



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                              |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | STM8                                                                  |
| Core Size                  | 8-Bit                                                                 |
| Speed                      | 16MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                       |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                            |
| Number of I/O              | 41                                                                    |
| Program Memory Size        | 64KB (64K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | 2K x 8                                                                |
| RAM Size                   | 4K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 3.6V                                                          |
| Data Converters            | A/D 25x12b; D/A 2x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 48-LQFP                                                               |
| Supplier Device Package    | 48-LQFP (7x7)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3188tax |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|            | ·······                            |
|------------|------------------------------------|
| Reference  | Part number                        |
| STM8AL318x | STM8AL3188, STM8AL3189, STM8AL318A |
| STM8AL3L8x | STM8AL3L88, STM8AL3L89, STM8AL3L8A |

#### Table 1. Device summary



## Contents

| 1 | Intro | duction                                                 |
|---|-------|---------------------------------------------------------|
| 2 | Desc  | ription                                                 |
|   | 2.1   | STM8AL ultra-low-power 8-bit family benefits            |
|   | 2.2   | Device overview                                         |
| 3 | Fund  | tional overview                                         |
|   | 3.1   | Low-power modes                                         |
|   | 3.2   | Central processing unit STM8 16                         |
|   |       | 3.2.1 Advanced STM8 Core                                |
|   |       | 3.2.2 Interrupt controller                              |
|   | 3.3   | Reset and supply management 17                          |
|   |       | 3.3.1 Power supply scheme                               |
|   |       | 3.3.2 Power supply supervisor                           |
|   |       | 3.3.3 Voltage regulator                                 |
|   | 3.4   | Clock management                                        |
|   | 3.5   | Low-power real-time clock 19                            |
|   | 3.6   | LCD (Liquid crystal display) 20                         |
|   | 3.7   | Memories                                                |
|   | 3.8   | DMA 20                                                  |
|   | 3.9   | Analog-to-digital converter 21                          |
|   | 3.10  | Digital-to-analog converter 21                          |
|   | 3.11  | Ultra-low-power comparators                             |
|   | 3.12  | System configuration controller and routing interface   |
|   | 3.13  | Timers                                                  |
|   |       | 3.13.1 16-bit advanced control timer (TIM1)             |
|   |       | 3.13.2 16-bit general purpose timers (TIM2, TIM3, TIM5) |
|   |       | 3.13.3 8-bit basic timer (TIM4)                         |
|   | 3.14  | Watchdog timers                                         |
|   |       | 3.14.1 Window watchdog timer                            |
|   |       | 3.14.2 Independent watchdog timer                       |
|   | 3.15  | Beeper                                                  |



