

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SCI, SmartCard
Peripherals	LCD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 10x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2268tf20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Page	Revision (See Manual for Details)								
25.2.2 DC Characteristics	602	Table am	ended							
Table 25.2 DC		Item Input high	RES, STBY,NMI,	Symbol V _⊪	Min. V _{cc} × 0.9	Тур	•. Max. V _{cc} +0.3	Unit 3 V	Test Conditions	
Characteristics (2)		voltage	FWE, MD2, MD1 EXTAL, Ports 1, 3, 7, F, J to N, PH0 to PH3	-	$V_{cc} imes 0.8$		V _{cc} +0.3	3 V		
			Ports 4 ^{*4} , 9, PH7		$V_{cc} imes 0.8$		V _{cc} + 0.3	3 ^{*4} V		
	603	Note adde	ed							
		Notes: 4.	When Vcc P41 is Vcc			maxir	num va	alue fo	or P40 and	
25.2.4 A/D	615	Table con	dition amen	ded						
Conversion Characteristics Table 25.9 A/D Conversion		V to 5.5 V MHz, T _a =	′*, V _{ref} = 2.7	V to A 75°C (V _{cc} , V _s (regula	_{ss} = A	$V_{ss} = 0$) V,	, $AV_{cc} = 2.7$ = 2 to 13.5 $T_a = -40^{\circ}C$ to	
Characteristics		Condition C (F-ZTAT version): $V_{cc} = 4.0 \text{ V}$ to 5.5 V [*] , $AV_{cc} = 4.0 \text{ V}$ to 5.5 V [*] , $V_{rel} = 4.0 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 10$ to 20.5 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)								
		Note added								
		Note: * AN0 and AN1 can be used only when Vcc = AVcc.								
25.3.2 DC	622	Table amended								
Characteristics		Item		Symbol		Тур.			est Conditions	
Table 25.15 DC Characteristics (1)		Input high voltage	RES, STBY, NMI, FWE, MD2, MD1	V _{IH}	V _{cc} 0.9		V _{cc} + 0.3	V		
Unaracteristics (1)			EXTAL, Ports 1, 3, 7, F, H, J to L	_	V _{cc} 0.8		V _{cc} + 0.3	V		
			Ports 4 ^{*4} , 9		V _{cc} 0.8		AV _{cc} +0.3*	4 V		
	623	Note adde	ed							
		Notes: 4.	When Vcc P41 is Vcc			naxir	num va	alue fo	or P40 and	
25.3.2 DC Characteristics	624	Table am	ended	Symbol	Min.	Тур.	Max.	Unit T	est Conditions	
Table 25.15 DC		Input high voltage	RES, STBY, NMI, FWE, MD2, MD1	V _{IH}	V _{cc} 0.9		V _{cc} + 0.3	V		
Characteristics (2)		vollage	EXTAL, Ports 1, 3,		V _{cc} 0.8		V _{cc} + 0.3	V		
			7, F, H, J to L Ports 4 ^{*4} , 9		V _{cc} 0.8		$AV_{cc} + 0.3^*$	4 V		
	625	Note adde	ed							
	320		When Vcc P41 is Vcc			maxir	num va	alue fo	or P40 and	

