

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072czt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Table 6. STM32LUXX peripherals interconnect matrix									
Interconnect source	Interconnect destination	Interconnect action Run				Low- power sleep	Stop		
	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-		
COMPx	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y		
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-		
RTC	TIM21	Timer triggered by Auto wake-up	Y	Y	Y	Y	-		
RIC	LPTIM	Timer triggered by RTC event	Y	Y	Y	Y	Y		
All clock source	TIMx	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-		
USB	CRS/HSI48	the clock recovery system trims the HSI48 based on USB SOF	Y	Y	-	-	-		
	TIM3	USB_SOF is channel input for calibration	Y	Y	-	-	-		
	TIMx	Timer input channel and trigger	Y	Y	Y	Y	-		
GPIO	LPTIM	Timer input channel and trigger	Y	Y	Y	Y	Y		
	ADC,DAC	Conversion trigger	Y	Y	Y	Y	-		

Table 6. STM32L0xx peripherals interconnect matrix

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USB, USARTS, I2C, LPUART, LPTIMER or comparator events.

DocID027100 Rev 3

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TSENSE_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2	TS ADC raw data acquired at temperature of 130 °C V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

 Table 7. Temperature sensor calibration values

3.12.1 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, V_{REF+} , is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address		
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079		

Table 8. Internal voltage reference measured values

3.13 Digital-to-analog converter (DAC)

Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance.

This digital Interface supports the following features:

- One data holding register (for each channel)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels with independent or simultaneous conversions
- DMA capability (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Six DAC trigger inputs are used in the STM32L072xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

Nar	ne	Abbreviation	Definition					
Pin n	ame		Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name					
		S	Supply pin					
Pin t	уре	I	Input only pin					
		I/O	Input / output pin					
		FT	5 V tolerant I/O					
		FTf	5 V tolerant I/O, FM+ capable					
I/O stru	ucture	TC	Standard 3.3V I/O					
		B Dedicated BOOT0 pin						
		RST	Bidirectional reset pin with embedded weak pull-up resistor					
Not	es	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.						
Pin functions	Alternate functions	Functions selected throu	gh GPIOx_AFR registers					
	Additional functions	Functions directly selected	unctions directly selected/enabled through peripheral registers					

Table 15. Legend/abbreviations used in the	pinout table

Table 16. STM32L072xxx pin definition

			Pin n	umb	er									
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions	
-	-	-	-	-	-	1	B2	PE2	I/O	FT	-	TIM3_ETR	-	
-	-	-	-	-	-	2	A1	PE3	I/O	FT	-	TIM22_CH1, TIM3_CH1	-	
-	-	-	-	-	-	3	B1	PE4	I/O	FT	-	TIM22_CH2, TIM3_CH2	-	
-	-	-	-	-	-	4	C2	PE5	I/O	FT	-	TIM21_CH1, TIM3_CH3	-	
-	-	-	-	-	-	5	D2	PE6	I/O	FT	I	TIM21_CH2, TIM3_CH4	RTC_TAMP3/WKUP3	
1	-	1	1	B2	B6	6	E2	VDD	S		-	_	-	

		I	Pin n	umb	er								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
27	26	40	56	A4	В3	90	A7	PB4	I/O	FTf	-	SPI1_MISO, TIM3_CH1, TSC_G5_IO2, TIM22_CH1, USART1_CTS, USART5_RX, I2C3_SDA	COMP2_INP
28	27	41	57	C4	A4	91	C5	PB5	I/O	FT	-	SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM3_CH2/TIM22_CH2, USART1_CK, USART5_CK/USART5_R TS_DE	COMP2_INP
29	28	42	58	D3	B4	92	B5	PB6	I/O	FTf	-	USART1_TX, I2C1_SCL, LPTIM1_ETR, TSC_G5_IO3	COMP2_INP
30	29	43	59	C3	C3	93	B4	PB7	I/O	FTf	-	USART1_RX,I2C1_SDA, LPTIM1_IN2, TSC_G5_IO4, USART4_CTS	COMP2_INP, VREF_PVD_IN
31	30	44	60	B4	A5	94	A4	BOOT0	Ι		-	_	-
-	-	45	61	В3	B5	95	A3	PB8	I/O	FTf	-	TSC_SYNC, I2C1_SCL	-
-	-	46	62	A3	A6	96	B3	PB9	I/O	FTf	-	EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS	-
-	-	-	-	-	-	97	C3	PE0	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-
32	31	47	63	D4	-	99	D3	VSS	S	-	-	-	-
-	32	48	64	E4	A7	100	C4	VDD	S	-	-	-	-

Table 16. STM32L072xxx pin definition (continued)

1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx.

2. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.

3. These pins are powered by VDD_USB. For all characteristics that refer to V_{DD} , V_{DD_USB} must be used instead.

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		BOR detector enabled	0	-	∞	
t _{VDD} ⁽¹⁾	V _{DD} rise time rate	BOR detector disabled	0	-	1000	μs/V
) (foll time rete	20 - ∞	x	- μs/v		
	V _{DD} fall time rate	BOR detector disabled	0	-	1000	
т (1)	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	ma
RSTTEMPO ⁽¹⁾	Reset temponzation	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
M	Power on/power down reset	Falling edge	1	1.5	1.65	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	
		Falling edge	1.67	1.7	1.74	
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
	Drewe out react threaded 4	Falling edge	1.87	1.93	1.97	
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07	
V _{BOR2}	Drewe out react threaded 2	Falling edge	2.22	2.30	2.35	
	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44	1
		Falling edge	2.45	2.55	2.6	
V _{BOR3}	Brown-out reset threshold 3 Rising edge		2.54	2.66	2.7	
		Falling edge	2.68	2.8	2.85	
V _{BOR4}	Brown-out reset threshold 4	Rising edge		2.9	2.95	
	Programmable voltage detector Falling edge		1.8	1.85	1.88	V
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99	
M	D) (D) there are a left 4	Falling edge	1.98	2.04	2.09	
V _{PVD1}	PVD threshold 1	Rising edge	2.08 2.14		2.18	
	D) (D three held 2	Falling edge	2.20	2.24	2.28	1
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.34	2.38	1
N/	DVD threehold 2	Falling edge	2.39	2.44	2.48	
V _{PVD3}	PVD threshold 3	Rising edge	2.47	2.54	2.58	
	D) (D three held 4	Falling edge	2.57	2.64	2.69	
V _{PVD4}	PVD threshold 4	Rising edge	2.68	2.74	2.79	
		Falling edge	2.77	2.83	2.88	
V _{PVD5}	PVD threshold 5	Rising edge	2.87	2.94	2.99	

Table 27. Embedded reset and power control block characteristics
--

Symbol	Parameter	Condition		f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3,	1	43,5	110	
			Vcore=1.2 V	2	72	140	1
			VOS[1:0]=11	4	130	200	
		f _{HSE} = f _{HCLK} up to	Range2,	4	160	220	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	305	380	
		$16 \text{ MHz} (\text{PLL ON})^{(2)}$	VOS[1:0]=10	16	590	690	
			Range1,	8	370	460	
	Supply current in		Vcore=1.8 V	16	715	840	
	Sleep mode, Flash memory switched		VOS[1:0]=01	32	1650	2000	
	OFF		Range3,	0,065	18	93	
		MSI clock	Vcore=1.2 V	0,524	31,5	110	
			VOS[1:0]=11	4,2	140	230	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	665	850	
I _{DD}		(16 MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2100	
(Sleep)			Range3, Vcore=1.2 V VOS[1:0]=11	1	57,5	130	μA -
		f _{HSE} = f _{HCLK} up to 16MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL ON) ⁽²⁾		2	84	160	
				4	150	220	
			Range2, Vcore=1.5 V VOS[1:0]=10	4	170	240	
				8	315	400	
				16	605	710	
			Range1,	8	380	470	
	Supply current in Sleep mode, Flash		Vcore=1.8 V	16	730	860	
	memory switched		VOS[1:0]=01	32	1650	2000	
	ON		Range3,	0,065	29,5	110	
		MSI clock	Vcore=1.2 V	0,524	44,5	120	
			VOS[1:0]=11	4,2	150	240	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	680	930	
		(16MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2200	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Condition				Max ⁽¹⁾	Unit	
				$T_A = -40$ to 25°C		9,45	12		
			MSI clock = 65 kHz,	T _A = 85°C	0,032	14	58		
			f _{HCLK} = 32 kHz	T _A = 105°C	0,032	21	64		
				T _A = 125°C		36,5	160		
		All peripherals		$T_A = -40 \text{ to } 25^{\circ}\text{C}$		14,5	18		
		OFF, code executed from	MSI clock = 65 kHz,	T _A = 85°C	0,065	19,5	60		
		RAM, Flash	f _{HCLK} = 65kHz	T _A = 105°C	0,005	26	65		
		memory switched OFF, V _{DD} from		T _A = 125°C		42	160		
		1.65 to 3.6 V		$T_A = -40$ to 25°C			26,5	30	
				T _A = 55°C					27,5
			MSI clock=131 kHz, f _{HCLK} = 131 kHz	T _A = 85°C	0,131	0,131 31	66	μΑ 	
	Supply			T _A = 105°C		37,5	77		
I _{DD}	Supply current in			T _A = 125°C		53,5	170		
(LP Run)	Low-power run mode			$T_A = -40$ to 25°C		24,5	34		
	run mode		MSI clock = 65 kHz,	T _A = 85°C	0,032	30	82		
			f _{HCLK} = 32 kHz	T _A = 105°C	0,032	38,5	90		
				T _A = 125°C		58	120		
		All peripherals		$T_A = -40$ to $25^{\circ}C$		30,5	40		
		OFF, code	MSI clock = 65 kHz,	T _A = 85°C	0,065	36,5	88		
		executed from Flash memory,	f _{HCLK} = 65 kHz	T _A = 105°C	0,000	45	96		
		VDD from 1.65 V		T _A = 125°C		64,5	120		
		to 3.6 V		$T_A = -40$ to $25^{\circ}C$		45	56		
			MSI clock =	T _A = 55°C	1	48	96		
			131 kHz,	T _A = 85°C	0,131	51	110		
			f _{HCLK} = 131 kHz	T _A = 105°C		59,5	120		
				T _A = 125°C		79,5	150		

