

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2120akfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

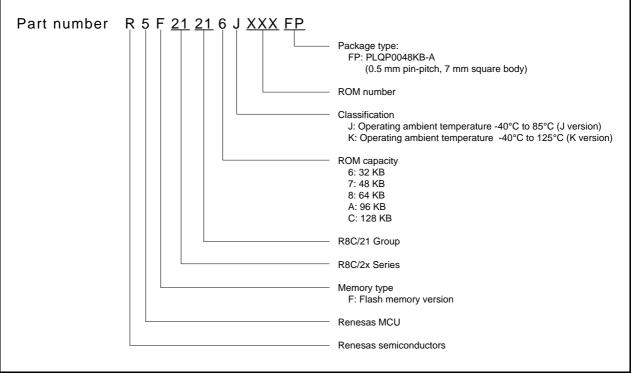
- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

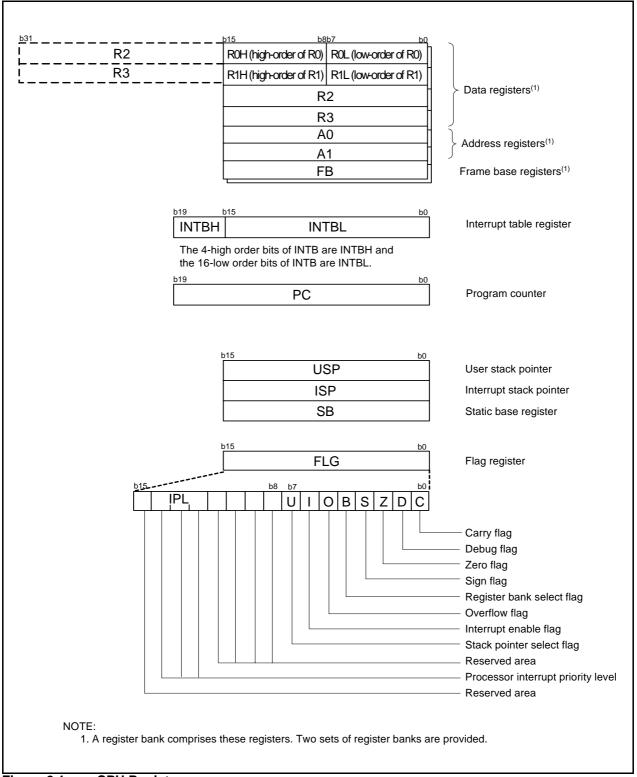
Type No.	ROM C	apacity	RAM Capacity Package Type Rem		arke		
Type No.	Program ROM	Data Flash		Fackage Type	I/CIII		
R5F21216JFP	32 Kbytes	1 Kbyte X 2	2 Kbytes	PLQP0048KB-A	J version	Flash	
R5F21217JFP	48 Kbytes	1 Kbyte X 2	2.5 Kbytes	PLQP0048KB-A		memory	
R5F21218JFP	64 Kbytes	1 Kbyte X 2	3 Kbytes	PLQP0048KB-A		version	
R5F2121AJFP	96 Kbytes	1 Kbyte X 2	5 Kbytes	PLQP0048KB-A			
R5F2121CJFP	128 Kbytes ⁽¹⁾	1 Kbyte X 2	6 Kbytes	PLQP0048KB-A			
R5F21216KFP	32 Kbytes	1 Kbyte X 2	2 Kbytes	PLQP0048KB-A	K version		
R5F21217KFP	48 Kbytes	1 Kbyte X 2	2.5 Kbytes	PLQP0048KB-A			
R5F21218KFP	64 Kbytes	1 Kbyte X 2	3 Kbytes	PLQP0048KB-A			
R5F2121AKFP	96 Kbytes	1 Kbyte X 2	5 Kbytes	PLQP0048KB-A			
R5F2121CKFP	128 Kbytes ⁽¹⁾	1 Kbyte X 2	6 Kbytes	PLQP0048KB-A			

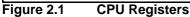
Table 1.4 Product Information for R8C/21 Group

NOTE:

1. Do not use addresses 20000h to 23FFFh because these areas are used for the emulator debugger. Refer to **23. Notes on Emulator Debugger** of Hardware Manual.




Figure 1.3 Type Number, Memory Size, and Package of R8C/21 Group


Current of Aug. 2008

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB comprise a register bank. Two sets of register banks are provided.

