

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al318atcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 48.	LQFP80 marking example (package top view)	121
Figure 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline	122
Figure 50.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package	
-	recommended footprint	123
Figure 51.	LQFP64 marking example (package top view)	124
Figure 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	125
Figure 53.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
-	recommended footprint	127
Figure 54.	LQFP48 marking example (package top view)	128

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of the high-density STM8AL318x and STM8AL3L8x devices (microcontrollers with 64 Kbyte Flash memory density). These devices are referred to as high-density devices in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031) and in the STM8L and STM8AL Flash programming manual (PM0054).

For more details on the whole STMicroelectronics ultra-low-power family please refer to *Section 3: Functional overview on page 14.*

For information on the debug module and SWIM (single wire interface module), refer to the *STM8 SWIM communication protocol and debug module user manual* (UM0470).

For information on the STM8 core, please refer to the *STM8 CPU programming manual* (PM0044).

DAC: Digital-to-analog converter I²C: Inter-integrated circuit multimaster interface IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power-down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog

3.1 Low-power modes

The high-density STM8AL3x8x devices support five low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

- Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset is used to exit the microcontroller from Wait mode (WFE or WFI mode).
- **Low-power run mode**: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low-power run mode by software and exits from this mode by software or by a reset.

All interrupts must be masked and are not used to exit the microcontroller from this mode.

- Low-power wait mode: This mode is entered when executing a Wait for event in Low-power run mode. It is similar to Low-power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low-power run mode. All interrupts must be masked and arenot used to exit the microcontroller from this mode.
- Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup is triggered by RTC interrupts, external interrupts or reset.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs.

3.13.2 16-bit general purpose timers (TIM2, TIM3, TIM5)

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.13.3 8-bit basic timer (TIM4)

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. This timer is used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation.

3.14 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.14.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.14.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) is used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

3.15 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

n	Pin umb	er	Table 5. High-de				npu			utpu	-		
LQFP80	LQFP64	LQFP48	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	ОD	ЬР	Main function (after reset)	Default alternate function
73	61	45	PC6/OSC32_OUT/ [SPI1_SCKJ ^{[2)} / [USART1_RXJ ⁽²⁾	I/O	FT ⁽⁵⁾	x	х	х	HS	х	х	Port C6	LSE oscillator output / [SPI1 clock] / [USART1 receive]
74	62	-	PC7/LCD_SEG25 ^{(3)/} ADC1_IN3/COMP2_INM/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port C7	LCD segment 25 /ADC1_IN3/ Comparator negative input / Comparator 1 positive input
-	-	46	PC7/LCD_SEG25 ⁽³⁾ / ADC1_IN3/USART3_CK/ COMP2_INM/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	x	HS	x	x	Port C7	LCD segment 25 /ADC1_IN3/ USART3 synchronous clock/ Comparator 2 negative input / Comparator 1 positive input
29	25	20	PD0/TIM3_CH2/ <i>[ADC1_TRIG]⁽²⁾/</i> LCD_SEG7 ⁽³⁾ / ADC1_IN22/COMP2_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D0	Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22 / Comparator 2 positive input 2
30	26	21	PD1/TIM3_ETR/ LCD_COM3 ⁽³⁾ / ADC1_IN21/COMP1_INP/ COMP2_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D1	Timer 3 - trigger / LCD_COM3 / ADC1_IN21 / comparator 1 positive input/ comparator 2 positive input
31	27		PD2/TIM1_CH1 /LCD_SEG8 ⁽³⁾ / ADC1_IN20/COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D2	Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20/Comparator 1 positive input
32	28	23	PD3/ TIM1_ETR/ LCD_SEG9 ⁽³⁾ / ADC1_IN19/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D3	Timer 1 - trigger / LCD segment 9 / ADC1_IN19/Comparator 1 positive input
57	45	-	PD4/TIM1_CH2 /LCD_SEG18 ⁽³⁾ / ADC1_IN10/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D4	Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10/Comparator 1 positive input
-	-	33	PD4/TIM1_CH2 /LCD_SEG18 ⁽³⁾ / ADC1_IN10/SPI2_MISO/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D4	Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10/SPI2 master in/slave out/Comparator 1 positive input