Table 35. Current	consumption in	Low-power run mode
	eeneamparen m	-on poner ran mous

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

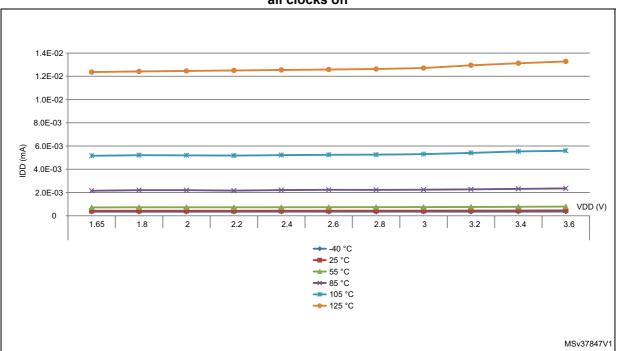


Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Table 38. Typical and maximum current consumptions in Standby mode
--

Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
			T _A = 55 °C	-	2,90	
		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
I _{DD}			T _A = 105 °C	-	4,10	
	Supply current in Standby		T _A = 125 °C	-	8,50	
(Standby)	mode		T _A = − 40 to 25°C	0,29	0,60	μA
			T _A = 55 °C	0,32	1,20	
		Independent watchdog and LSI off	T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

Symbol	Poriphoral	Typical consum	ption, T _A = 25 °C	– Unit
Symbol	Peripheral –	V _{DD} =1.8 V	V _{DD} =3.0 V	
I _{DD(PVD / BOR)}	I _{DD(PVD / BOR)} -		1.2	
I _{REFINT}	-	-	1.7	
-	LSE Low drive ⁽²⁾	0.11	0,13	
-	LSI	0.27	0.31	
-	IWDG	0.2	0.3	
-	LPTIM1, Input 100 Hz	0.01	0,01	μA
-	LPTIM1, Input 1 MHz	11	12	
- LPUART1		-	0,5	
-	RTC	0.16	0,3	

1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.

2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.-

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4.
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	7	8	
t _{WUSLEEP_} LP	Wakeup from Low-power sleep mode,	f _{HCLK} = 262 kHz Flash memory enabled	7	8	Number of clock
	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash memory switched OFF	9	10	cycles

Table 42	Low-power	mode	wakeun	timinas
	LOW-POWEI	moue	waneup	unningə

6.3.7 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI16 user-	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	± 1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
		V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
ACC	Accuracy of the	V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI16}	factory-calibrated HSI16 oscillator	V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		$V_{DDA} = 1.65 V \text{ to } 3.6 V$ $T_A = -40 \text{ to } 125 ^{\circ}\text{C}$	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