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

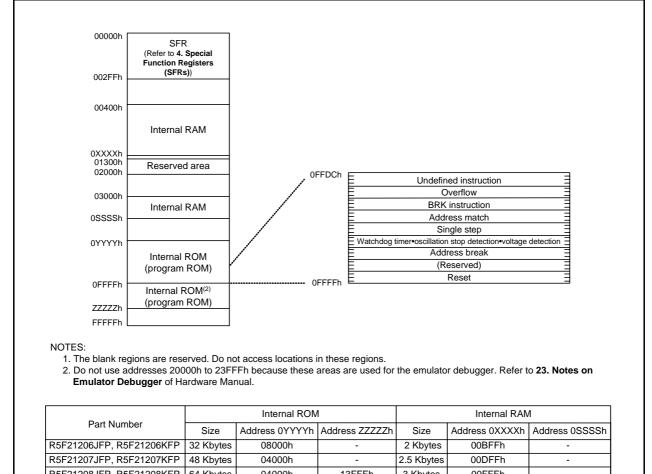
2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

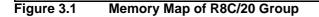
3. Memory

3. Memory

3.1 R8C/20 Group


Figure 3.1 shows a Memory Map of R8C/20 Group. The R8C/20 Group has 1 Mbyte of address space from address 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.


The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

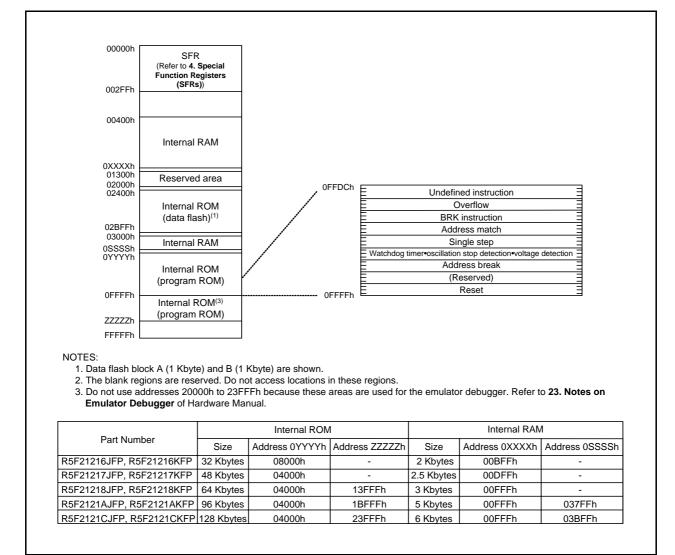
The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future user and cannot be accessed by users.

ROFZIZUOJEP, ROFZIZUONEP	64 KDytes	040001	ISELEU	3 KDyles	UUFFFN	-
R5F2120AJFP, R5F2120AKFP	96 Kbytes	04000h	1BFFFh	5 Kbytes	00FFFh	037FFh
R5F2120CJFP, R5F2120CKFP	128 Kbytes	04000h	23FFFh	6 Kbytes	00FFFh	03BFFh

3.2 R8C/21 Group

Figure 3.2 shows a Memory Map of R8C/21 Group. The R8C/21 Group has 1 Mbyte of address space from address 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Table 4.1 to Table 4.6 list the SFR Information.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protect Mode Register	CSPR	00h 10000000b ⁽⁸⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			

Table 4.1SFR Information (1)⁽¹⁾

Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
Voltage Detection Register 2 ⁽⁶⁾	VCA2	00h ⁽³⁾
		0100000b ⁽⁴⁾
Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	VW1C	0000X000b ⁽³⁾
		0100X001b ⁽⁴⁾
Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
•	·	·
	Voltage Detection Register 2 ⁽⁶⁾ Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	Voltage Detection Register 2 ⁽⁶⁾ VCA2 Voltage Monitor 1 Circuit Control Register ⁽⁷⁾ VW1C

003Fh

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. The LVD0ON bit in the OFS register is set to 1.
- 4. Power-on reset, voltage monitor 1 reset or the LVD0ON bit in the OFS register is set to 0.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.
- 6. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b7.
- 7. Software reset, the watchdog timer rest, and the voltage monitor 2 reset do not affect other than the b0 and b6.
- 8. The CSPROINI bit in the OFS register is 0.

Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0045h 0046h			
0046h 0047h			
0047h 0048h	Timer RD0 Interrupt Control Register	TRDOIC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
0040h	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh		Inclo	
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU Interrupt Control Register/IIC Bus Interrupt Control Register ⁽²⁾	SSUIC/IICIC	XXXXX000b
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			100000
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch	INTO Interrupt Control Desister	INTOIC	XX00X000h
005Dh 005Eh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005FN			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h 0073h			
0073h 0074h			
0074h 0075h			
0075h			
0070h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
001 211			

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

Table 4.6	SFR Information (6) ⁽¹⁾
-----------	------------------------------------

Address	Register	Symbol	After reset
0140h	Timer RD Control Register 0	TRDCR0	00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register C0	TRDIORC0	10001000b
0143h	Timer RD Status Register 0	TRDSR0	11100000b
0144h	Timer RD Interrupt Enable Register 0	TRDIER0	11100000b
0145h	Timer RD PWM Mode Output Level Control Register 0	TRDPOCR0	11111000b
0146h	Timer RD Counter 0	TRD0	00h
0147h			00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h			FFh
014Ah	Timer RD General Register B0	TRDGRB0	FFh
014Bh			FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Dh			FFh
014Eh	Timer RD General Register D0	TRDGRD0	FFh
014Fh			FFh
0150h	Timer RD Control Register 1	TRDCR1	00h
0151h	Timer RD I/O Control Register A1	TRDIORA1	10001000b
0152h	Timer RD I/O Control Register C1	TRDIORC1	10001000b
0153h	Timer RD Status Register 1	TRDSR1	1100000b
0154h	Timer RD Interrupt Enable Register 1	TRDIER1	11100000b
0155h	Timer RD PWM Mode Output Level Control Register 1	TRDPOCR1	11111000b
0156h	Timer RD Counter 1	TRD1	00h
0157h			00h
0158h	Timer RD General Register A1	TRDGRA1	FFh
0159h	1		FFh
015Ah	Timer RD General Register B1	TRDGRB1	FFh
015Bh	1		FFh
015Ch	Timer RD General Register C1	TRDGRC1	FFh
015Dh	1		FFh
015Eh	Timer RD General Register D1	TRDGRD1	FFh
015Fh	1		FFh

Flash Memory Control Register 4	FMR4	0100000b
Flash Memory Control Register 1	FMR1	100000Xb
Flash Memory Control Register 0	FMR0	0000001b
		+
Option Function Select Register	OFS	(Note 2)
	Flash Memory Control Register 1 Flash Memory Control Register 0	Flash Memory Control Register 1 FMR1 Flash Memory Control Register 0 FMR0 Image: State of the sta

X: Undefined

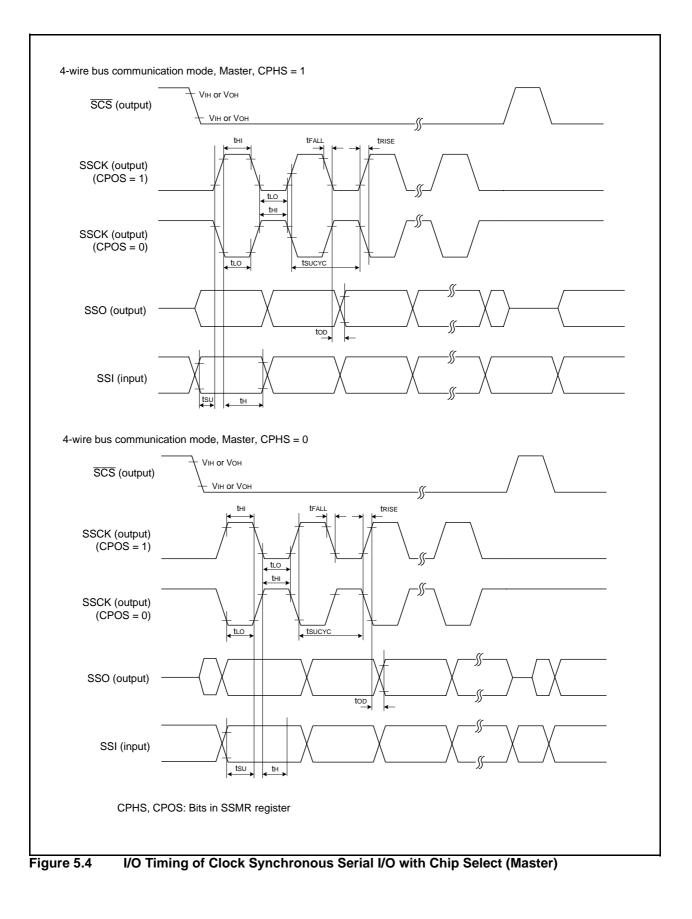
NOTES:

