
Silicon Labs - C8051F339-GMR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 21

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 24-WFQFN Exposed Pad

Supplier Device Package 24-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f339-gmr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f339-gmr-4409674
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F336/7/8/9

4 Rev.1.0

14. Special Function Registers... 78
15. Interrupts .. 82

15.1. MCU Interrupt Sources and Vectors.. 83
15.1.1. Interrupt Priorities.. 83
15.1.2. Interrupt Latency ... 83

15.2. Interrupt Register Descriptions .. 84
15.3. External Interrupts /INT0 and /INT1... 89

16. Flash Memory... 91
16.1. Programming The Flash Memory .. 91

16.1.1. Flash Lock and Key Functions .. 91
16.1.2. Flash Erase Procedure ... 91
16.1.3. Flash Write Procedure .. 92

16.2. Non-volatile Data Storage ... 92
16.3. Security Options .. 93
16.4. Flash Write and Erase Guidelines ... 95

16.4.1. VDD Maintenance and the VDD monitor .. 95
16.4.2. PSWE Maintenance.. 95
16.4.3. System Clock .. 96

17. Reset Sources.. 100
17.1. Power-On Reset .. 101
17.2. Power-Fail Reset / VDD Monitor ... 102
17.3. External Reset ... 103
17.4. Missing Clock Detector Reset ... 103
17.5. Comparator0 Reset ... 104
17.6. PCA Watchdog Timer Reset ... 104
17.7. Flash Error Reset .. 104
17.8. Software Reset .. 104

18. Power Management Modes... 106
18.1. Idle Mode... 106
18.2. Stop Mode ... 107
18.3. Suspend Mode .. 107

19. Oscillators and Clock Selection ... 109
19.1. System Clock Selection... 109
19.2. Programmable Internal High-Frequency (H-F) Oscillator 111

19.2.1. Internal Oscillator Suspend Mode... 111
19.3. Programmable Internal Low-Frequency (L-F) Oscillator 113

19.3.1. Calibrating the Internal L-F Oscillator.. 113
19.4. External Oscillator Drive Circuit... 114

19.4.1. External Crystal Example.. 116
19.4.2. External RC Example.. 117
19.4.3. External Capacitor Example.. 118

20. Port Input/Output ... 119
20.1. Port I/O Modes of Operation.. 120

20.1.1. Port Pins Configured for Analog I/O.. 120
20.1.2. Port Pins Configured For Digital I/O.. 120

C8051F336/7/8/9

Rev.1.0 33

Table 6.9. Temperature Sensor Electrical Characteristics
VDD = 3.0 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Linearity — ± 0.2 — °C

Slope — 2.25 — mV/°C

Slope Error* — 23 — µV/°C

Offset Temp = 0 °C — 785 — mV

Offset Error* Temp = 0 °C — 11.6 — mV

Note: Represents one standard deviation from the mean.

Table 6.10. Voltage Reference Electrical Characteristics
VDD = 3.0 V; –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Internal Reference (REFBE = 1)

Output Voltage 25 °C ambient 2.35 2.42 2.50 V

VREF Short-Circuit Current — — 10 mA

VREF Temperature
Coefficient

— 30 — ppm/°C

Load Regulation Load = 0 to 200 µA to AGND — 3 — µV/µA

VREF Turn-on Time 1 4.7 µF tantalum, 0.1 µF ceramic bypass — 7.5 — ms

VREF Turn-on Time 2 0.1 µF ceramic bypass — 200 — µs

Power Supply Rejection — –0.6 — mV/V

External Reference (REFBE = 0)

Input Voltage Range 0 — VDD V

Input Current Sample Rate = 200 ksps; VREF = 3.0 V — 3 — µA

Power Specifications

Reference Bias Generator REFBE = ‘1’ or TEMPE = ‘1’ — 30 50 µA

C8051F336/7/8/9

53 Rev.1.0

9.1.2. Update Output Based on Timer Overflow

Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow inde-
pendently of the processor, the IDAC outputs can use a Timer overflow to schedule an output update
event. This feature is useful in systems where the IDAC is used to generate a waveform of a defined sam-
pling rate by eliminating the effects of variable interrupt latency and instruction execution on the timing of
the IDAC output. When the IDA0CM bits (IDA0CN.[6:4]) are set to 000, 001, 010 or 011, writes to both
IDAC data registers (IDA0L and IDA0H) are held until an associated Timer overflow event (Timer 0,
Timer 1, Timer 2 or Timer 3, respectively) occurs, at which time the IDA0H:IDA0L contents are copied to
the IDAC input latches, allowing the IDAC output to change to the new value.