|   | 3.16       | Comm                                                                                                                                  | unication interfaces 24                                                                                                                                                                                                                                                                                                                                                               |
|---|------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |            | 3.16.1                                                                                                                                | SPI                                                                                                                                                                                                                                                                                                                                                                                   |
|   |            | 3.16.2                                                                                                                                | l <sup>2</sup> C                                                                                                                                                                                                                                                                                                                                                                      |
|   |            | 3.16.3                                                                                                                                | USART                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3.17       | Infrare                                                                                                                               | d (IR) interface                                                                                                                                                                                                                                                                                                                                                                      |
|   | 3.18       | Develo                                                                                                                                | pment support 25                                                                                                                                                                                                                                                                                                                                                                      |
| 4 | Pin c      | lescript                                                                                                                              | ion                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 | Mem        | ory and                                                                                                                               | l register map                                                                                                                                                                                                                                                                                                                                                                        |
|   | 5.1        | Memo                                                                                                                                  | ry mapping                                                                                                                                                                                                                                                                                                                                                                            |
|   | 5.2        | Regist                                                                                                                                | er map                                                                                                                                                                                                                                                                                                                                                                                |
| 6 | Inter      | rupt ve                                                                                                                               | ctor mapping 59                                                                                                                                                                                                                                                                                                                                                                       |
| 7 | Opti       | on byte                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 | Uniq       | ue ID.                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                       |
| • | Elect      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                       |
| 9 | Elec       | trical pa                                                                                                                             | arameters                                                                                                                                                                                                                                                                                                                                                                             |
| 9 | 9.1        |                                                                                                                                       | eter conditions                                                                                                                                                                                                                                                                                                                                                                       |
| 9 |            |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                       |
| 9 |            | Param                                                                                                                                 | eter conditions                                                                                                                                                                                                                                                                                                                                                                       |
| 9 |            | Param<br>9.1.1                                                                                                                        | eter conditions                                                                                                                                                                                                                                                                                                                                                                       |
| 9 |            | Param<br>9.1.1<br>9.1.2                                                                                                               | eter conditions                                                                                                                                                                                                                                                                                                                                                                       |
| 9 |            | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5                                                                                    | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66                                                                                                                                                                                                                                                                   |
| 9 |            | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5                                                                                    | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65                                                                                                                                                                                                                                                                                      |
| 9 | 9.1        | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu                                                                          | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66                                                                                                                                                                                                                                                                   |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu                                                                          | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66                                                                                                                                                                                                                                               |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat                                                                | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68                                                                                                                                                                                                                              |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat<br>9.3.1                                                       | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71                                                                                                        |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4                            | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71Clock and timing characteristics83                                                                      |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>0perat<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5                   | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71Clock and timing characteristics83Memory characteristics88                                              |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6          | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71Clock and timing characteristics83Memory characteristics88I/O current injection characteristics90       |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7 | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71Clock and timing characteristics83I/O current injection characteristics90I/O port pin characteristics90 |
| 9 | 9.1<br>9.2 | Param<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>Absolu<br>Operat<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6          | eter conditions65Minimum and maximum values65Typical values65Typical curves65Loading capacitor65Pin input voltage66te maximum ratings66ting conditions68General operating conditions68Embedded reset and power control block characteristics69Supply current characteristics71Clock and timing characteristics83Memory characteristics88I/O current injection characteristics90       |

DocID027179 Rev 6



STM8AL ultra-low-power microcontrollers operates either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85  $^{\circ}$ C and -40 to +125  $^{\circ}$ C temperature ranges.

These features make the STM8AL ultra-low-power microcontroller families suitable for a wide range of applications.

The devices are offered in three different packages from 48 to 80 pins. Different sets of peripherals are included depending on the device. Refer to *Section 3* for an overview of the complete range of peripherals proposed in this family.

All STM8AL ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

*Figure 1* shows the block diagram of the high-density STM8AL3x8x families.



DAC: Digital-to-analog converter I<sup>2</sup>C: Inter-integrated circuit multimaster interface IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power-down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog

## 3.1 Low-power modes

The high-density STM8AL3x8x devices support five low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

- Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset is used to exit the microcontroller from Wait mode (WFE or WFI mode).
- **Low-power run mode**: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low-power run mode by software and exits from this mode by software or by a reset.

All interrupts must be masked and are not used to exit the microcontroller from this mode.

- Low-power wait mode: This mode is entered when executing a Wait for event in Low-power run mode. It is similar to Low-power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low-power run mode. All interrupts must be masked and arenot used to exit the microcontroller from this mode.
- Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup is triggered by RTC interrupts, external interrupts or reset.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs.



## 3.12 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC1 and the internal reference voltage  $V_{REFINT}$ . It also provides a set of registers for efficiently managing the charge transfer acquisition sequence.

## 3.13 Timers

The high-density STM8AL3x8x devices contain one advanced control timer (TIM1), three 16-bit general purpose timers (TIM2,TIM3 and TIM5) and one 8-bit basic timer (TIM4).

All the timers are served by DMA1.

*Table 3* compares the features of the advanced control, general-purpose and basic timers.

| Timer | Counter resolution | Counter<br>type | Prescaler factor                                                  | DMA1<br>request<br>generation | Capture/compare<br>channels | Complementary<br>outputs |  |
|-------|--------------------|-----------------|-------------------------------------------------------------------|-------------------------------|-----------------------------|--------------------------|--|
| TIM1  |                    |                 | Any integer<br>from 1 to 65536<br>Any power of 2<br>from 1 to 128 | 3 + 1                         | 3                           |                          |  |
| TIM2  | 16-bit             | 6-bit up/down   |                                                                   | Yes                           |                             |                          |  |
| TIM3  |                    |                 |                                                                   |                               | 2                           |                          |  |
| TIM5  |                    |                 |                                                                   |                               |                             | None                     |  |
| TIM4  | 8-bit              | up              | Any power of 2<br>from 1 to 32768                                 |                               | 0                           |                          |  |