Table 5. High-density STM8AL3x8x pin description (continued)
--

n	Pin umb	er				I	npu	t	0	utpı	ıt	_		
LQFP80	LQFP64	LQFP48	Pin name	Type	I/O level	floating	wpu	Ext. interrupt	High sink/source	OD	dd	Main function (after reset)	Default alternate function	
5	1	1	PA0 ⁽⁸⁾ / <i>[USART1_CK]</i> ⁽²⁾ / SWIM/BEEP/IR_TIM ⁽⁹⁾	I/O	-	x	x	x	HS	x	x	Port A0	[USART1 synchronous clock] ⁽²⁾ / SWIM input and output / Beep output / Infrared Timer output	
68	56	40	V _{SS2}	S	-	-	-	-	-	-	-	IOs ground voltage		
67	55	39	V _{DD2}	S	-	-	-	-	-	-	-	IOs supply voltage		
48	-	-	V _{SS4}	S	-	-	-	-	-	-	-	IOs ground voltage		
47	-	-	V _{DD4}	S	-	-	-	-	-	-	-	IOs supply voltage		

Table 5. High-density STM8AL3x8x pin description (continued)

1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section *Configuring NRST/PA1 pin as general purpose output* in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

- 2. [] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).
- 3. Available onSTM8AL3L8xdevices only.
- 4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
- 5. In the 5 V tolerant I/Os, the protection diode to V_{DD} is not implemented.
- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented).
- 7. Available on STM8AL3L8x devices only. On STM8AL318x devices it is reserved and must be tied to V_{DD} .
- 8. The PA0 pin is in input pull-up during the reset phase and after reset release.
- 9. High Sink LED driver capability available on PA0.

System configuration options

As shown in *Table 5: High-density* STM8AL3x8x pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

Note: The slope control of all GPIO pins, except true open drain pins, are programmable. By default the slope control is limited to 2 MHz.

Address	Block	Register label	Register name	Reset status	
0x00 50CA		CLK_CSSR	Clock security system register	0x00	
0x00 50CB	-	CLK_CBEEPR	Clock BEEP register	0x00	
0x00 50CC		CLK_HSICALR	HSI calibration register	0xXX	
0x00 50CD	CLK	CLK_HSITRIMR	HSI clock calibration trimming register	0x00	
0x00 50CE		CLK_HSIUNLCKR	HSI unlock register	0x00	
0x00 50CF	-	CLK_REGCSR	Main regulator control status register	0bxx11 100X	
0x00 50D0	-	CLK_PCKENR3	Peripheral clock gating register 3	0x00	
0x00 50D1 to 0x00 50D2			Reserved area (2 byte)		
0x00 50D3		WWDG_CR	WWDG control register	0x7F	
0x00 50D4	WWDG	WWDG_WR	WWDR window register	0x7F	
0x00 50D5 to 00 50DF		F	Reserved area (11 byte)		
0x00 50E0		IWDG_KR	IWDG key register	0xXX	
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00	
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF	
0x00 50E3 to 0x00 50EF		F	Reserved area (13 byte)		
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00	
0x00 50F1 0x00 50F2	BEEP		Reserved area (2 byte)	1	
0x00 50F3		BEEP_CSR2	BEEP control/status register 2	0x1F	
0x00 50F4 to0x00 513F		F	Reserved area (76 byte)		
0x00 5140		RTC_TR1	Time register 1	0x00	
0x00 5141	RTC	RTC_TR2	Time register 2	0x00	
0x00 5142		RTC_TR3	Time register 3	0x00	
0x00 5143			Reserved area (1 byte)		
0x00 5144		RTC_DR1	Date register 1	0x01	
0x00 5145	RTC	RTC_DR2	Date register 2	0x21	
0x00 5146	1	RTC_DR3	Date register 3	0x00	
0x00 5147		Reserved area (1 byte)			

 Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 52B0		TIM1_CR1	TIM1 control register 1	0x00
0x00 52B1		TIM1_CR2	TIM1 control register 2	0x00
0x00 52B2		TIM1_SMCR	TIM1 Slave mode control register	0x00
0x00 52B3		TIM1_ETR	TIM1 external trigger register	0x00
0x00 52B4		TIM1_DER	TIM1 DMA1 request enable register	0x00
0x00 52B5		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0	TIM1	TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1	1 11/1 1	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4		TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5		TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB		TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1		TIM1_DCR1	DMA1 control register 1	0x00

Table 9. General hardware register map (continued)

		erennin debug me	adie/interrupt controller registers (continued	/
Address	Block	Register label	Register name	Reset status
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 byte)	

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

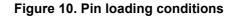
9.1.1 Minimum and maximum values

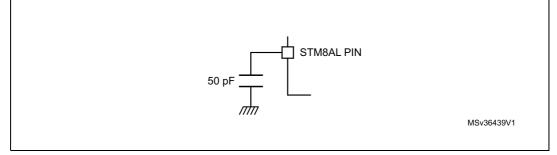
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25 \text{ °C}$, $V_{DD} = 3 \text{ V}$. They are given only as design guidelines and are not tested.


