

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	300MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h434-300bci

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DMA Controller

The DMA controller consists of 6 independent DMA channels, all of which operate in exactly the same manner. The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The controller supports scatter/gather DMA with no alignment restrictions, making it appropriate for communications and graphics systems.

UART Interface

The RC32434 contains a serial channel (UART) that is compatible with the industry standard 16550 UART.

I²C Interface

The standard I2C interface allows the RC32434 to connect to a number of standard external peripherals for a more complete system solution. The RC32434 supports both master and slave operations.

General Purpose I/O Controller

The RC32434 has 14 general purpose input/output pins. Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input, and each signal may be used as a bit input or output port.

System Integrity Functions

The RC32434 contains a programmable watchdog timer that generates a non-maskable interrupt (NMI) when the counter expires and also contains an address space monitor that reports errors in response to accesses to undecoded address regions.

Thermal Considerations

The RC32434 is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

Revision History

November 3, 2003: Initial publication. Preliminary Information.

December 15, 2003: Final version. In Table 7, changed maximum value for Tskew in 266MHz category and changed values for Tdo in all speed grades for signals DDRADDR, etc. In Table 8, changed minimum values in all speed grades for all Tdo signals and for Tsu and Tzd in MDATA[7:0]. In Table 16, added reference to Power Considerations document. In Table 17, added 2 rows under PCI and Notes 1 and 2.

January 5, 2004: In Table 19, Pin F6 was changed from Vcc I/O to Vss. In Table 23, pin F6 was deleted from the Vcc I/O row and added to the Vss row.

January 27, 2004: In Table 3, revised description for MADDR[3:0] and changed 4096 cycles to 4000 for MADDR[7]. (Note: MADDR was incorrectly labeled as MDATA in previous data sheet.)

March 29, 2004: Added Standby mode to Table 16, Power Consumption.

April 19, 2004: Added the I²C feature. In Table 20, pin L1 becomes SDA and pin L2 becomes SCL.

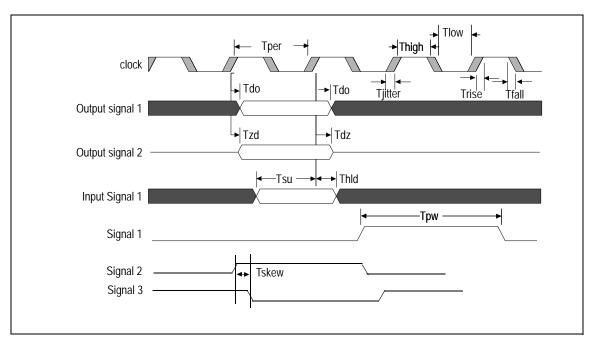
May 25, 2004: In Table 9, signals MIIRXCLK and MIITXCLK, the Min and Max values for Thigh/Tlow_9c were changed to 140 and 260 respectively and the Min and Max values for Thigh/Tlow_9d were changed to 14.0 and 26.0 respectively.

December 8, 2005: In Table 18, corrected error for Capacitance Max value from 8.0 to 10.5.

January 19, 2006: Removed all references to NVRAM.

Pin Description Table

The following table lists the functions of the pins provided on the RC32434. Some of the functions listed may be multiplexed onto the same pin.


The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal	Туре	Name/Description
Memory and Perip	heral Bus	·
BDIRN	0	External Buffer Direction . Controls the direction of the external data bus buffer for the memory and peripheral bus. If the RC32434 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BOEN	0	External Buffer Enable . This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
WEN	0	Write Enables. This signal is the memory and peripheral bus write enable signal.
CSN[3:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions.
MDATA[7:0]	I/O	Data Bus. 8-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable . This signal is asserted when data should be driven by an external device on the memory and peripheral bus.
RWN	0	Read Write . This signal indicates whether the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.
WAITACKN	Ι	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted during a memory and peripheral bus transaction to extend the bus cycle. When configured as a transfer acknowledge, this signal is asserted during a transaction to signal the completion of the transaction.
DDR Bus		
DDRADDR[13:0]	0	DDR Address Bus. 14-bit multiplexed DDR address bus. This bus is used to transfer the addresses to the DDR devices.
DDRBA[1:0]	0	DDR Bank Address. These signals are used to transfer the bank address to the DDRs.
DDRCASN	0	DDR Column Address Strobe . This signal is asserted during DDR transactions.
DDRCKE	0	DDR Clock Enable. The DDR clock enable signal is asserted during normal DDR operation. This signal is negated following a cold reset or during a power down operation.
DDRCKN	0	DDR Negative DDR clock. This signal is the negative clock of the differential DDR clock pair.

