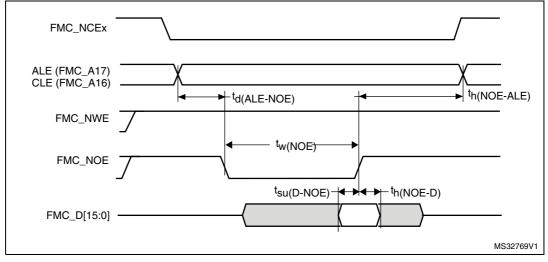



Figure 71. NAND controller waveforms for common memory read access

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2Thclk -0.5	2Thclk +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	1.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	2	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0.5	-	113
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0.5	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

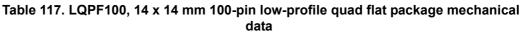
Table 108. SDRAM read timings⁽¹⁾

1. Guaranteed by characterization results.

Table 109. LPSDR SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2Thclk -0.5	2Thclk +0.5	
t _{su(SDCLKH_Data)}	Data input setup time	0	-	
t _{h(SDCLKH_Data)}	Data input hold time	4.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. Guaranteed by characterization results.



6.2 LQFP100, 14 x 14 mm low-profile quad flat package information

Figure 82. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾					
	Min	Тур	Max	Min	Тур	Мах			
А	-	-	1.600	-	-	0.0630			
A1	0.050	-	0.150	0.0020	-	0.0059			
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
с	0.090	-	0.200	0.0035	-	0.0079			
D	15.800	16.000	16.200	0.6220	0.6299	0.6378			
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591			
D3	-	12.000	-	-	0.4724	-			
E	15.800	16.000	16.200	0.6220	0.6299	0.6378			

Figure 95. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array							
package recommended footprint							

Table 123. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.
- The over-drive mode is not supported.

A.1 Operating conditions

Table 128. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from the Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 2.15.1: Internal reset ON).