Typical ADC and DAC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

9.3.1 General operating conditions

Symbol	Parameter		operating conditions	Min.	Max.	Unit
f _{SYSCLK} ⁽¹⁾	System clock frequency	1.65 V	0	16	MHz	
V_{DD}	Standard operating voltage	BOR detector e	nabled	1.65 ⁽²⁾	3.6	V
M	Analog operating	ADC and DAC not used	Must be at the same	1.65 ⁽²⁾	3.6	V
V _{DDA}	voltage	ADC or DAC used	potential as V _{DD}	1.8	3.6	V
	Power dissipation at	LQFP80	-	-	288	
P _D ⁽³⁾	T _A = 85 °C for suffix A	LQFP64	-	-	288	
	devices	LQFP48	-	-	288	
	Power dissipation at	LQFP80	-	-	131	mW
	T _A = 125 °C for suffix C	LQFP64	-	_	104	
	devices	LQFP48	-	-	77	
т		1.65 V ≤V _{DD} < 3.6 V (A suffix version)	-	-40	85	
T _A	Temperature range	1.65 V ≤V _{DD} < 3.6 V (C suffix version)	-	-40	125	°C
ТJ	- Junction temperature		C ≤T _A < 85 °C uffix version)	-40	105	
IJ	range		≤ T _A < 125 °C uffix version)	-40	130	

Table 19. General operating conditions

1. $f_{SYSCLK} = f_{CPU}$

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled.

3. To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

9.3.2 Embedded reset and power control block characteristics

	Table 20. Embedded	reset and power c	ontrol block	character	istics	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
+	V _{DD} rise time rate	BOR detector enabled	0 ⁽¹⁾	-	_∞ (1)	µs/V
t _{VDD}	V _{DD} fall time rate	BOR detector enabled	20 ⁽¹⁾	-	_∞ (1)	µs/V
t _{TEMP}	Reset release delay	V _{DD} rising BOR detector enabled	-	3	-	ms
V _{PDR}	Power-down reset threshold	Falling edge	1.3	1.5	1.65 ⁽²⁾	
	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74 ⁽²⁾	
V _{BOR0}	(BOR_TH[2:0]=000)	Rising edge	1.69 ⁽²⁾	1.75	1.80	
N/	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97 ⁽²⁾	
V _{BOR1}	(BOR_TH[2:0]=001)	Rising edge	1.96 ⁽²⁾	2.04	2.07	
N/	Brown-out reset threshold 2	Falling edge	2.22	2.3	2.35 ⁽²⁾	V
V _{BOR2}	(BOR_TH[2:0]=010)	Rising edge	2.31 ⁽²⁾	2.41	2.44	
	Brown-out reset threshold 3	Falling edge	2.45	2.55	2.60 ⁽²⁾	
V _{BOR3}	(BOR_TH[2:0]=011)	Rising edge	2.54 ⁽²⁾	2.66	2.7	
	Brown-out reset threshold 4	Falling edge	2.68	2.80	2.85 ⁽²⁾	
V _{BOR4}	(BOR_TH[2:0]=100)	Rising edge	2.78 ⁽²⁾	2.90	2.95	
V	DVD threehold 0	Falling edge	1.80	1.84	1.88 ⁽²⁾	
V _{PVD0}	PVD threshold 0	Rising edge	1.88 ⁽²⁾	1.94	1.99	
N/	D) (D three hold 4	Falling edge	1.98	2.04	2.09 ⁽²⁾	
V _{PVD1}	PVD threshold 1	Rising edge	2.08 ⁽²⁾	2.14	2.18	
N/	D) (D threehold 2	Falling edge	2.2	2.24	2.28 ⁽²⁾	
V _{PVD2}	PVD threshold 2	Rising edge	2.28 ⁽²⁾	2.34	2.38	
V	D)/D threshold 2	Falling edge	2.39	2.44	2.48 ⁽²⁾	
V _{PVD3}	PVD threshold 3	Rising edge	2.47 ⁽²⁾	2.54	2.58	V
N/	D)/D threehold (Falling edge	2.57	2.64	2.69 ⁽²⁾	
V _{PVD4}	PVD threshold 4	Rising edge	2.68 ⁽²⁾	2.74	2.79	
V	D) (D three hold 5	Falling edge	2.77	2.83	2.88 ⁽²⁾	
V _{PVD5}	PVD threshold 5	Rising edge	2.87 ⁽²⁾	2.94	2.99	1
V	D) (D three hold C	Falling edge	2.97	3.05	3.09 ⁽²⁾	
V _{PVD6}	PVD threshold 6	Rising edge	3.08 ⁽²⁾	3.15	3.20	