Table 1 Pin Description (Part 1 of 6)

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

Figure 2 AC Timing Definitions Waveform

Symbol	Definition
Tper	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
Thld	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Трw	Pulse width. Amount of time the input or output is active for asynchronous signals.
Tslew	Slew rate. The rise or fall rate for a signal to go from a high to low, or low to high.
X(clock)	Timing value. This notation represents a value of 'X' multiplied by the clock time period of the specified clock. Using 5(CLK) as an example: $X = 5$ and the oscillator clock (CLK) = 25MHz, then the timing value is 200.
Tskew	Skew. The amount of time two signal edges deviate from one another.

 Table 4 AC Timing Definitions

Figure 4 COLD Reset Operation with External Boot Configuration Vector AC Timing Waveform

Note: For a diagram showing the COLD Reset Operation with Internal Boot Configuration Vector, see Figure 3.6 in the RC32434 User Reference Manual.

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Зупрог	Edge	Min	Мах	Min	Мах	Min	Мах	Min	Max	Unit	tions	Reference
MDATA[7:0]	Tsu_8c	EXTCLK rising	6.0	_	6.0	_	6.0		6.0	_	ns		See Figures 8
	Thld_8c		0	_	0	_	0	_	0	_	ns		and 9 (cont.).
	Tdo_8c		0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8c ²		0	0.5	0	0.5	0	0.5	0	0.5	ns		
	Tzd_8c ²		0.4	3.3	0.4	3.3	0.4	3.3	0.4	3.3	ns		
EXTCLK ³	Tper_8d	none	7.5	_	6.66	_	6.66	-	6.66	_	ns		
BDIRN	Tdo_8e	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8e ²		_	—	_	_	—		—	_	ns		
	Tzd_8e ²		_	—	—	—	—		—	—	ns		
BOEN	Tdo_8f	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8f ²		_	—	—	—	—		—	—	ns		
	Tzd_8f ²		_	—	—	—	—		—	—	ns		
WAITACKN ⁴	Tsu_8h	EXTCLK rising	6.5	—	6.5	_	6.5		6.5	_	ns		
	Thld_8h		0	-	0	—	0	_	0	—	ns		
	Tpw_8h ²	none	2(EXTCLK)	—	2(EXTCLK)	—	2(EXTCLK)	_	2(EXTCLK)	—	ns		
CSN[3:0]	Tdo_8i	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8i ²		—	_	—	—	-	-	—	_	ns		
	Tzd_8i ²		—	—	—	—	—		—	—	ns		
RWN	Tdo_8j	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8j ²		_	—	_	—	—		_	—	ns		
	Tzd_8j ²		—	—	-	—	-		-	—	ns		
OEN	Tdo_8k	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8k ²	—	—	—	—	—		—	—	ns			
	Tzd_8k ²		_	—	—	—	—		—	—	ns		
WEN	Tdo_8I	EXTCLK rising	0.4	3.7	0.4	3.7	0.4	3.7	0.4	3.7	ns		_
	Tdz_8l ²		_	_	_	_	—		—	_	ns		
	Tzd_8l ²		_	_	_	_	_		—	_	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

^{1.} The RC32434 provides bus turnaround cycles to prevent bus contention when going from read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32434 are both driving. See Chapter 6, Device Controller, in the RC32434 User Reference Manual.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} The frequency of EXTCLK is programmable. See the External Clock Divider (MDATA[5:4]) description in Table 3 of this data sheet.

^{4.} WAITACKN must meet the setup and hold times if it is synchronous or the minimum pulse width if it is asynchronous.