Table 3. Timer feature comparison

## 3.13.1 16-bit advanced control timer (TIM1)

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- 3 independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- 1 additional capture/compare channel which is not connected to an external I/O
- Synchronization module to control the timer with external signals
- Break input to force timer outputs into a defined state
- 3 complementary outputs with adjustable dead time
- Encoder mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)



#### 3.13.2 16-bit general purpose timers (TIM2, TIM3, TIM5)

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

#### 3.13.3 8-bit basic timer (TIM4)

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. This timer is used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation.

### 3.14 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

#### 3.14.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

#### 3.14.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) is used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

#### 3.15 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.



## 3.17 Infrared (IR) interface

The high-density STM8AL3x8x devices contain an infrared interface which is used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

## 3.18 Development support

#### **Development tools**

Development tools for the STM8 microcontrollers include:

- The STice emulation system offering tracing and code profiling
- The STVD high-level language debugger including C compiler, assembler and integrated development environment
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

#### Single wire data interface (SWIM) and debug module

The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.

The Single wire interface is used for direct access to the debugging module and memory programming. The interface is activated in all device operation modes.

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation is also monitored in real-time by means of shadow registers.

#### Bootloader

A bootloader is available to reprogram the Flash memory using the USART1, USART2, USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces.



| n      | Pin<br>umb | er     |                                                                                             |      |           | I        | npu | t              | 0                | utpı | ıt | _                              |                                                                                                                     |  |
|--------|------------|--------|---------------------------------------------------------------------------------------------|------|-----------|----------|-----|----------------|------------------|------|----|--------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| LQFP80 | LQFP64     | LQFP48 | Pin name                                                                                    | Type | I/O level | floating | wpu | Ext. interrupt | High sink/source | OD   | dd | Main function<br>(after reset) | Default alternate function                                                                                          |  |
| 5      | 1          | 1      | PA0 <sup>(8)</sup> / <i>[USART1_CK]</i> <sup>(2)</sup> /<br>SWIM/BEEP/IR_TIM <sup>(9)</sup> | I/O  | -         | x        | x   | x              | HS               | x    | x  | Port A0                        | [USART1 synchronous<br>clock] <sup>(2)</sup> / SWIM input and<br>output /<br>Beep output / Infrared Timer<br>output |  |
| 68     | 56         | 40     | V <sub>SS2</sub>                                                                            | S    | -         | -        | -   | -              | -                | -    | -  | IOs ground voltage             |                                                                                                                     |  |
| 67     | 55         | 39     | V <sub>DD2</sub>                                                                            | S    | -         | -        | -   | -              | -                | -    | -  | IOs supply voltage             |                                                                                                                     |  |
| 48     | -          | -      | V <sub>SS4</sub>                                                                            | S    | -         | -        | -   | -              | -                | -    | -  | IOs ground voltage             |                                                                                                                     |  |
| 47     | -          | -      | V <sub>DD4</sub>                                                                            | S    | -         | -        | -   | -              | -                | -    | -  | IOs suppl                      | y voltage                                                                                                           |  |

Table 5. High-density STM8AL3x8x pin description (continued)

1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section *Configuring NRST/PA1 pin as general purpose output* in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

- 2. [] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).
- 3. Available onSTM8AL3L8xdevices only.
- 4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
- 5. In the 5 V tolerant I/Os, the protection diode to  $V_{\text{DD}}$  is not implemented.
- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V<sub>DD</sub> are not implemented).
- 7. Available on STM8AL3L8x devices only. On STM8AL318x devices it is reserved and must be tied to  $V_{DD}$ .
- 8. The PA0 pin is in input pull-up during the reset phase and after reset release.
- 9. High Sink LED driver capability available on PA0.

#### System configuration options

As shown in *Table 5: High-density* STM8AL3x8x pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).