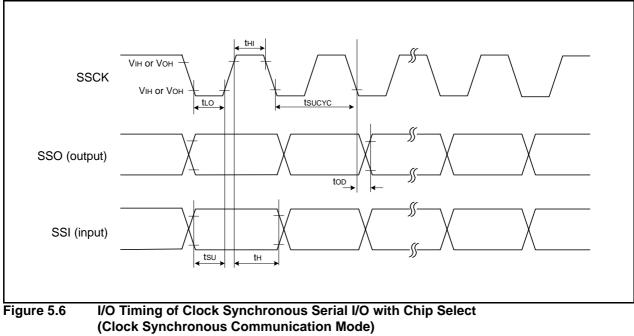
The blank regions are reserved. Do not access locations in these regions.
 The OFS register cannot be changed by a program. Use a flash programmer to write to it.

5. Electrical Characteristics

Symbol	Parameter	Condition	Rated value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	$-40^{\circ}C \le Topr \le 85^{\circ}C$	300	mW
		$85^{\circ}C < Topr \le 125^{\circ}C$	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

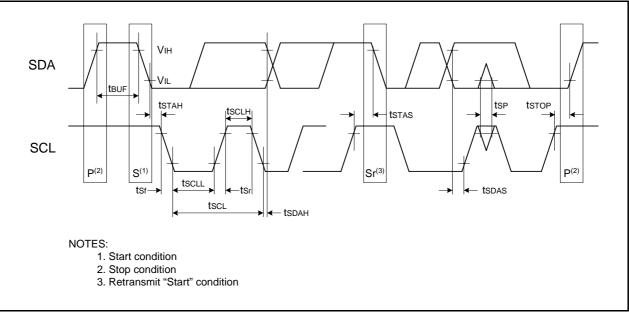
Table 5.2 Recommended Operating Conditions


Symbol	Parameter		Conditions	Standard			Unit
Symbol	Farameter	Parameter		Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.7	-	5.5	V
Vss/AVcc	Supply voltage			-	0	-	V
Viн	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all Pins IOH (peak)		-	_	-60	mA
IOH(peak)	Peak output "H" current			-	-	-10	mA
IOH(avg)	Average output "H" current			-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all Pins IOL (peak)		-	_	60	mA
IOL(peak)	Peak output "L" currents			-	-	10	mA
IOL(avg)	Average output "L" current			-	-	5	mA
f(XIN)	XIN clock input oscillation fr	equency	$\begin{array}{l} 3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V} \\ -40^{\circ}\text{C} \leq \text{Topr} \leq 85^{\circ}\text{C} \end{array}$	0	_	20	MHz
			$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	_	16	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz
-	System clock	OCD2 = 0 When XIN	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	0	_	20	MHz
		clock is selected.	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	_	16	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz
		OCD2 = 1 When on-chip oscillator clock is selected.	FRA01 = 0 When low-speed on- chip oscillator clock is selected.	_	125	-	kHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected. $3.0 V \le Vcc \le 5.5 V$ $-40^{\circ}C \le Topr \le 85^{\circ}C$	_	_	20	MHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected.	_	_	10	MHz


NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.



Sympol	Parameter	Conditions		المثلم ا		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tsc∟	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns
tSCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	_	-	ns
tSCLL	SCL input "L" width		5tcyc + 300 ⁽²⁾	_	-	ns
tsf	SCL, SDA input falling time		-	_	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
t BUF	SDA input bus-free time		5tCYC ⁽²⁾	-	-	ns
t STAH	Start condition input hole time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	-	-	ns
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns
tsoas	Data input setup time		1tcyc + 20 ⁽²⁾	_	-	ns
t SDAH	Data input hold time		0	_	-	ns

Table 5.13 Timing Requirements of I²C Bus Interface⁽¹⁾

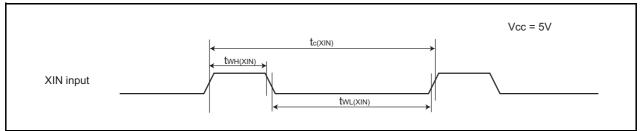
NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0V at Topr = -40 to 85° C (J version) / -40 to 125° C (K version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