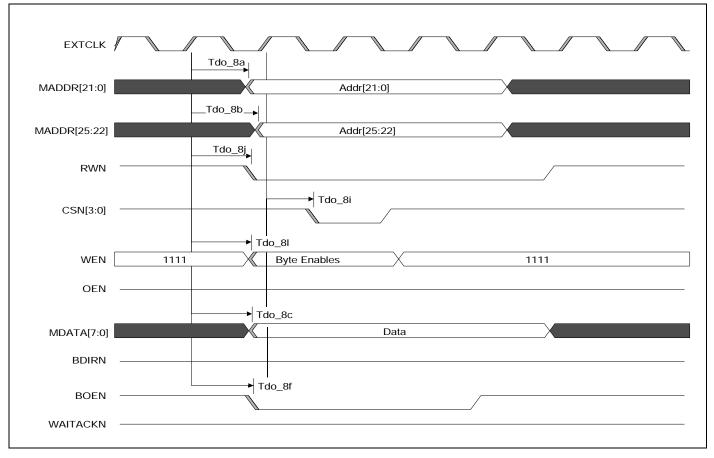


Figure 9 Memory and Peripheral Bus AC Timing Waveform — Write Access

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Мах	Min	Max	Min	Max	Min	Max	Unit	tions	Reference
Ethernet	1	<u> </u>											1
MIIMDC	Tper_9a	None	30.0	_	30.0	_	30.0	_	30.0	_	ns		See Figure 10.
	Thigh_9a, Tlow_9a		12.0	—	12.0	—	12.0	—	12.0	—	ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		-
	Thld_9b		0.0	_	0.0	_	0.0	_	0.0	_	ns		-
	Tdo_9b ¹		10	300	10	300	10	300	10	300	ns		
Ethernet — MI	I Mode	11										1	1
MIRXCLK,	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	See Figure 10.
MIITXCLK ²	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		—	3.0	_	3.0	—	3.0	_	3.0	ns		
MIRXCLK,	Tper_9d	None	None 39.9 40.0 39.9 40.0 39.9 40.0 39.9 40.0 ns 100 Mb	100 Mbps	-								
MIITXCLK ²	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns	-	
	Trise_9d, Tfall_9d		—	2.0	—	2.0	—	2.0	_	2.0	ns		
MIIRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIIRXDV, MIIRXER	Thld_9e	rising	10.0	—	10.0	—	10.0	_	10.0	—	ns		-
MIITXD[3:0], MIITXENP, MIITXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		-
Ethernet — RM	/III Mode	11	l				1				L		
RMIIREFCLK	Tper_9i	None	19.9	20.1	19.9	20.1	19.9	20.1	19.9	20.1	ns		See Figure 10.
	Thigh_9i, Tlow_9i		7.0	13.0	7.0	13.0	7.0	13.0	7.0	13.0	ns		
RMIITXEN, RMIITXD[1:0]	Tdo_9j	MIIRXCLK rising	2.0	—	2.0	—	2.0	—	2.0	—	ns		1
rmiicrsdv, rmiirxer, rmiirxd[1:0]	Tsu_9k		5.5	14.5	5.5	14.5	5.5	14.5	5.5	14.5	ns		

Table 9 Ethernet AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

^{2.} The ethernet clock (MIIRXCLK and MIITXCLK) frequency must be equal to or less than 1/2 ICLK (MIIRXCLK and MIITXCLK <= 1/2(ICLK)).

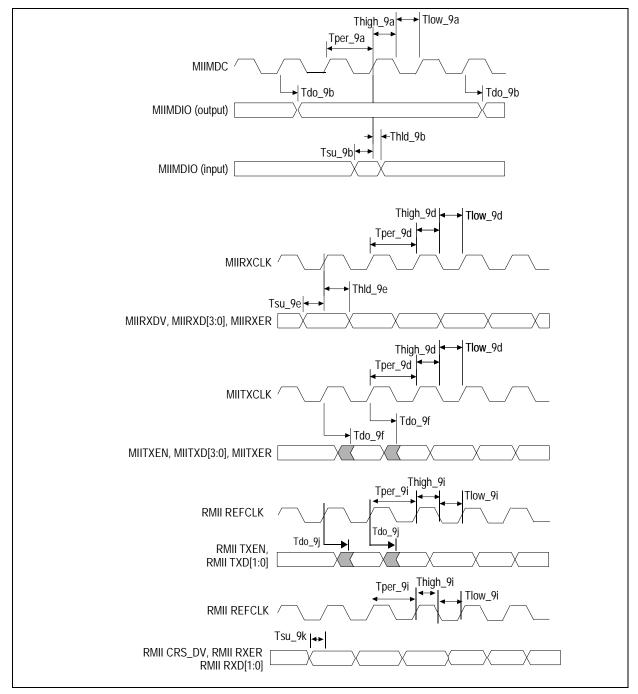
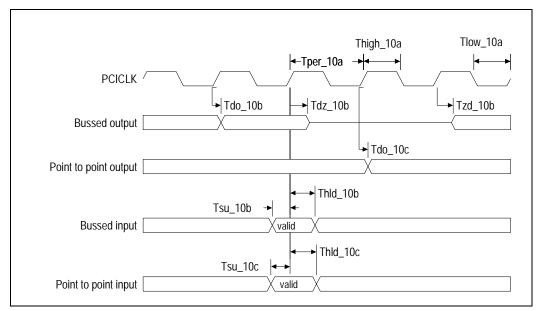