Rev. 5.00 Sep. 01, 2009 Page xviii of I REJ09B0071-0500

RENESAS

	13.6.1	Clock	355
	13.6.2	SCI Initialization (Clocked Synchronous Mode)	355
	13.6.3	Serial Data Transmission (Clocked Synchronous Mode)	356
	13.6.4	Serial Data Reception (Clocked Synchronous Mode)	359
	13.6.5	Simultaneous Serial Data Transmission and Reception (Clocked Synchronous	S
		Mode)	361
13.7	Operati	ion in Smart Card Interface	363
	13.7.1	Pin Connection Example	363
		Data Format (Except for Block Transfer Mode)	
		Block Transfer Mode	
	13.7.4	Receive Data Sampling Timing and Reception Margin	366
	13.7.5	Initialization	367
	13.7.6	Serial Data Transmission (Except for Block Transfer Mode)	367
	13.7.7	Serial Data Reception (Except for Block Transfer Mode)	371
	13.7.8	Clock Output Control	372
13.8	Interru	pt Sources	374
	13.8.1	Interrupts in Normal Serial Communication Interface Mode	374
	13.8.2	Interrupts in Smart Card Interface Mode	375
13.9	Usage 1	Notes	376
	13.9.1	Module Stop Mode Setting	376
	13.9.2	Break Detection and Processing (Asynchronous Mode Only)	376
	13.9.3	Mark State and Break Detection (Asynchronous Mode Only)	376
	13.9.4	Receive Error Flags and Transmit Operations (Clocked Synchronous	
		Mode Only)	377
	13.9.5	Restrictions on Use of DTC (H8S/2268 Group Only)	377
	13.9.6	Operation in Case of Mode Transition	378
	13.9.7	Switching from SCK Pin Function to Port Pin Function:	381
	13.9.8	Assignment and Selection of Registers	382
~ .			
Secti	on 14	I ² C Bus Interface (IIC)	• • •
		(Supported as an Option by H8S/2264 Group)	
14.1		28	
14.2	1	Dutput Pins	
14.3		r Descriptions	
	14.3.1	I ² C Bus Data Register (ICDR)	
	14.3.2	Slave Address Register (SAR)	
	14.3.3	Second Slave Address Register (SARX)	
	14.3.4	e v ,	
		Serial Control Register X (SCRX)	
		I ² C Bus Control Register (ICCR)	
	14.3.7	I ² C Bus Status Register (ICSR)	401

Rev. 5.00 Sep. 01, 2009 Page xxx of I REJ09B0071-0500

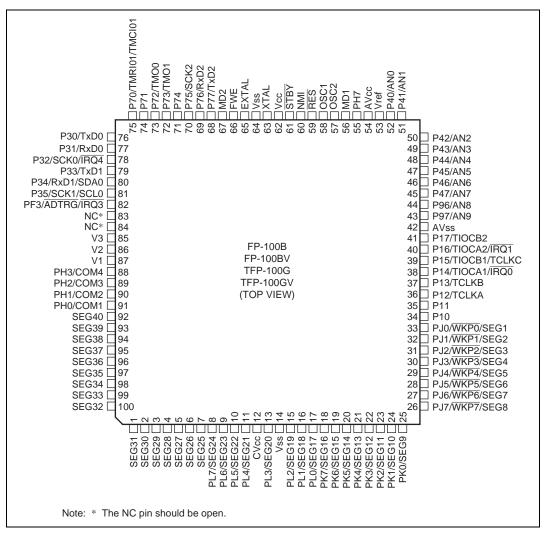


Figure 1.4 Pin Arrangement of H8S/2264 Group

RENESAS

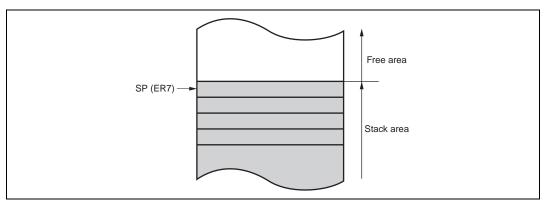


Figure 2.8 Stack Status

2.4.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0.)

2.4.3 Extended Control Register (EXR) (H8S/2268 Group Only)

EXR is an 8-bit register that manipulates the LDC, STC, ANDC, ORC, and XORC instructions. When these instructions except for the STC instruction is executed, all interrupts including NMI will be masked for three states after execution is completed.