Cumbol	Doro	meter	Condi	tion	St	andard		Unit
Symbol	Pala	meter	Condi	uon	Min.	Тур.	Max.	
Vон	Output "H" Voltage Except XOUT		Iон = -5 mA		Vcc - 2.0	-	Vcc	V
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" Voltage	Except XOUT	IOL = 5 mA	•	_	-	2.0	V
			Iol = 200 μA		-	-	0.45	V
		XOUT	Drive capacity HIGH	IOL = 1 mA	-	-	2.0	V
			Drive capacity LOW	IOL = 500 μA	-	-	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLX0, RXD1, CLK0, SSI, SCL, SDA, SSO			0.1	0.5	-	V
		RESET			0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5 V	,	-	_	5.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V	,	-	-	-5.0	μA
Rpullup	Pull-Up Resistance		VI = 0 V, Vcc = 5 V	1	30	50	167	kΩ
RfXIN	Feedback Resistance	XIN			-	1.0	-	MΩ
VRAM	RAM Hold Voltage	•	During stop mode		2.0	-	-	V

Table 5.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:


1. Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Min. Max.	
tc(XIN)	XIN input cycle time	50	-	ns
twh(xin)	XIN input "H" width	25	-	ns
twl(XIN)	XIN input "L" width	25	-	ns

Figure 5.8 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	=	ns
twl(traio)	TRAIO input "L" width	40	-	ns

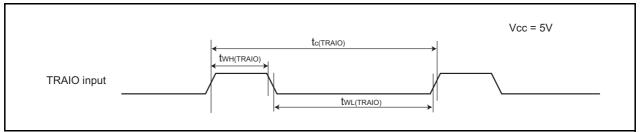
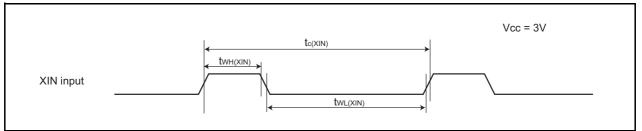


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol	Paran	actor	Condit	ion	St	tandard		Unit	
Symbol	Faidii	letel	Condit		Min.	Тур.	Typ. Max.		
Vон	Output "H" voltage	Except XOUT	Іон = -1 mA		Vcc - 0.5	-	Vcc	V	
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	_	Vcc	V	
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	-	Vcc	V	
Vol	Output "L" voltage	Except XOUT	IOL = 1 mA		-	-	0.5	V	
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V	
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V	
Vt+-Vt-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, SSI, SCL, SDA, SSO			0.1	0.3	_	V	
		RESET			0.1	0.4	-	V	
Ін	Input "H" current	•	VI = 3 V, Vcc = 3 V		-	-	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 3 V		-	_	-4.0	μΑ	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3 V		66	160	500	kΩ	
RfXIN	Feedback resistance	XIN			-	3.0	-	MΩ	
Vram	RAM hold voltage		During stop mode		2.0	-	-	V	


Table 5.20	Electrical Characteristics	(3) $[Vcc = 3 V]$
		(•)[••••••]

NOTE: 1. Vcc = 2.7 to 3.3 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 10 MHz, unless otherwise specified.

Timing Requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

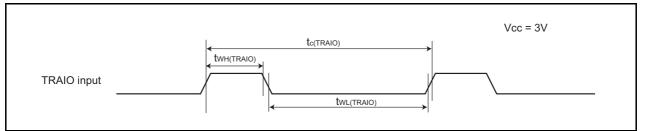

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Min. Max.	
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width	40	-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 5.12 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

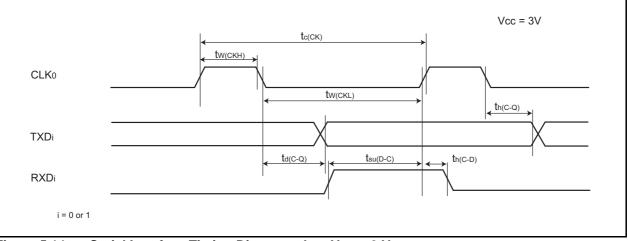

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Unit
tc(TRAIO)	TRAIO input Cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	-	ns	

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tc(CK)	CLK0 input cycle time	300	-	ns
tW(CKH)	CLK0 input "H" width	150	-	ns
tW(CKL)	CLK0 input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time 0 –			
tsu(D-C)	RXDi input setup time 70 -			
th(C-D)	RXDi input hold time 90 -			

i = 0 or 1

Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.25 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTi input "H" width	380(1)	-	ns
tw(INL)	INTi input "L" width	380 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