Note: The slope control of all GPIO pins, except true open drain pins, are programmable. By default the slope control is limited to 2 MHz.

| Address                      | Block                   | Register label | Register name                          | Reset<br>status |  |  |  |
|------------------------------|-------------------------|----------------|----------------------------------------|-----------------|--|--|--|
| 0x00 7F00                    |                         | А              | Accumulator                            | 0x00            |  |  |  |
| 0x00 7F01                    |                         | PCE            | Program counter extended               | 0x00            |  |  |  |
| 0x00 7F02                    |                         | PCH            | Program counter high                   | 0x00            |  |  |  |
| 0x00 7F03                    |                         | PCL            | Program counter low                    | 0x00            |  |  |  |
| 0x00 7F04                    |                         | ХН             | X index register high                  | 0x00            |  |  |  |
| 0x00 7F05                    | CPU <sup>(1)</sup>      | XL             | X index register low                   | 0x00            |  |  |  |
| 0x00 7F06                    |                         | YH             | Y index register high                  | 0x00            |  |  |  |
| 0x00 7F07                    |                         | YL             | Y index register low                   | 0x00            |  |  |  |
| 0x00 7F08                    |                         | SPH            | Stack pointer high                     | 0x03            |  |  |  |
| 0x00 7F09                    |                         | SPL            | Stack pointer low                      | 0xFF            |  |  |  |
| 0x00 7F0A                    |                         | CCR            | Condition code register                | 0x28            |  |  |  |
| 0x00 7F0B to<br>0x00 7F5F    |                         |                | Reserved area (85 byte)                |                 |  |  |  |
| 0x00 7F60                    | CPU                     | CFG_GCR        | Global configuration register          | 0x00            |  |  |  |
| 0x00 7F70                    |                         | ITC_SPR1       | Interrupt Software priority register 1 | 0xFF            |  |  |  |
| 0x00 7F71                    |                         | ITC_SPR2       | Interrupt Software priority register 2 | 0xFF            |  |  |  |
| 0x00 7F72                    |                         | ITC_SPR3       | Interrupt Software priority register 3 | 0xFF            |  |  |  |
| 0x00 7F73                    | ITC-SPR                 | ITC_SPR4       | Interrupt Software priority register 4 | 0xFF            |  |  |  |
| 0x00 7F74                    | IIC-SPR                 | ITC_SPR5       | Interrupt Software priority register 5 | 0xFF            |  |  |  |
| 0x00 7F75                    |                         | ITC_SPR6       | Interrupt Software priority register 6 | 0xFF            |  |  |  |
| 0x00 7F76                    |                         | ITC_SPR7       | Interrupt Software priority register 7 | 0xFF            |  |  |  |
| 0x00 7F77                    |                         | ITC_SPR8       | Interrupt Software priority register 8 | 0xFF            |  |  |  |
| 0x00 7F78<br>to<br>0x00 7F79 | Reserved area (2 byte)  |                |                                        |                 |  |  |  |
| 0x00 7F80                    | SWIM                    | SWIM_CSR       | SWIM control status register           | 0x00            |  |  |  |
| 0x00 7F81<br>to<br>0x00 7F8F | Reserved area (15 byte) |                |                                        |                 |  |  |  |

 Table 10. CPU/SWIM/debug module/interrupt controller registers



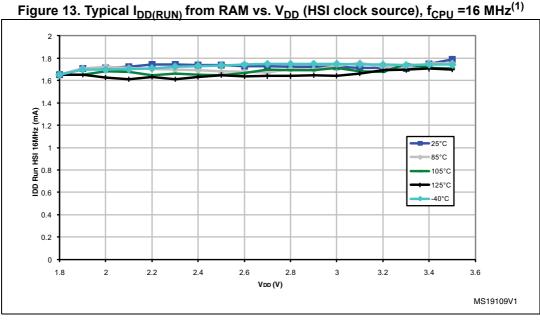
## 9.3 Operating conditions

Subject to general operating conditions for  $V_{\text{DD}}$  and  $T_{\text{A}}.$ 