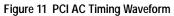
Figure 10 Ethernet AC Timing Waveform

Cianal	Cumple of	Reference	266	MHz	300	MHz	350	MHz	400	MHz	1.1	Condi-	Timing
Signal	Symbol	Edge	Min	Мах	Min	Мах	Min	Max	Min	Мах	Unit	tions	Diagram Reference
PCI ¹											•		1
PCICLK ²	Tper_10a	none	15.0	30.0	15.0	30.0	15.0	30.0	15.0	30.0	ns	66 MHz PCI	See Figure 11.
	Thigh_10a, Tlow_10a		6.0	_	6.0	_	6.0	_	6.0	_	ns		
	Tslew_10a		1.5	4.0	1.5	4.0	1.5	4.0	1.5	4.0	V/ns		
PCIAD[31:0],	Tsu_10b	PCICLK rising	3.0	—	3.0	—	3.0	—	3.0	—	ns		
PCIBEN[3:0], PCIDEVSELN,	Thld_10b		0	—	0	—	0	—	0	—	ns		
PCIFRA-	Tdo_10b		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
MEN,PCIIR- DYN,	Tdz_10b ³		—	14.0	—	14.0	—	14.0	—	14.0	ns		
PCILOCKN, PCIPAR, PCI- PERRN, PCIS- TOPN, PCITRDY	Tzd_10b ³		2.0	_	2.0	_	2.0	_	2.0	_	ns		
PCIGNTN[3:0],	Tsu_10c	PCICLK rising	5.0	—	5.0	_	5.0	_	5.0	_	ns		
PCIREQN[3:0]	Thld_10c		0	-	0	-	0	_	0	-	ns		
	Tdo_10c		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIRSTN (out- put) ⁴	Tpw_10d ³	None	4000 (CLK)	—	4000 (CLK)	—	4000 (CLK)	—	4000 (CLK)	—	ns		See Figures 15 and 16
PCIRSTN	Tpw_10e ³	None	2(CLK)	—	2(CLK)	—	2(CLK)	_	2(CLK)	—	ns		
(input) ^{4,5}	Tdz_10e ³	PCIRSTN falling	6(CLK)	_	6(CLK)	_	6(CLK)	_	6(CLK)	_	ns		
PCISERRN ⁶	Tsu_10f	PCICLK rising	3.0	—	3.0	—	3.0	—	3.0	—	ns		See Figure 11
-	Thld_10f		0	—	0	—	0	—	0	—	ns		
	Tdo_10f		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIMUINTN ⁶	Tdo_10g	PCICLK rising	4.7	11.1	4.7	11.1	4.7	11.1	4.7	11.1	ns		

Table 10 PCI AC Timing Characteristics

 $^{1\cdot}$ This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2.


^{2.} PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.


 $^{\mbox{3.}}$ The values for this symbol were determined by calculation, not by testing.

 $^{\rm 4.}$ PCIRSTN is an output in host mode and an input in satellite mode.

^{5.} To meet the PCI delay specification from reset asserted to outputs floating, the PCI reset should be logically combined with the COLDRSTN input, instead of input on PCIRSTN.

^{6.} PCISERRN and PCIMUINTN use open collector I/O types.