Bit	Bit Name	Initial Value	R/W	Description			
7	Т	0	R/W	Trace Bit			
				When this bit is set to 1, a trace exception is generated each time an instruction is executed. When this bit is cleared to 0, instructions are executed in sequence.			
6 to 3		1		Reserved			
				These bits are always read as 1.			
2	12	1	R/W	These bits designate the interrupt mask level (0 to 7). For			
1	11	1	R/W	details, refer to section 5, Interrupt Controller.			
0	10	1	R/W				

2.5 Data Formats

The H8S/2000 CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

2.5.1 General Register Data Formats

Data Type 1-bit data	Register Number	Data Format 7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD o	lata RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD c	lata RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	7 0 Don't care MSB LSB

Figure 2.9 shows the data formats in general registers.

Figure 2.9 General Register Data Formats (1)

Exception Source	Vector Number	Vector Address Advanced Mode ^{*1}
Internal interrupt*2	24	H'0060 to H'0063
	107	H'01AC to H'01AF
External interrupt WKP0 to WKP7	108	H'01B0 to H'01B3
Internal interrupt	120 	H'01E0 to H'01E3
	123	H'01EC to H'01EF

Notes: 1. Lower 16 bits of the address.

- 2. For details of internal interrupt vectors, see section 5.4.3, Interrupt Exception Handling Vector Table.
- 3. For details on direct transitions, see section 22.10, Direct Transitions.
- 4. Supported only by the H8S/2268 Group.

4.3 Reset

A reset has the highest exception priority.

When the $\overline{\text{RES}}$ pin goes low, all processing halts and this LSI enters the reset. A reset initializes the internal state of the CPU and the registers of on-chip peripheral modules. The interrupt control mode is 0 immediately after reset.

When the $\overline{\text{RES}}$ pin goes high from the low state, this LSI starts reset exception handling.

The chip can also be reset by overflow of the watchdog timer. For details see section 12, Watchdog Timer (WDT).

4.3.1 Reset Exception Handling

When the $\overline{\text{RES}}$ pin goes low, this LSI enters the reset. To ensure that this LSI is reset, hold the $\overline{\text{RES}}$ pin low for at least 20 ms at power-up. To reset the chip during operation, hold the $\overline{\text{RES}}$ pin low for at least 20 states. When the $\overline{\text{RES}}$ pin goes high after being held low for the necessary time, this LSI starts reset exception handling as follows.

- 1. The internal state of the CPU and the registers of the on-chip peripheral modules are initialized, the T bit in EXR^{*} is cleared to 0, and the I bits in EXR^{*} and CCR is set to 1.
- 2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Note: * Supported only by the H8S/2268 Group.

the corresponding DDR to 0; and use the pin as an I/O pin for another function. IRQnF interrupt request flag is set to 1 when the setting condition is satisfied, regardless of IER settings. Accordingly, refer to only necessary flags.

5.4.2 Internal Interrupts

For each on-chip peripheral module, there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If both of these are set to 1 for a particular interrupt source, an interrupt request is issued to the interrupt controller.

5.4.3 Interrupt Exception Handling Vector Table

Table 5.2 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority.

Priorities among modules can be set by means of the IPR. (H8S/2268 Group only)

Modules set at the same priority will conform to their default priorities. Priorities within a module are fixed.

Port	Description	Port and Other Functions Name	Input/Output and Output Type
Port L	General I/O port also	PL7/SEG24	
	functioning as LCD segment output pins	PL6/SEG23	
	segment output pins	PL5/SEG22	
		PL4/SEG21	
		PL3/SEG20	
		PL2/SEG19	
		PL1/SEG18	
		PL0/SEG17	

9.1 Port 1

Port 1 is an 8-bit I/O port and has the following registers.

- Port 1 data direction register (P1DDR)
- Port 1 data register (P1DR)
- Port 1 register (PORT1)

9.1.1 Port 1 Data Direction Register (P1DDR)

P1DDR specifies input or output of the port 1 pins using the individual bits. P1DDR cannot be read; if it is, an undefined value will be read.

The value of this register when read is undefined after a bit manipulation instruction is executed. To prevent undefined read values, do not use bit manipulation instructions to write to this register. For details, see section 2.9.4, Access Methods for Registers with Write-Only Bits.