### 9.3.1 General operating conditions

| Symbol                             | Parameter                                                               |                                                            | operating conditions                        | Min.                | Max. | Unit |
|------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------|------|------|
| f <sub>SYSCLK</sub> <sup>(1)</sup> | System clock<br>frequency                                               | 1.65 V                                                     | 0                                           | 16                  | MHz  |      |
| $V_{DD}$                           | Standard operating voltage                                              | BOR detector e                                             | nabled                                      | 1.65 <sup>(2)</sup> | 3.6  | V    |
| M                                  | Analog operating                                                        | ADC and DAC not used                                       | Must be at the same                         | 1.65 <sup>(2)</sup> | 3.6  | V    |
| V <sub>DDA</sub>                   | voltage                                                                 | ADC or DAC<br>used                                         | potential as V <sub>DD</sub>                | 1.8                 | 3.6  | V    |
| P <sub>D</sub> <sup>(3)</sup>      | Power dissipation at                                                    | LQFP80                                                     | -                                           | -                   | 288  | - mW |
|                                    | $T_A$ = 85 °C for suffix A devices                                      | LQFP64                                                     | -                                           | -                   | 288  |      |
|                                    |                                                                         | LQFP48                                                     | -                                           | -                   | 288  |      |
| PD                                 | Power dissipation at<br>T <sub>A</sub> = 125 °C for suffix C<br>devices | LQFP80                                                     | -                                           | -                   | 131  |      |
|                                    |                                                                         | LQFP64                                                     | -                                           | _                   | 104  |      |
|                                    |                                                                         | LQFP48                                                     | -                                           | -                   | 77   |      |
| т                                  |                                                                         | 1.65 V ≤V <sub>DD</sub> <<br>3.6 V (A suffix<br>version)   | -                                           | -40                 | 85   |      |
| T <sub>A</sub>                     | Temperature range                                                       | 1.65 V ≤V <sub>DD</sub> <<br>3.6 V (C suffix<br>version) - |                                             | -40                 | 125  | °C   |
| ТJ                                 | Junction temperature                                                    |                                                            | C ≤T <sub>A</sub> < 85 °C<br>uffix version) | -40                 | 105  |      |
| IJ                                 | range                                                                   |                                                            | ≤ T <sub>A</sub> < 125 °C<br>uffix version) | -40                 | 130  |      |

#### Table 19. General operating conditions


1.  $f_{SYSCLK} = f_{CPU}$ 

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled.

3. To calculate  $P_{Dmax}(T_A)$ , use the formula  $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$  with  $T_{Jmax}$  in this table and  $\Theta_{JA}$  in "Thermal characteristics" table.

#### **Electrical parameters**

- 1. CPU executing typical data processing
- 2. The run from RAM consumption is approximated with the linear formula:  $I_{DD}(run\_from\_RAM)$  = Freq. \* 95  $\mu A/MHz$  + 250  $\mu A$
- 3. Guaranteed by characterization results.
- Oscillator bypassed (HSEBYP = 1 in CLK\_ECKCR). When configured for external crystal, the HSE consumption (I<sub>DD HSE</sub>) must be added. Refer to Table 32.
- 5. The run from Flash consumption is approximated with the linear formula:  $I_{DD}(run_from_Flash)$  = Freq. \* 200  $\mu A/MHz$  + 330  $\mu A$
- Oscillator bypassed (LSEBYP = 1 in CLK\_ECKCR). When configured for external crystal, the LSE consumption (I<sub>DD LSE</sub>) must be added. Refer to Table 33



1. Typical current consumption measured with code executed from RAM.



In the following table, data are based on characterization results, unless otherwise specified.