COLDRSTN PCIRSTN (output) RSTN	cold reset PCI interface enabled (tri-state) warm reset	
	t, PCIRSTN is tri-stated and requires a pull-down to reach a low state. d in host mode, PCIRSTN will be driven either high or low depending on the	

Figure 12 PCI AC Timing Waveform — PCI Reset in Host Mode

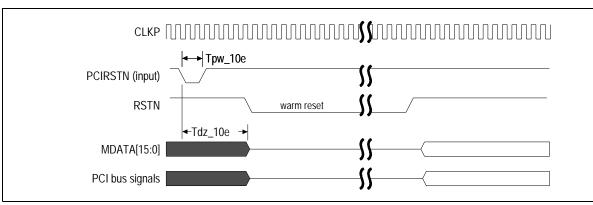


Figure 13 PCI AC Timing Waveform — PCI Reset in Satellite Mode

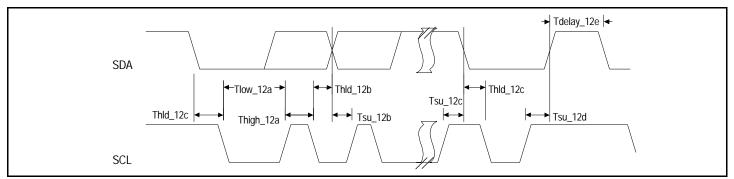
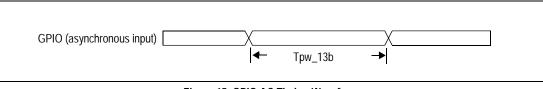

	C 1 1	Reference	266	MHz	300	MHz	350	MHz	400	MHz			Timing
Signal	Symbol	Edge	Min	Мах	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 14.
	Thigh_12a, Tlow_12a		4.0	-	4.0	Ι	4.0	Ι	4.0	Ι	μs		
	Trise_12a		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12a		_	300	_	300	_	300	—	300	ns		
SDA	Tsu_12b	SCL rising	250	_	250	—	250	—	250	—	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12b			300		300	_	300	_	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	_	4.7	_	4.7	—	4.7	—	μs		
condition	Thld_12c		4.0	—	4.0	—	4.0	—	4.0	—	μs		
Stop condition	Tsu_12d	SDA rising	4.0	_	4.0	—	4.0	—	4.0	—	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		4.7		4.7	Ι	4.7	Ι	4.7	Ι	μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6	-	0.6	-	0.6	—	0.6	—	μs		
	Trise_12a			300		300	—	300	_	300	ns		
	Tfall_12a			300		300	—	300	_	300	ns		
SDA	Tsu_12b	SCL rising	100	—	100	—	100	—	100	—	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b]		300		300	_	300	_	300	ns		
	Tfall_12ba		_	300	_	300	_	300	—	300	ns		

Table 11 I²C AC Timing Characteristics (Part 1 of 2)

Signal	Sumbol	Reference Edge	266MHz		300MHz		350MHz		400	MHz	Unit	Conditions	Timing
Signai	Symbol		Min	Мах	Min	Max	Min	Мах	Min	Max	Unit	Conditions	Diagram Reference
Start or repeated start	Tsu_12c	SDA falling	0.6	—	0.6	—	0.6	_	0.6	_	μs	400 KHz	See Figure 14.
condition	Thld_12c		0.6	—	0.6	_	0.6		0.6	_	μs		
Stop condition	Tsu_12d	SDA rising	0.6	—	0.6	—	0.6	_	0.6	_	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	_	1.3		1.3	_	1.3		μs		

Table 11 I²C AC Timing Characteristics (Part 2 of 2)

 $^{1.}$ For more information, see the $I^{2}C\mbox{-Bus}$ specification by Philips Semiconductor.


Figure 14 I2C AC Timing Waveform

Signal	Symbol	Reference	266MHz		300MHz		350	MHz	400MHz		Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Мах	Unit	tions	Reference
GPIO													
GPIO[13:0]	Tpw_13b ¹	None	2(ICLK)	—	2(ICLK)	_	2(ICLK)	_	2(ICLK)	—	ns		See Figure 15.

Table 12 GPIO AC Timing Characteristics


^{1.} The values for this symbol were determined by calculation, not by testing.