Port Name	Pin Handling Example
Port 1	Connect each pin to Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port 3	_
Port 4	Connect each pin to AVcc (pull-up) or to AVss (pull-down) via a resistor.
Port 7	Connect each pin to Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port 9	Connect each pin to AVcc (pull-up) or to AVss (pull-down) via a resistor.
Port F	Connect each pin to Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port H	* Ports M and N apply to the H8S/2268 Group only.
Port J	_
Port K	_
Port L	_
Port M*	—
Port N*	—

Table 9.3 Examples of Ways to Handle Unused Input Pins

For pins set as LCD SEG pins (see 17.3.1, LED Port Control Register (LPCR)), add extra capacitance as appropriate to accommodate the LCD drive power supply capacity and the LCD used.

10.10.12 Contention between TCNT Write and Overflow/Underflow

In the H8S/2268 Group, if there is an up-count or down-count in the T2 state of a TCNT write cycle and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

In the H8S/2264 Group, if there is an up-count in the T2 state of a TCNT write cycle and overflow occurs, the TCNT write takes precedence and the TCFV flag in TSR is not set.

Figure 10.54 shows the operation timing when there is contention between TCNT write and overflow.

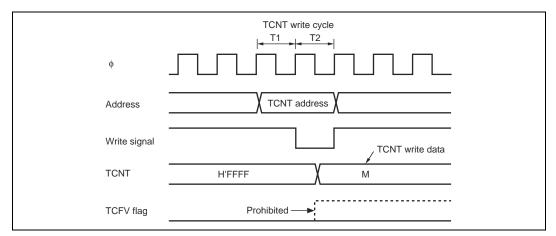


Figure 10.54 Contention between TCNT Write and Overflow

10.10.13 Multiplexing of I/O Pins

In the H8S/2268 Group, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCD1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. In the H8S/2264 Group, the TCLKC input pin is multiplexed with the TIOCB1 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

10.10.14 Interrupts in Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source, or the DTC activation source (the H8S/2268 Group only). Interrupts should therefore be disabled before entering module stop mode.

TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag B (CMFB) in TCSR is set. Note, however, that comparison is disabled during the T2 state of a TCORB write cycle.

The timer output from the TMO pin can be freely controlled by the compare-match signal B and the settings of output select bits OS1 and OS0 in TCSR.

The initial value of TCORB is H'FF.

11.3.4 Timer Control Register (TCR)

TCR selects the TCNT clock source and the time at which TCNT is cleared, and controls interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7	CMIEB	0	R/W	Compare-Match Interrupt Enable B
7	CIMIED	0	R/VV	Selects whether the CMFB interrupt request (CMIB) is enabled or disabled when the CMFB flag in TCSR is set to 1.
				0: CMFB interrupt request (CMIB) is disabled
				1: CMFB interrupt request (CMIB) is enabled
6	CMIEA	0	R/W	Compare-Match Interrupt Enable A
				Selects whether the CMFA interrupt request (CMIA) is enabled or disabled when the CMFA flag in TCSR is set to 1.
				0: CMFA interrupt request (CMIA) is disabled
				1: CMFA interrupt request (CMIA) is enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				Selects whether the OVF interrupt request (OVI) is enabled or disabled when the OVF flag in TCSR is set to 1.
				0: OVF interrupt request (OVI) is disabled
				1: OVF interrupt request (OVI) is enabled
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits select the method by which TCNT is cleared
				00: Clearing is disabled
				01: Cleared on compare-match A
				10: Cleared on compare-match B
				11: Cleared on rising edge of external reset input