Table 20 Embedded reset and nower control block characteristic

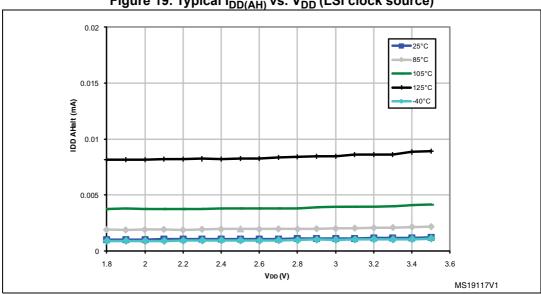


Figure 19. Typical $I_{DD(AH)}$ vs. V_{DD} (LSI clock source)

STM8AL318x STM8AL3L8x

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
V _{IL}	Input low-level voltage	Input voltage on all pins	Vss-0.3	-	0.3 x V _{DD}	V
		Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V		-	5.2 ⁽²⁾	
		Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 V$		-	5.5 ⁽²⁾	
V _{IH}	Input high-level voltage	Input voltage on five- volt tolerant (FT) pins with V _{DD} < 2 V	0.70 x V _{DD}	-	5.2 ⁽²⁾	V
		Input voltage on five- volt tolerant (FT) pins with $V_{DD} \ge 2 V$		-	5.5 ⁽²⁾	
		Input voltage on any other pin		-	V _{DD} +0.3 ⁽²⁾	
V.	Q	Standard I/Os	-	200	-	mV
V _{hys}	Schmitt trigger voltage hysteresis ⁽³⁾	True open drain I/Os	-	200	-	
		V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	50	
I _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} True open drain I/Os	-	-	200	nA
		V _{SS} ≤V _{IN} ≤V _{DD} PA0 with high sink LED driver capability	-	-	200	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	V _{IN} =V _{SS}	30 ⁽⁶⁾	45	60 ⁽⁶⁾	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 41	. I/O stati	c characteristics
----------	-------------	-------------------

1. V_{DD} = 3.0 V, T_A = -40 to 125 $^\circ C$ unless otherwise specified.

2. If V_{IH} maximum is not respected, the injection current must be limited externally to $I_{INJ(PIN)}$ maximum.

3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

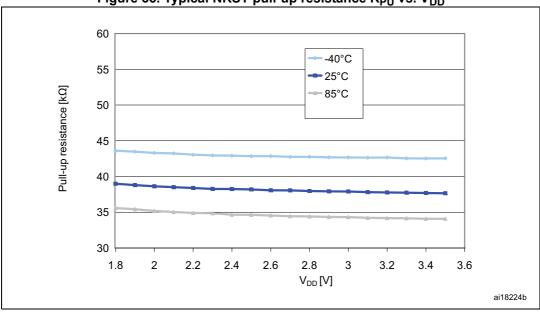
4. The max. value may be exceeded if negative current is injected on adjacent pins.

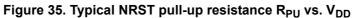
 R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 28).

6. Guaranteed by characterization results.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low-level voltage	-	$V_{SS}^{(1)}$	-	0.8 ⁽¹⁾	
V _{IH(NRST)}	NRST input high-level voltage ⁽¹⁾	-	1.4 ⁽¹⁾	-	V _{DD} ⁽¹⁾	
Vermeen	NRST output low-level voltage ⁽¹⁾	I_{OL} = 2 mA for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4 ⁽¹⁾	V
V _{OL(NRST)}		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4\''	
V _{HYST}	NRST input hysteresis	-	10%V _{DD} (2)(3)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30 ⁽¹⁾	45	60 ⁽¹⁾	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	50 ⁽³⁾	ns
V _{NF(NRST)}	NRST input not filtered pulse	-	300 ⁽³⁾	-	-	115


Table 45. NRST pin characteristics

1. Guaranteed by characterization results.

2. 200 mV min.