۱

SCK, SDI, SDO (input)		
← Tpw_15e →	SCK, SDI, SDO (input)	
		← Tpw_15e →

Signal	Symbol Reference		266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signar	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Onit	tions	Reference
EJTAG and JT	AG												
JTAG_TCK	Tper_16a	none	25.0	50.0	25.0	50.0	25.0	50.0	25.0	50.0	ns		See Figure 19.
	Thigh_16a, Tlow_16a		10.0	25.0	10.0	25.0	10.0	25.0	10.0	25.0	ns		
JTAG_TMS ¹ ,	Tsu_16b	JTAG_TCK	2.4	_	2.4	-	2.4	—	2.4		ns		
JTAG_TDI	Thld_16b	rising	1.0	_	1.0	—	1.0	—	1.0	_	ns		
JTAG_TDO	Tdo_16c	JTAG_TCK fall-	_	11.3		11.3		11.3		11.3	ns		
	Tdz_16c ²	ing	_	11.3		11.3		11.3		11.3	ns		
JTAG_TRST_ N	Tpw_16d ²	none	25.0	_	25.0		25.0	_	25.0		ns		
EJTAG_TMS ¹	Tsu_16e	JTAG_TCK	2.0	_	2.0	_	2.0	—	2.0	_	ns		
	Thld_6e	rising	1.0	_	1.0	_	1.0	—	1.0		ns		

Table 14 JTAG AC Timing Characteristics

^{1.} The JTAG specification, IEEE 1149.1, recommends that both JTAG_TMS and EJTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when either JTAG_TMS or EJTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.

^{2.} The values for this symbol were determined by calculation, not by testing.

Power Consumption

Parameter		266MHz		300MHz		350MHz		400MHz		Unit	Conditions
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		
I _{cc} I/O		215	270	220	275	225	280	230	285	mA	C _L = 35 pF
I _{cc} SI/O (DDR)		70	85	75	90	85	100	95	110	mA	T _{ambient} = 25°C Max, values use the maximum volt-
I _{cc} Core, I _{cc} PLL	Normal mode	325	510	350	550	400	610	450	670	mA	ages listed in Table 15. Typical values use the typical voltages listed
	Standby mode ¹	220	—	240	—	260	—	280	—	mA	in that table. Note: For additional information, see Power Considerations for IDT
Power Dissipation	Normal mode	1.27	1.82	1.36	1.90	1.45	2.02	1.54	2.15	W	Processors on the IDT web site www.idt.com.
	Standby mode ¹	0.73	—	0.78	—	0.84	—	0.90	—	W	

Table 17 RC32434 Power Consumption

¹ The RC32434 enter Standby mode by executing WAIT instructions. Minimal I/O switching is assumed. On-chip logic outside the CPU core continues to function.

Power Curve

The following graph contains a power curve that shows power consumption at various core frequencies.

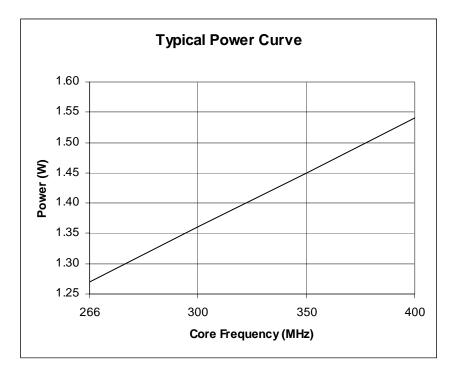


Figure 22 RC32434 Typical Power Usage

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{CC} SI/O (DDR)	I/O supply for SSTL_2 ²	-0.6	4.0	V
V _{cc} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply (digital)	-0.6	2.0	V
V _{CC} APLL	PLL supply (analog)	-0.6	4.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
Ts	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

^{2.} SSTL_2 I/Os are used to connect to DDR SDRAM.