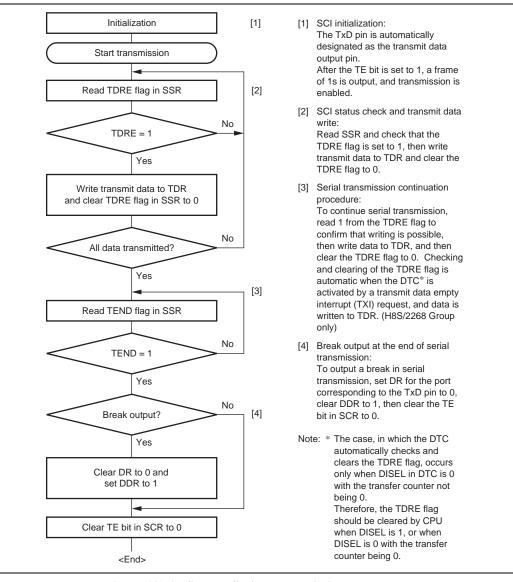

	Operating Frequency ϕ (MHz)									
Bit Rate		18			19.0	6608		20		
(bps)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	Error (%)	
110	3	79	-0.12	3	86	0.31	3	88	-0.25	
150	2	233	0.16	2	255	0.00	2	64	0.16	
300	2	116	0.16	2	127	0.00	2	129	0.16	
600	1	233	0.16	1	255	0.00	1	64	0.16	
1200	1	116	0.16	1	127	0.00	1	129	0.16	
2400	0	233	0.16	0	255	0.00	0	64	0.16	
4800	0	116	0.16	0	127	0.00	0	129	0.16	
9600	0	58	-0.69	0	63	0.00	0	64	0.16	
19200	0	28	1.02	0	31	0.00	0	32	-1.36	
31250	0	17	0.00	0	19	-1.70	0	19	0.00	
38400	0	14	-2.34	0	15	0.00	0	15	1.73	


 Table 13.3
 BRR Settings for Various Bit Rates (Asynchronous Mode) (4)

 Table 13.4
 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (kbps)	n	N	φ (MHz)	Maximum Bit Rate (kbps)	n	N
2	62.5	0	0	9.8304	307.2	0	0
2.097152	65.536	0	0	10	312.5	0	0
2.4576	76.8	0	0	12	375.0	0	0
3	93.75	0	0	12.288	384.0	0	0
3.6864	115.2	0	0	14	437.5	0	0
4	125.0	0	0	14.7456	460.8	0	0
4.9152	153.6	0	0	16	500.0	0	0
5	156.25	0	0	17.2032	537.6	0	0
6	187.5	0	0	18	562.5	0	0
6.144	192.0	0	0	19.6608	614.4	0	0
7.3728	230.4	0	0	20	625.0	0	0
8	250.0	0	0				

Figure 13.10 shows a sample flowchart for data transmission.

14.4.7 IRIC Setting Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the FS bit in SAR, and the FSX bit in SARX. If the TDRE or RDRF internal flag is set to 1, SCL is automatically held low after one frame has been transferred; this timing is synchronized with the internal clock. Figure 14.19 shows the IRIC set timing and SCL control.

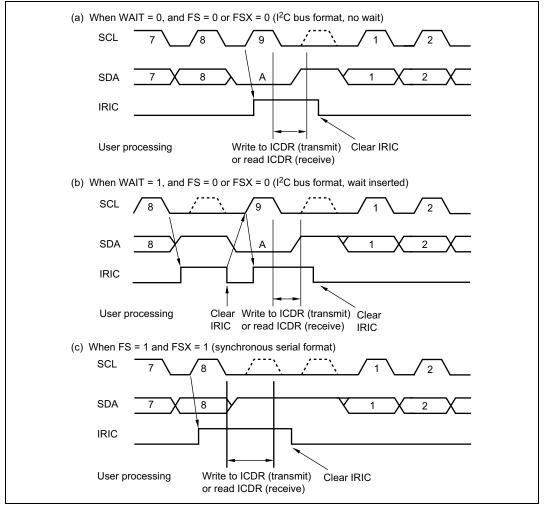
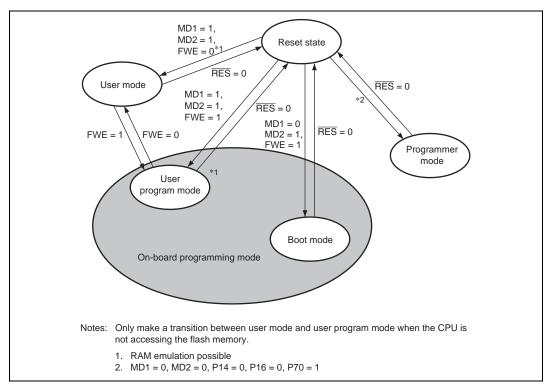