3. Guaranteed by design.

I²C - Inter IC control interface

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{SYSCLK}},$ and T_{A} unless otherwise specified.

The STM8AL I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit	
	Faiameter	Min. ⁽²⁾	Max. ⁽²⁾	Min. ⁽²⁾	Max. ⁽²⁾	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0	-	0	900		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-		
Cb	Capacitive load for each bus line	-	400	-	400	pF	

1. f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard $\mathsf{I}^2\mathsf{C}$ protocol requirement, not tested in production.

Note: For speeds around 200 kHz, the achieved speed has a \pm 5% tolerance. For other speed ranges, the achieved speed has a \pm 2% tolerance. The above variations depend on the accuracy of the external components used.

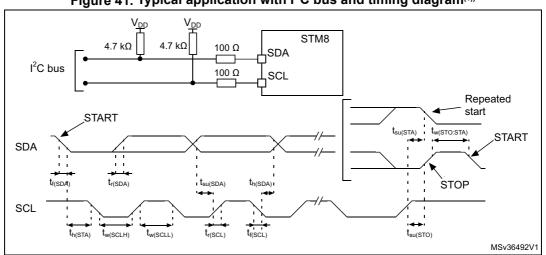


Figure 41. Typical application with I²C bus and timing diagram⁽¹⁾⁾

1. Measurement points are done at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Symbol	Parameter	Conditions	Monitored	Max vs.	11
			frequency band	16 MHz	Unit
S _{EMI}	Peak level	V _{DD} = 3.6 V,	0.1 MHz to 30 MHz 10	10	dBµV
		$V_{DD} = 3.6 \text{ V},$ $T_A = +25 \text{ °C},$ LQFP80 conforming to	30 MHz to 130 MHz	4	
			130 MHz to 1 GHz	1	
		IEC61967-2	EMI Level	1.5	-

Table	61.	EMI	data	(1)
-------	-----	-----	------	-----

1. Guaranteed by characterization results.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models are simulated: human body model and charge device model. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.

Table 62	ESD	absolute	maximum	ratings
----------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = 25 °C, conforming to ANSI/ESDA/ JEDEC JS-001	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25 \ ^{\circ}C$, conforming to ANSI/ESD S5.3.1	C4B	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-A115	M2	200	ſ

1. Guaranteed by characterization results.

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10.1 LQFP80 package information

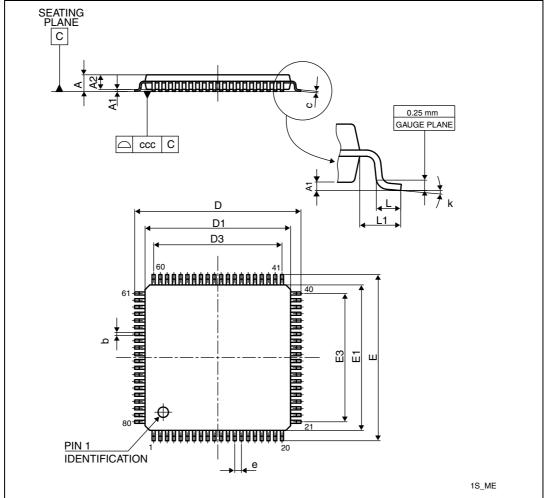


Figure 46. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

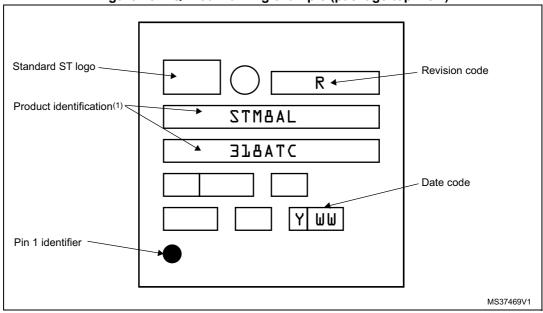


Figure 48. LQFP80 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