Package Pin-out — 256-BGA Signal Pinout for the RC32434

The following table lists the pin numbers, signal names, and number of alternate functions for the RC32434 device. Signal names ending with an "_n" or "n" are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
A1	RWN		E1	MIRXD[3]		J1	GPIO[3]	1	N1	PCIAD[29]	
A2	OEN		E2	MIRXD[2]		J2	JTAG_TCK		N2	PCIAD[28]	
A3	CSN[2]		E3	MIITXD[0]		J3	GPIO[2]	1	N3	PCIAD[30]	
A4	CSN[0]		E4	MIITXD[1]		J4	EJTAG_TMS		N4	PCIAD[18]	
A5	MADDR[10]		E5	V _{cc} I/0		J5	V _{cc} CORE		N5	PCIREQN[1]	
A6	MDATA[6]		E6	V _{cc} I/0		J6	V _{ss}		N6	PCIREQN[2]	
A7	GPIO[7]	1	E7	V _{cc} I/0		J7	V _{ss}		N7	PCIIRDYN	
A8	GPIO[4]	1	E8	V _{cc} CORE		J8	V _{ss}		N8	PCILOCKN	
A9	MADDR[16]		E9	V _{cc} CORE		J9	V _{ss}		N9	PCIPERRN	
A10	MADDR[13]		E10	V _{cc} I/0		J10	V _{ss}		N10	PCIAD[15]	
A11	V _{ss} PLL		E11	V _{cc} DDR		J11	V _{cc} CORE		N11	PCIAD[11]	
A12	JTAG_TDI		E12	V _{cc} DDR		J12	V _{cc} CORE		N12	PCICBEN[0]	
A13	MADDR[9]		E13	DDRDATA[6]		J13	DDRCKN		N13	DDRADDR[5]	
A14	MADDR[7]		E14	DDRDATA[5]		J14	DDRVREF		N14	DDRADDR[4]	
A15	MADDR[5]		E15	DDRADDR[13]		J15	DDRCKP		N15	DDRADDR[3]	
A16	MADDR[2]		E16	DDRDATA[4]		J16	DDRDQS[0]		N16	DDRBA[0]	
B1	BOEN		F1	MIITXD[2]		K1	JTG_TDO		P1	PCIAD[27]	
B2	RSTN		F2	MIIRXCLK		K2	SCK		P2	PCIAD[26]	
B3	CSN[3]		F3	MIITXD[3]		K3	Reserved		P3	GPIO[10]	1
B4	CSN[1]		F4	MIITXENP		K4	SDO		P4	PCIAD[20]	
B5	MADDR[11]		F5	V _{cc} I/0		K5	V _{cc} I/0		P5	PCIREQN[3]	
B6	MDATA[1]		F6	V _{ss}		K6	V _{cc} I/0		P6	PCIREQN[0]	
B7	MDATA[4]		F7	V _{ss}		K7	V _{ss}		P7	PCIFRAMEN	
B8	GPIO[5]	1	F8	V _{ss}		K8	V _{ss}		P8	PCISTOPN	
B9	MADDR[17]		F9	V _{cc} CORE		K9	V _{ss}		P9	PCISERRN	
B10	MADDR[12]		F10	V _{ss}		K10	V _{ss}		P10	PCIAD[14]	
B11	V _{cc} PLL		F11	V _{ss}		K11	V _{ss}		P11	PCIAD[10]	
B12	V _{SS} APLL		F12	V _{cc} DDR		K12	V _{cc} DDR		P12	PCIAD[7]	
B13	MADDR[8]		F13	DDRDATA[9]		K13	DDRCKE		P13	PCIAD[4]	
B14	MADDR[6]		F14	DDRDATA[8]		K14	DDRADDR[11]		P14	DDRADDR[0]	
B15	MADDR[3]		F15	DDRDM[0]		K15	DDRADDR[10]		P15	DDRADDR[2]	1
B16	MADDR[1]		F16	DDRDATA[7]		K16	DDRADDR[12]		P16	DDRCSN	1
C1	EXTCLK		G1	MIIRXDV		L1	SDA		R1	PCIAD[25]	

Table 20 RC32434 Pinout (Part 1 of 2)