Figure 14.19 IRIC Setting Timing and SCL Control


Bit	Bit Name	Initial Value	R/W	Description				
4	SUPS	0	R/W	(H8S/2268 Group)				
				Drive Power Select				
				Triple Step-up Voltage Circuit Control				
				The triple step-up voltage circuit stops operation when Vcc is selected as drive power. The triple step-up voltage circuit starts operation when LCD input reference voltage (V_{LCD3}) is selected as drive power.				
				0: Drive power is Vcc, triple step-up voltage circuit halts				
				1: Drive power is triple step-up voltage of the LCD input reference voltage (V _{LCD3}), triple step-up voltage circuit operates				
				(H8S/2264 Group)				
				Reserved				
				0 should be written to this bit.				
3	CDS3	0	R/W	Selection of Duty Ratio for Charge/Discharge Pulse				
2	CDS2	0	R/W	Duty ratio is selected during the power supply divider				
1	CDS1	0	R/W	resistance is connected to power supply circuit. When the duty ratio of 0 is selected, the power supply divider				
0	CDS0	0	R/W	resistance is fixed to the state that the resistance is separated from the power supply circuit. Therefore, supply the power to pins V_1 , V_2 , and V_3 from the external circuit.				
				The charge/discharge pulses have the waveform shown in figure 17.2. The duty ratio is represented by T_c/T_w .				
				0000: duty ratio = 1 (stack at high)				
				0001: duty ratio = 1/8				
				0010: duty ratio = 2/8				
				0011: duty ratio = 3/8				
				0100: duty ratio = 4/8				
				0101: duty ratio = 5/8				
				0110: duty ratio = 6/8				
				0111: duty ratio = 0 (stack at low)				
				10XX: duty ratio = 1/16				
				11XX: duty ratio = 1/32				

Legend: X: Don't care

The differences between boot mode and user program mode are shown in table 20.1.

Figure 20.3 shows the operation flow for boot mode and figure 20.4 shows that for user program mode.

Figure 20.2 Flash Memory State Transitions

Table 20.1 Differences between Boot Mode and User Program Mode

Boot Mode	User Program Mode
Yes	Yes
No	Yes
Program/program-verify	Program/program-verify/erase/ erase-verify/emulation
	Yes No

Note: * To be provided by the user, in accordance with the recommended algorithm.

Section 24 List of Registers

This section gives information on the on-chip I/O registers and is configured as described below.

- 1. Register Addresses (by functional module, in address order)
 - Descriptions by functional module, in ascending order of addresses
 - When registers consist of 16 bits, the addresses of the MSBs are given.
 - Data bus width is given.
 - The number of access states are given.
- 2. Register Bits
 - Bit configurations of the registers are described in the same order as the Register Addresses (by functional module, in ascending order of addresses).
 - Reserved bits are indicated by in the bit name.
 - When registers consist of 16 or 32 bits, bits are described from the MSB side.
- 3. Register States in Each Operating Mode
 - Register states are described in the same order as the Register Addresses (by functional module, in ascending order of addresses).
 - The register states described are for the basic operating modes. If there is a specific reset for an on-chip module, refer to the section on that on-chip module.