9.1.3. Update Output Based on CNVSTR Edge

The IDAC output can also be configured to update on a rising edge, falling edge, or both edges of the
external CNVSTR signal. When the IDA0CM bits (IDA0CN.[6:4]) are set to 100, 101, or 110, writes to both
IDAC data registers (IDA0L and IDA0H) are held until an edge occurs on the CNVSTR input pin. The par-
ticular setting of the IDA0CM bits determines whether IDAC outputs are updated on rising, falling, or both
edges of CNVSTR. When a corresponding edge occurs, the IDA0H:IDA0L contents are copied to the IDAC
input latches, allowing the IDAC output to change to the new value.

9.2. IDAC Output Mapping
The IDAC data registers (IDA0H and IDA0L) are left-justified, meaning that the eight MSBs of the IDAC
output word are mapped to bits 7–0 of the IDA0H register, and the two LSBs of the IDAC output word are
mapped to bits 7 and 6 of the IDA0L register. The data word mapping for the IDAC is shown in Figure 9.2.

Figure 9.2. IDA0 Data Word Mapping

The full-scale output current of the IDAC is selected using the IDA0OMD bits (IDA0CN[1:0]). By default,
the IDAC is set to a full-scale output current of 2 mA. The IDA0OMD bits can also be configured to provide
full-scale output currents of 1 mA or 0.5 mA, as shown in SFR Definition 9.1.

IDA0H IDA0L

B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

Input Data Word

(IDA09–IDA00)

Output Current

IDA0OMD[1:0] = 1x

Output Current

IDA0OMD[1:0] = 01

Output Current

IDA0OMD[1:0] = 00

0x000 0 mA 0 mA 0 mA
0x001 1/1024 x 2 mA 1/1024 x 1 mA 1/1024 x 0.5 mA
0x200 512/1024 x 2 mA 512/1024 x 1 mA 512/1024 x 0.5 mA
0x3FF 1023/1024 x 2 mA 1023/1024 x 1 mA 1023/1024 x 0.5 mA

C8051F336/7/8/9

Rev.1.0 76

space. The addressing mode used by an instruction when accessing locations above 0x7F determines
whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the
upper 128 bytes of data memory. Figure 13.1 illustrates the data memory organization of the
C8051F336/7/8/9.

13.2.1.1. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-
eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only
one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1
(PSW.4), select the active register bank (see description of the PSW in SFR Definition 12.6). This allows
fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes
use registers R0 and R1 as index registers.

13.2.1.2. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by
the type of instruction used (bit source or destination operands as opposed to a byte source or destina-
tion).

The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where
XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

13.2.1.3. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is desig-
nated using the Stack Pointer (SP) SFR. The SP will point to the last location used. The next value pushed
on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location
0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first regis-
ter (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized
to a location in the data memory not being used for data storage. The stack depth can extend up to
256 bytes.

13.2.2. External RAM

There are 512 bytes of on-chip RAM mapped into the external data memory space. All of these address
locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or
using MOVX indirect addressing mode. If the MOVX instruction is used with an 8-bit address operand
(such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Con-
trol Register (EMI0CN as shown in SFR Definition 13.1). Note: the MOVX instruction is also used for writes
to the Flash memory. See Section “16. Flash Memory” on page 91 for details. The MOVX instruction
accesses XRAM by default.

For a 16-bit MOVX operation (@DPTR), the upper 7 bits of the 16-bit external data memory address word
are "don't cares". As a result, the 512-byte RAM is mapped modulo style over the entire 64 k external data
memory address range. For example, the XRAM byte at address 0x0000 is shadowed at addresses
0x0200, 0x0400, 0x0600, 0x0800, etc. This is a useful feature when performing a linear memory fill, as the
address pointer doesn't have to be reset when reaching the RAM block boundary.