| Symbol                  | Parameter                                                                        |                       | Conditions <sup>(1)</sup>                                                                          |                                         |       |       | Unit |
|-------------------------|----------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|-------|-------|------|
|                         |                                                                                  |                       |                                                                                                    | $T_A$ = -40 °C to 25 °C                 | 0.90  | 2.10  |      |
|                         |                                                                                  |                       | LCD OFF <sup>(3)</sup>                                                                             | T <sub>A</sub> = 85 °C                  | 1.50  | 3.40  |      |
|                         |                                                                                  |                       |                                                                                                    | T <sub>A</sub> = 125 °C                 | 5.10  | 12.00 |      |
|                         |                                                                                  |                       | LCD ON                                                                                             | $T_A$ = -40 °C to 25 °C                 | 1.40  | 3.10  |      |
|                         |                                                                                  |                       | (static duty/<br>external                                                                          | T <sub>A</sub> = 85 °C                  | 1.90  | 4.30  |      |
|                         | Supply current in                                                                | LSI RC                | V <sub>LCD</sub> ) <sup>(4)</sup>                                                                  | T <sub>A</sub> = 125 °C                 | 5.50  | 13.00 |      |
| I <sub>DD(AH)</sub>     | Active-halt mode                                                                 | (at 38 kHz)           | LCD ON                                                                                             | $T_A$ = -40 °C to 25 °C                 | 1.90  | 4.30  | μA   |
|                         |                                                                                  |                       | (1/4 duty/<br>external                                                                             | T <sub>A</sub> = 85 °C                  | 2.40  | 5.40  |      |
|                         |                                                                                  |                       | $V_{LCD}$ ) <sup>(5)</sup>                                                                         | T <sub>A</sub> = 125 °C                 | 6.00  | 15.00 |      |
|                         |                                                                                  |                       | LCD ON                                                                                             | $T_A$ = -40 °C to 25 °C                 | 3.90  | 8.75  |      |
|                         |                                                                                  | internal              |                                                                                                    | T <sub>A</sub> = 85 °C                  | 4.50  | 10.20 |      |
|                         |                                                                                  |                       | T <sub>A</sub> = 125 °C                                                                            | 6.80                                    | 16.30 |       |      |
|                         |                                                                                  |                       | LCD OFF <sup>(8)</sup><br>LCD ON<br>(static duty/<br>external<br>V <sub>LCD</sub> ) <sup>(4)</sup> | $T_A = -40 \ ^\circ C$ to 25 $^\circ C$ | 0.50  | 1.20  | -    |
|                         |                                                                                  |                       |                                                                                                    | T <sub>A</sub> = 85 °C                  | 0.90  | 2.10  |      |
|                         |                                                                                  |                       |                                                                                                    | T <sub>A</sub> = 125 °C                 | 4.80  | 11.00 |      |
|                         |                                                                                  |                       |                                                                                                    | $T_A$ = -40 °C to 25 °C                 | 0.85  | 1.90  |      |
|                         |                                                                                  |                       |                                                                                                    | T <sub>A</sub> = 85 °C                  | 1.30  | 3.20  |      |
|                         | Supply current in                                                                | LSE external<br>clock |                                                                                                    | T <sub>A</sub> = 125 °C                 | 5.00  | 12.00 | •    |
| I <sub>DD(AH)</sub>     | Active-halt mode                                                                 | (32.768 kHz)<br>(7)   | LCD ON                                                                                             | $T_A$ = -40 °C to 25 °C                 | 1.50  | 2.50  | μA   |
|                         |                                                                                  |                       | (1/4 duty/<br>external                                                                             | T <sub>A</sub> = 85 °C                  | 1.80  | 4.20  | -    |
|                         |                                                                                  |                       | V <sub>LCD</sub> ) <sup>(5)</sup>                                                                  | T <sub>A</sub> = 125 °C                 | 5.70  | 14.00 |      |
|                         |                                                                                  |                       | LCD ON                                                                                             | $T_A$ = -40 °C to 25 °C                 | 3.40  | 7.60  |      |
|                         |                                                                                  |                       | (1/4 duty/<br>internal                                                                             | T <sub>A</sub> = 85 °C                  | 3.90  | 9.20  |      |
|                         |                                                                                  |                       | V <sub>LCD</sub> ) <sup>(6)</sup>                                                                  | T <sub>A</sub> = 125 °C                 | 6.30  | 15.20 |      |
| I <sub>DD</sub> (WUFAH) | Supply current<br>during wakeup<br>time from Active-<br>halt mode<br>(using HSI) | -                     | -                                                                                                  | -                                       | 2.40  | -     | mA   |

# Table 25. Total current consumption and timing in Active-halt mode at $V_{DD}$ = 1.65 V to 3.6 V



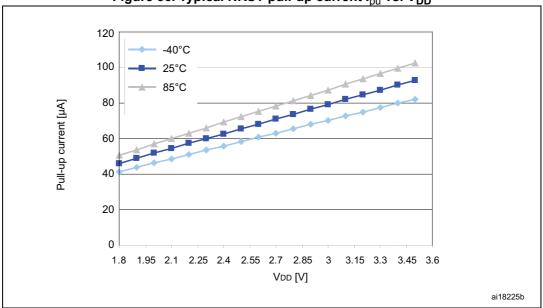



Figure 36. Typical NRST pull-up current I<sub>pu</sub> vs. V<sub>DD</sub>

The reset network shown in *Figure* 37 protects the device against parasitic resets. The user must ensure that the level on the NRST pin goes below the V<sub>IL</sub> max. level specified in *Table 45*. Otherwise the reset is not taken into account internally. For power consumption-sensitive applications, the capacity of the external reset capacitor has to be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF.