Table 25.2DC Characteristics (4)

Condition C (F-ZTAT version): $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ref} = 4.0 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)^{*1}

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input capacitance	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V, f = 1 MHz, Ta$
	NMI		_	_	30	pF	— = 25°C
	P32 to P35		_	_	20	pF	
	All input pins except RES, NMI, P32 to P35			_	15	pF	
Current consumption ^{*2}	Normal operation			30 V _{cc} = 5.0 V	40 V _{cc} = 5.5 V	mA	f = 20.5 MHz
	Sleep mode		_	22 V _{cc} = 5.0 V	30 V _{cc} = 5.5 V	mA	f = 20.5 MHz
	All modules stopped		_	15	_	mA	$ f = 20.5 \text{ MHz}, \\ V_{cc} = 5.0 \text{ V} \\ (reference values) $
	Medium-speed mode (\phi/32)		_	19	_	mA	f = 20.5 MHz, $V_{cc} = 5.0 \text{ V}$ (reference values)
	Subactive mode			70	120	μΑ	Using 32.768 kHz crystal resonator, Vcc = 5.0 V (LCD lighting)
	Subsleep mode			60	100	μA	Using 32.768 kHz crystal resonator, Vcc = 5.0 V (LCD lighting)
	Watch mode			5	30	μΑ	Using 32.768 kHz crystal resonator, Vcc = 5.0 V (LCD and TMR4 not used, WDT_1 operates)
	Standby mode ^{*3}	-		1.0 Vcc = 5.0 V	10 Vcc = 5.5 V	μA	$T_a \le 50^{\circ}$ C, 32.768 kHz not used
			—		50 Vcc = 5.5 V	_	50°C < T₄, 32.768 kHz not used

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Current consumption ^{*2}	Watch mode	_{CC} *4		2.5	8	μΑ	$\label{eq:transform} \begin{array}{l} T_{\rm a} \leq 50^{\circ}\text{C}, \text{ Using} \\ 32.768 \text{ kHz crystal} \\ \text{resonator, Vcc} = 3.0 \text{ V} \\ (\text{LCD not used, WDT_1} \\ \text{operates}) \end{array}$
				_	10	-	50°C < Ta, using 32.768 kHz crystal resonator, Vcc = 3.0 V (LCD not used, WDT_1 operates)
	Standby mode ^{*3}	_	_	0.5 Vcc = 3.0 V	5 Vcc = 5.5 V	μA	$T_a \le 50^{\circ}C$, 32.768 kHz not used
			_	_	20 Vcc = 5.5 V	_	50°C < T _a , 32.768 kHz not used
Analog power supply current	During A/D conversion	AI_{cc}	—	0.3	1.5	mA	
	Waiting for A/D conversion	_	_	0.01	5.0	μΑ	
Reference current	During A/D conversion	AI_{cc}	—	0.4	1.0	mA	
	Waiting for A/D conversion	_	_	0.01	5.0	μA	
RAM standby	voltage	V_{RAM}	2.0	_	_	V	

Section 25 Electrical Characteristics

Notes: 1. If the A/D converter is not used, do not leave the AVCC, Vref, and AVSS pins open. Apply a voltage 2.0 to 5.5 V to the AVCC and Vref pins by connecting them to V_{cc} , for instance. Set $V_{ref} \leq AV_{cc}$.

- 2. Current consumption values are for V_{IH} min. = V_{cc} 0.2 V, V_{IL} max. = 0.2 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- 3. The values are for V_{_{RAM}} \le V_{_{CC}} < 2.7 V, V_{_{IH}} min. = V_{_{CC}} 0.2, and V_{_{IL}} max. = 0.2 V.
- 4. I_{cc} depends on V_{cc} and f as follows (reference): I_{cc} max. = 3.0 (mA) + 1.24 (mA/V) × (Vcc - 2.7 (V)) + 1.00 (mA/MHz) × (f - 2.0 (MHz)) (normal operation) I_{cc} max. = 2.0 (mA) + 1.12 (mA/V) × (Vcc - 2.7 (V)) + 0.64 (mA/MHz) × (f - 2.0 (MHz)) (sleep mode)

RENESAS