C8051F336/7/8/9

85 Rev.1.0

SFR Address = 0xA8; Bit-Addressable

SFR Definition 15.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 EA Enable All Interrupts.

Globally enables/disables all interrupts. It overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable Serial Peripheral Interface (SPI0) Interrupt.

This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.

This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.

This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.

This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.

This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the /INT1 input.

1 ET0 Enable Timer 0 Interrupt.

This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

0 EX0 Enable External Interrupt 0.

This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the /INT0 input.

C8051F336/7/8/9

Rev.1.0 91

16. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The
Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by soft-
ware using the MOVX instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to
logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and
erase operations are automatically timed by hardware for proper execution; data polling to determine the
end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase oper-
ation. Refer to Section “6. Electrical Characteristics” on page 27 for complete Flash memory electrical
characteristics.

16.1. Programming The Flash Memory
The simplest means of programming the Flash memory is through the C2 interface using programming
tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initial-
ized device. For details on the C2 commands to program Flash memory, see Section “26. C2 Interface”
on page 221.

To ensure the integrity of Flash contents, it is strongly recommended that the on-chip VDD Monitor
be enabled in any system that includes code that writes and/or erases Flash memory from soft-
ware. See Section 16.4 for more details.

16.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and
Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations
may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be
written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and
erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash
write or erase is attempted before the key codes have been written properly. The Flash lock resets after
each write or erase; the key codes must be written again before a following Flash operation can be per-
formed. The FLKEY register is detailed in SFR Definition 16.2.

16.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and
data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX,
Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit
(PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key
codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by soft-
ware.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits
to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.
The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

1. Disable interrupts (recommended).

2. Set thePSEE bit (register PSCTL).

3. Set the PSWE bit (register PSCTL).

4. Write the first key code to FLKEY: 0xA5.

5. Write the second key code to FLKEY: 0xF1.

6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.

7. Clear the PSWE and PSEE bits.

C8051F336/7/8/9

92 Rev.1.0

16.1.3. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:

1. Disable interrupts (recommended).

2. Erase the 512-byte Flash page containing the target location, as described in Section 16.1.2.

3. Set the PSWE bit (register PSCTL).

4. Clear the PSEE bit (register PSCTL).

5. Write the first key code to FLKEY: 0xA5.

6. Write the second key code to FLKEY: 0xF1.

7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.

8. Clear the PSWE bit.

Steps 5–7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be
cleared so that MOVX instructions do not target program memory.

16.2. Non-volatile Data Storage
The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX
write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

C8051F336/7/8/9

120 Rev.1.0

20.1. Port I/O Modes of Operation
Port pins P0.0 - P2.3 use the Port I/O cell shown in Figure 20.2. Each Port I/O cell can be configured by
software for analog I/O or digital I/O using the PnMDIN registers. On reset, all Port I/O cells default to a
high impedance state with weak pull-ups enabled. Until the crossbar is enabled (XBARE = ‘1’), both the
high and low port I/O drive circuits are explicitly disabled on all crossbar pins.

20.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC input, external oscillator input/output, VREF, or IDAC output
should be configured for analog I/O (PnMDIN.n = ‘1’). When a pin is configured for analog I/O, its weak pul-
lup, digital driver, and digital receiver are disabled. Port pins configured for analog I/O will always read
back a value of ‘0’.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins
configured as digital I/O may still be used by analog peripherals; however, this practice is not recom-
mended and may result in measurement errors.

20.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external event trigger functions, or as
GPIO should be configured as digital I/O (PnMDIN.n = ‘1’). For digital I/O pins, one of two output modes
(push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = ‘1’) drive the Port pad to the VDD or GND supply rails based on the out-
put logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only
drive the Port pad to GND when the output logic value is ‘0’ and become high impedance inputs (both high
low drivers turned off) when the output logic value is ‘1’.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to
the VDD supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled
when the I/O cell is driven to GND to minimize power consumption, and they may be globally disabled by
setting WEAKPUD to ‘1’. The user should ensure that digital I/O are always internally or externally pulled
or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always
read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

C8051F336/7/8/9

122 Rev.1.0

20.2. Assigning Port I/O Pins to Analog and Digital Functions
Port I/O pins P0.0 - P2.3 can be assigned to various analog, digital, and external interrupt functions. The
Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to
digital or external interrupt functions should be configured for digital I/O.