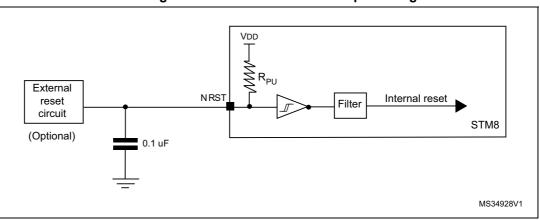
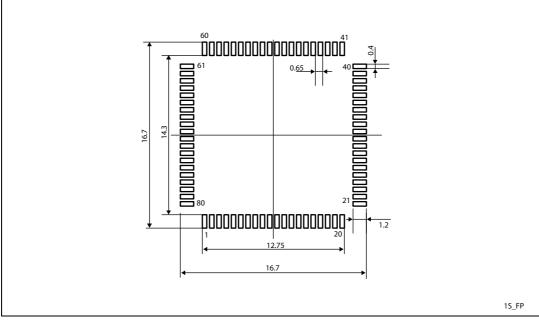



Figure 37. Recommended NRST pin configuration



In the following table, data are guaranteed by design, not tested in production, unless otherwise specified.

| Symbol                                                  | Parameter                                     | Conditions                                                                                                                                                        | Min  | Тур | Max <sup>(1)</sup> | Unit       |
|---------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------------------|------------|
| V <sub>DDA</sub>                                        | Analog supply voltage                         | -                                                                                                                                                                 | 1.65 | -   | 3.6                | V          |
| V <sub>IN</sub>                                         | Comparator 2 input voltage range              | -                                                                                                                                                                 | 0    | -   | $V_{DDA}$          | V          |
| +.                                                      | Comparator startup time                       | Fast mode                                                                                                                                                         | -    | 15  | 20                 |            |
| t <sub>start</sub>                                      |                                               | Slow mode                                                                                                                                                         | -    | 20  | 25                 |            |
| +                                                       | Propagation delay <sup>(2)</sup> in slow mode | 1.65 V ⊴V <sub>DDA</sub> ⊴2.7 V                                                                                                                                   | -    | 1.8 | 3.5                |            |
| t <sub>d slow</sub>                                     | Fropagation delay 7 in slow mode              | 2.7 V ≤V <sub>DDA</sub> ≤3.6 V                                                                                                                                    | -    | 2.5 | 6                  | μs         |
| $t_{d fast}$ Propagation delay <sup>(2)</sup> in fast m |                                               | 1.65 V ⊴V <sub>DDA</sub> ⊴2.7 V                                                                                                                                   | -    | 0.8 | 2                  |            |
| t <sub>d fast</sub>                                     | Fropagation delay 7 in last mode              | 2.7 V ≤V <sub>DDA</sub> ≤3.6 V                                                                                                                                    | -    | 1.2 | 4                  |            |
| V <sub>offset</sub>                                     | Comparator offset error                       | -                                                                                                                                                                 | -    | ±4  | ±20                | mV         |
| d <sub>Threshold</sub> /dt                              | Threshold voltage temperature coefficient     | $\begin{split} V_{DDA} &= 3.3V \\ T_A &= 0 \text{ to } 50 \ ^\circ\text{C} \\ V &= V_{REF+}, \ 3/4 \\ V_{REF+}, \\ 1/2 \ V_{REF+}, \ 1/4 \ V_{REF+}. \end{split}$ | -    | 15  | 30                 | ppm<br>/°C |
|                                                         | Current consumption <sup>(3)</sup>            | Fast mode                                                                                                                                                         | -    | 3.5 | 5                  | μA         |
| ICOMP2                                                  |                                               | Slow mode                                                                                                                                                         | -    | 0.5 | 2                  | μΛ         |


| Table 52. | Compara | ator 2 cha | racteristics |
|-----------|---------|------------|--------------|
|-----------|---------|------------|--------------|

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.