Signal Name	I/О Туре	Location	Signal Category
DDRADDR[0]	0	P14	DDR Bus
DDRADDR[1]	0	R16	
DDRADDR[2]	0	P15	
DDRADDR[3]	0	N15	
DDRADDR[4]	0	N14	
DDRADDR[5]	0	N13	
DDRADDR[6]	0	M15	
DDRADDR[7]	0	M16	
DDRADDR[8]	0	L16	
DDRADDR[9]	0	L13	
DDRADDR[10]	0	K15	
DDRADDR[11]	0	K14	
DDRADDR[12]	0	K16	
DDRADDR[13]	0	E15	
DDRBA[0]	0	N16	
DDRBA[1]	0	M14	
DDRCASN	0	L15	
DDRCKE	0	K13	
DDRCKN	0	J13	
DDRCKP	0	J15	
DDRCSN	0	P16	
DDRDATA[0]	I/O	C16	
DDRDATA[1]	I/O	D16	
DDRDATA[2]	I/O	D14	
DDRDATA[3]	I/O	D15	
DDRDATA[4]	I/O	E16	
DDRDATA[5]	I/O	E14	
DDRDATA[6]	I/O	E13	
DDRDATA[7]	I/O	F16	
DDRDATA[8]	I/O	F14	
DDRDATA[9]	I/O	F13	
DDRDATA[10]	I/O	G15	
DDRDATA[11]	I/O	G16	
DDRDATA[12]	I/O	H15	
DDRDATA[13]	I/O	H16	
DDRDATA[14]	I/O	H14	

Table 24 RC32434 Alphabetical Signal List (Part 2 of 7)

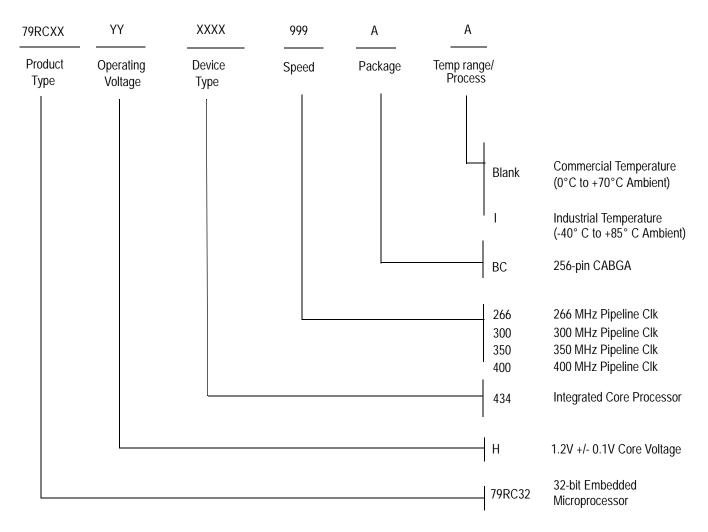

Signal Name	I/O Type	Location	Signal Category
PCIAD[17]	I/O	R5	PCI Bus Interface
PCIAD[18]	I/O	N4	
PCIAD[19]	I/O	Τ4	
PCIAD[20]	I/O	P4	
PCIAD[21]	I/O	R4	
PCIAD[22]	I/O	Т3	
PCIAD[23]	I/O	R3	
PCIAD[24]	I/O	T1	
PCIAD[25]	I/O	R1	
PCIAD[26]	I/O	P2	
PCIAD[27]	I/O	P1	
PCIAD[28]	I/O	N2	
PCIAD[29]	I/O	N1	
PCIAD[30]	I/O	N3	
PCIAD[31]	I/O	M2	
PCIBEN[0]	I/O	N12	
PCIBEN[1]	I/O	R9	
PCIBEN[2]	I/O	R7	
PCIBEN[3]	I/O	R2	
PCICLK	I	T6	
PCIDEVSELN	I/O	Т8	
PCIFRAMEN	I/O	P7	
PCIGNTN[0]	I/O	Τ7	
PCIGNTN[1]	I/O	T15	
PCIGNTN[2]	I/O	R15	
PCIGNTN[3]	I/O	T16	
PCIIRDYN	I/O	N7	
PCILOCKN	I/O	N8	
PCIPAR	I/O	Т9	
PCIPERRN	I/O	N9	
PCIREQN[0]	I/O	P6	
PCIREQN[1]	I/O	N5	
PCIREQN[2]	I/O	N6	
PCIREQN[3]	I/O	P5	
PCIRSTN	I/O	R6	
PCISERRN	I/O	P9	

Table 24 RC32434 Alphabetical Signal List (Part 6 of 7)

RC32434 Package Drawing — Page Two

Ordering Information

Valid Combinations

79RC32H434 - 266BC, 300BC, 350BC, 400BC256-pin CABGA package, Commercial Temperature79RC32H434 - 266BCI, 300BCI, 350BCI256-pin CABGA package, Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 *for SALES:* 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com *for Tech Support:* email: rischelp@idt.com phone: 408-284-8208