20.2.1. Assigning Port I/O Pins to Analog Functions

Table 20.1 shows all available analog functions that require Port I/O assignments. Port pins selected for
these analog functions should have their corresponding bit in PnSKIP set to ‘1’. This reserves the
pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 20.1 shows
the potential mapping of Port I/O to each analog function.

20.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most
digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the
Crossbar in a manner similar to the analog functions listed above. Port pins used by these digital
functions and any Port pins selected for use as GPIO should have their corresponding bit in
PnSKIP set to ‘1’. Table 20.2 shows all available digital functions and the potential mapping of Port I/O to
each digital function.

Table 20.1. Port I/O Assignment for Analog Functions

Analog Function Potentially Assignable
Port Pins

SFR(s) used for
Assignment

ADC Input P0.0 - P2.3 AMX0P, AMX0N,
PnSKIP, PnMDIN

Comparator0 Input P0.0 - P2.3 CPT0MX, PnSKIP,
PnMDIN

Voltage Reference (VREF0) P0.0 REF0CN, PnSKIP,
PnMDIN

Current DAC Output (IDA0) P0.1 IDA0CN, PnSKIP,
PnMDIN

External Oscillator in Crystal Mode (XTAL1) P0.2 OSCXCN, PnSKIP,
PnMDIN

External Oscillator in RC, C, or Crystal Mode (XTAL2) P0.3 OSCXCN, PnSKIP,
PnMDIN

Table 20.2. Port I/O Assignment for Digital Functions

Digital Function Potentially Assignable Port Pins SFR(s) used for
Assignment

UART0, SPI0, SMBus, CP0,
CP0A, SYSCLK, PCA0
(CEX0-2 and ECI), T0 or T1.

Any Port pin available for assignment by the
Crossbar. This includes P0.0 - P2.3 pins which
have their PnSKIP bit set to ‘0’.
Note: The Crossbar will always assign UART0
pins to P0.4 and P0.5.

XBR0, XBR1

Any pin used for GPIO P0.0 - P2.4 P0SKIP, P1SKIP,
P2SKIP

C8051F336/7/8/9

Rev.1.0 138

21. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System

Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to
the interface by the system controller are byte oriented with the SMBus interface autonomously controlling
the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or
slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A
method of extending the clock-low duration is available to accommodate devices with different speed
capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple mas-
ters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization,
arbitration logic, and START/STOP control and generation. The SMBus peripheral can be fully driven by
software (i.e., software accepts/rejects slave addresses, and generates ACKs), or hardware slave address
recognition and automatic ACK generation can be enabled to minimize software overhead. A block dia-
gram of the SMBus peripheral and the associated SFRs is shown in Figure 21.1.

Figure 21.1. SMBus Block Diagram

Data Path
Control

SMBUS CONTROL LOGIC

C
R
O
S
S
B
A
R

SCL
FILTER

N

SDA
Control

SCL
Control

Interrupt
Request

Port I/O

SMB0CN
S
T
A

A
C
K
R
Q

A
R
B
L
O
S
T

A
C
K

S
I

T
X
M
O
D
E

M
A
S
T
E
R

S
T
O

01

00

10

11

T0 Overflow

T1 Overflow

TMR2H Overflow

TMR2L Overflow

SMB0CF
E
N
S
M
B

I
N
H

B
U
S
Y

E
X
T
H
O
L
D

S
M
B
T
O
E

S
M
B
F
T
E

S
M
B
C
S
1

S
M
B
C
S
0

01234567
SMB0DAT SDA

FILTER

N
SMB0ADR

S
L
V
4

S
L
V
2

S
L
V
1

S
L
V
0

G
C

S
L
V
5

S
L
V
6

S
L
V
3

SMB0ADM

S
L
V
M
4

S
L
V
M
2

S
L
V
M
1

S
L
V
M
0

E
H
A
C
K

S
L
V
M
5

S
L
V
M
6

S
L
V
M
3

Arbitration
SCL Synchronization

Hardware ACK Generation

SCL Generation (Master Mode)
SDA Control
Hardware Slave Address Recognition

IRQ Generation

C8051F336/7/8/9

151 Rev.1.0

21.5. SMBus Transfer Modes
The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be
operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or
Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in
Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end
of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver
depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs
before the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK genera-
tion is enabled. As a transmitter, interrupts occur after the ACK, regardless of whether hardware ACK gen-
eration is enabled or not.