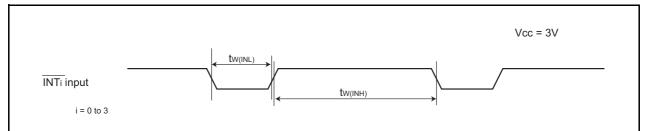
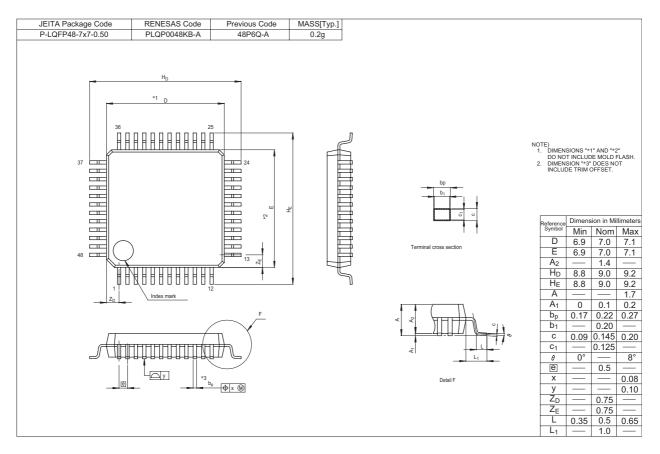



Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V (i = 0 to 3)

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY

R8C/20 Group, R8C/21 Group Datasheet

Day	Data		Description
Rev.	Date	Page	Summary
0.20	Sep 29, 2005	20	Table 4.6 SFR Information (6) revised - 0145h: POCR0 \rightarrow TRDPOCR0 - 0146h, 0147h: TRDCNT0 \rightarrow TRD0 - 0148h, 0149h: GRA0 \rightarrow TRDGRA0 - 014Ah, 014Bh: GRB0 \rightarrow TRDGRB0 - 014Ch, 014Dh: GRC0 \rightarrow TRDGRC0 - 014Eh, 014Fh: GRD0 \rightarrow TRDGRD0 - 0155h: POCR1 -> TRDPOCR1 - 0156h, 0157h: TRDCNT1 \rightarrow TRD1 - 0158h, 0159h: GRA1 \rightarrow TRDGRA1 - 015Ah, 015Bh: GRB1 \rightarrow TRDGRB1 - 015Ch, 015Dh: GRC1 \rightarrow TRDGRD1
		22	5. Electrical Characteristics added
1.00	Nov 15, 2006	All pages	"Preliminary" and "Under development" deleted
		2	Table 1.1 Functions and Specifications for R8C/20 Group revised. NOTE1 deleted.
		3	Table 1.2 Functions and Specifications for R8C/21 Group revised. NOTE1 deleted.
		5	Table 1.3 Product Information for R8C/20 Group; "R5F2120AJFP (D)", "R5F2120CJFP (D)", "R5F2120AKFP (D)", "R5F2120CKFP (D)", and NOTE added. Figure 1.2 Type Number, Memory Size, and Package of R8C/20 Group; "A: 96 KB" and "C: 128 KB" added.
		6	Table 1.4 Product Information for R8C/21 Group; "R5F2121AJFP (D)", "R5F2121CJFP (D)", "R5F2121AKFP (D)", "R5F2121CKFP (D)", and NOTE added. Figure 1.3 Type Number, Memory Size, and Package of R8C/21 Group; "A: 96 KB" and "C: 128 KB" added.
		13	Figure 3.1 Memory Map of R8C/20 Group revised.
		14	Figure 3.2 Memory Map of R8C/21 Group revised.
		15	Table 4.1 SFR Information (1) ⁽¹⁾ ; NOTE8; "The CSPROINI bit in the OFS register is set to 0." \rightarrow "The CSPROINI bit in the OFS register is 0." revised.
		21	Table 5.1 Absolute Maximum Ratings; Power dissipation revised. Table 5.2 Recommended Operating Conditions; System clock revised.
		26	 Table 5.8 Voltage Monitor 1 Reset Circuit Electrical Characteristics → Table 5.8 Power-on Reset Circuit, Voltage Monitor 1 Reset Circuit Electrical Characteristics⁽¹⁾ replaced. Table 5.8 revised. NOTE3 added. Table 5.9 Power-on Reset Circuit Electrical Characteristics deleted. Figure 5.3 Power-on Reset Circuit Electrical Characteristics revised.
		27	Table 5.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics → Table 5.9 High-Speed On-Chip Oscillator Circuit Electrical Characteristics revised.