## Figure 47. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

#### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.



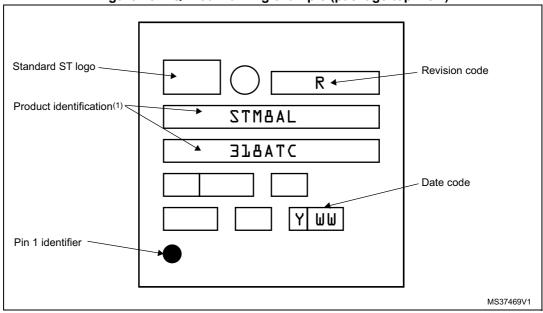
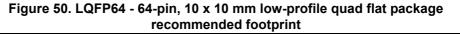
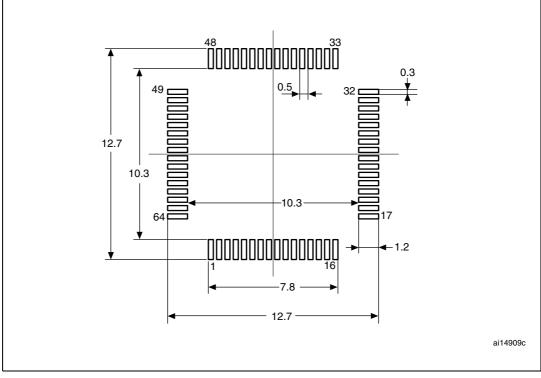



Figure 48. LQFP80 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

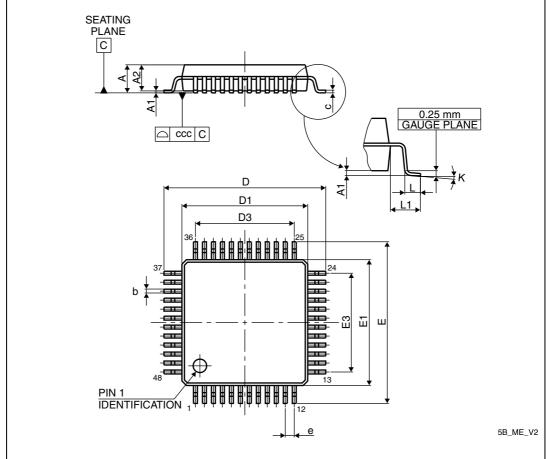



| Symbol |       | millimeters |       | inches <sup>(1)</sup> |        |        |  |  |  |
|--------|-------|-------------|-------|-----------------------|--------|--------|--|--|--|
| Symbol | Min   | Тур         | Max   | Min                   | Тур    | Max    |  |  |  |
| E3     | -     | 7.500       | -     | -                     | 0.2953 | -      |  |  |  |
| е      | -     | 0.500       | -     | -                     | 0.0197 | -      |  |  |  |
| К      | 0°    | 3.5°        | 7°    | 0°                    | 3.5°   | 7°     |  |  |  |
| L      | 0.450 | 0.600       | 0.750 | 0.0177                | 0.0236 | 0.0295 |  |  |  |
| L1     | -     | 1.000       | -     | -                     | 0.0394 | -      |  |  |  |
| CCC    | -     | -           | 0.080 | -                     | -      | 0.0031 |  |  |  |

## Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.





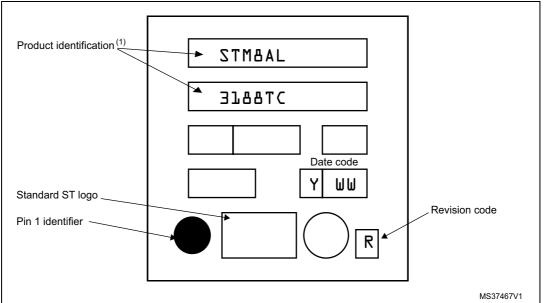

#### 1. Dimensions are expressed in millimeters.



## 10.3 LQFP48 package information

Figure 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline




1. Drawing is not to scale.



#### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.



#### Figure 54. LQFP48 marking example (package top view)

 Parts marked as "ES","E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