21.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be
a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface gener-
ates the START condition and transmits the first byte containing the address of the target slave and the
data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then trans-
mits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by
the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface
will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt.
Figure 21.5 shows a typical master write sequence. Two transmit data bytes are shown, though any num-
ber of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after the ACK
cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 21.5. Typical Master Write Sequence

A AAS W PData Byte Data ByteSLA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

C8051F336/7/8/9

Rev.1.0 154

21.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (an error condition may be generated if SMB0DAT is written following a received
NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP.
Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave
Transmitter interrupt. Figure 21.8 shows a typical slave read sequence. Two transmitted data bytes are
shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” inter-
rupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 21.8. Typical Slave Read Sequence

21.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 21.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 21.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

C8051F336/7/8/9

Rev.1.0 163

22.3. Multiprocessor Communications
9-Bit UART mode supports multiprocessor communication between a master processor and one or more
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is
received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address
byte has been received. In the UART interrupt handler, software will compare the received address with
the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable
interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0
bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the
data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmis-
sions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master
processor can be configured to receive all transmissions or a protocol can be implemented such that the
master/slave role is temporarily reversed to enable half-duplex transmission between the original master
and slave(s).

Figure 22.6. UART Multi-Processor Mode Interconnect Diagram

Master
Device

Slave
Device

TXRX RX TX

Slave
Device

RX TX

Slave
Device

RX TX

V+

C8051F336/7/8/9

Rev.1.0 165

SFR Address = 0x99

SFR Definition 22.2. SBUF0: Serial (UART0) Port Data Buffer

Bit 7 6 5 4 3 2 1 0

Name SBUF0[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SBUF0[7:0] Serial Data Buffer Bits 7–0 (MSB–LSB).

This SFR accesses two registers; a transmit shift register and a receive latch register.
When data is written to SBUF0, it goes to the transmit shift register and is held for
serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of
SBUF0 returns the contents of the receive latch.

C8051F336/7/8/9

Rev.1.0 177

Figure 23.8. SPI Master Timing (CKPHA = 0)

Figure 23.9. SPI Master Timing (CKPHA = 1)

SCK*

T
MCKH

T
MCKL

MOSI

T
MIS

MISO

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

T
MIH

SCK*

T
MCKH

T
MCKL

MISO

T
MIH

MOSI

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

T
MIS

C8051F336/7/8/9

181 Rev.1.0

SFR Address = 0x8E

SFR Definition 24.1. CKCON: Clock Control

Bit 7 6 5 4 3 2 1 0

Name T3MH T3ML T2MH T2ML T1M T0M SCA[1:0]

Type R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 T3MH Timer 3 High Byte Clock Select.

Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only).
0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 high byte uses the system clock.

6 T3ML Timer 3 Low Byte Clock Select.

Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer
in split 8-bit timer mode.
0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 low byte uses the system clock.

5 T2MH Timer 2 High Byte Clock Select.

Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only).
0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 high byte uses the system clock.

4 T2ML Timer 2 Low Byte Clock Select.

Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode,
this bit selects the clock supplied to the lower 8-bit timer.
0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 low byte uses the system clock.

3 T1 Timer 1 Clock Select.

Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to ’1’.
0: Timer 1 uses the clock defined by the prescale bits SCA[1:0].
1: Timer 1 uses the system clock.

2 T0 Timer 0 Clock Select.

Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to ’1’.
0: Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0].
1: Counter/Timer 0 uses the system clock.

1:0 SCA[1:0] Timer 0/1 Prescale Bits.

These bits control the Timer 0/1 Clock Prescaler:
00: System clock divided by 12
01: System clock divided by 4
10: System clock divided by 48
11: External clock divided by 8 (synchronized with the system clock)

C8051F336/7/8/9

187 Rev.1.0

SFR Address = 0x89

SFR Definition 24.3. TMOD: Timer Mode

Bit 7 6 5 4 3 2 1 0

Name GATE1 C/T1 T1M[1:0] GATE0 C/T0 T0M[1:0]

Type R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 GATE1 Timer 1 Gate Control.

0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.
1: Timer 1 enabled only when TR1 = 1 AND INT1 is active as defined by bit IN1PL in
register IT01CF (see SFR Definition 15.5).

6 C/T1 Counter/Timer 1 Select.

0: Timer: Timer 1 incremented by clock defined by T1M bit in register CKCON.
1: Counter: Timer 1 incremented by high-to-low transitions on external pin (T1).

5:4 T1M[1:0] Timer 1 Mode Select.

These bits select the Timer 1 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Timer 1 Inactive

3 GATE0 Timer 0 Gate Control.

0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level.
1: Timer 0 enabled only when TR0 = 1 AND INT0 is active as defined by bit IN0PL in
register IT01CF (see SFR Definition 15.5).

2 C/T0 Counter/Timer 0 Select.

0: Timer: Timer 0 incremented by clock defined by T0M bit in register CKCON.
1: Counter: Timer 0 incremented by high-to-low transitions on external pin (T0).

1:0 T0M[1:0] Timer 0 Mode Select.

These bits select the Timer 0 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Two 8-bit Counter/Timers

C8051F336/7/8/9

Rev.1.0 188

SFR Address = 0x8A

SFR Address = 0x8B

SFR Definition 24.4. TL0: Timer 0 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TL0[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TL0[7:0] Timer 0 Low Byte.

The TL0 register is the low byte of the 16-bit Timer 0.

SFR Definition 24.5. TL1: Timer 1 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TL1[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TL1[7:0] Timer 1 Low Byte.

The TL1 register is the low byte of the 16-bit Timer 1.

C8051F336/7/8/9

Rev.1.0 190

24.2. Timer 2
Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may
operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines
the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator
source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the
internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external preci-
sion oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

24.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be
clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the
16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2
reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 24.4,
and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is
set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled
and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L)
overflow from 0xFF to 0x00.

Figure 24.4. Timer 2 16-Bit Mode Block Diagram

External Clock / 8

SYSCLK / 12

SYSCLK

TMR2L TMR2H

TMR2RLL TMR2RLH
Reload

TCLK
0

1

TR2

T
M

R
2C

N

T2SPLIT
TF2CEN

TF2L
TF2H

T2XCLK

TR2

0

1

T2XCLK

Interrupt

TF2LEN

To ADC,
SMBus

To SMBus
TL2

Overflow

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

C8051F336/7/8/9

Rev.1.0 192

24.2.3. Low-Frequency Oscillator (LFO) Capture Mode

The Low-Frequency Oscillator Capture Mode allows the LFO clock to be measured against the system
clock or an external oscillator source. Timer 2 can be clocked from the system clock, the system clock
divided by 12, or the external oscillator divided by 8, depending on the T2ML (CKCON.4), and T2XCLK
settings.

Setting TF2CEN to 1 enables the LFO Capture Mode for Timer 2. In this mode, T2SPLIT should be set to
0, as the full 16-bit timer is used. Upon a falling edge of the low-frequency oscillator, the contents of Timer
2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag
is set. By recording the difference between two successive timer capture values, the LFO clock frequency
can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the
LFO to achieve an accurate reading.

Figure 24.6. Timer 2 Low-Frequency Oscillation Capture Mode Block Diagram

External Clock / 8

SYSCLK / 12

SYSCLK

0

1

0

1

T2XCLK

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

TMR2L TMR2H
TCLKTR2

TMR2RLL TMR2RLH

Capture

Low-Frequency
Oscillator

T
M

R
2C

N
T2SPLIT
TF2CEN

TF2L
TF2H

T2XCLK

TR2

TF2LEN

TF2CEN
Interrupt