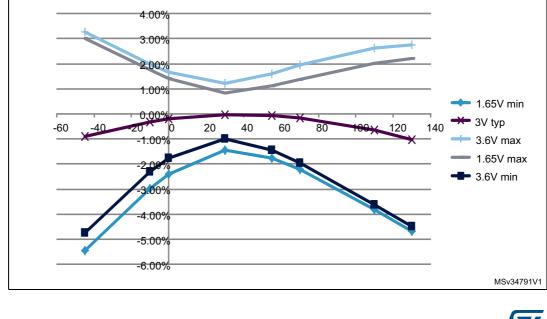


Figure 25. HSI16 minimum and maximum value versus temperature

DocID027100 Rev 3

6.3.9 Memory characteristics

RAM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

Table 52. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit		
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V		
t _{prog}	Programming time for	Erasing	-	3.28	3.94	me		
	word or half-page	Programming	-	3.28	3.94	ms		
I _{DD}	Average current during the whole programming / erase operation		-	500	700	μA		
	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA		

Table 53. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 54. Flash memory	/ and data EEPROM endurance an	d retention

Symbol	Parameter	Conditions	Value	Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Omt
	Cycling (erase / write) Program memory	T 40°C to 105 °C	10	
	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 105 °C	100	kcycles
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T 40°C to 125 °C	0.2	KUYUUUS
	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 125 °C	2	

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

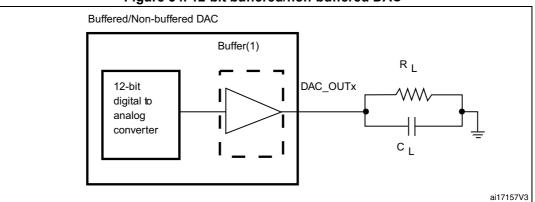
Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range at 32 MHz	Unit
		V	0.1 to 30 MHz	-7	
6	Dook lovel	$V_{DD} = 3.6 \text{ V},$ $T_{A} = 25 \text{ °C},$	30 to 130 MHz	14	dBµV
S _{EMI}		LQFP100 package	130 MHz to 1 GHz	9	
	compliant with IEC 61967-2		EMI Level	2	-

Table 56. EMI characteristics

6.3.16 DAC electrical specifications


Data guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-		V _{SSA}		V
I _{DDVREF+} ⁽¹⁾	Current consumption on V _{REF+}	No load, middle code (0x800)	-	130	220	μA
'DDVREF+`´	$V_{\text{REF+}} = 3.3 \text{ V}$	No load, worst code (0x000)	-	220	350	μΛ
I _{DDA} ⁽²⁾	Current consumption on V _{DDA} supply,	No load, middle code (0x800)	-			μA
'DDA`´	$V_{\text{DDA}} = 3.3 \text{ V}$	No load, worst code (0xF1C)	-			μΑ
$R_L^{(3)}$	Resistive load	DAC output buffer on	5	-	-	kΩ
C _L ⁽³⁾	Capacitive load		-	-	50	pF
R _O	Output impedance	DAC output buffer off	12	16	20	kΩ
		DAC output buffer ON	0.2	-	V _{DDA} – 0.2	v
V _{DAC_OUT}	Voltage on DAC_OUT output	DAC output buffer OFF	0.5	-	V _{REF+} – 1LSB	mV
DNL ⁽²⁾	Differential non linearity ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	1.5	3	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	1.5	3	
INL ⁽²⁾	Integral non linearity ⁽⁵⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	2	4	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	2	4	LSB
Offset ⁽²⁾	Offset error at code 0x800 ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	±10	±25	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	±5	±8	
Offset1 ⁽²⁾	Offset error at code 0x001 ⁽⁷⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	±1.5	±5	

Tahlo	67	DAC	characteristics
Table	0 7.	DAC	characteristics

- 6. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 7. Difference between the value measured at Code (0x001) and the ideal value.
- 8. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is off, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is on.
- 9. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

Figure 34. 12-bit buffered/non-buffered DAC

6.3.17 Temperature sensor characteristics

Table 68. Temperature sensor calibration values

Calibration value name	Description	Memory address	
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B	
TS_CAL2	TS ADC raw data acquired at temperature of 130 °C, V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F	

Table 69. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₃₀	Voltage at 130°C ±5°C ⁽²⁾	640	670	700	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time		-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.

- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

6.3.18 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	- kΩ
R _{10K}	R _{10K} value	-	-	10	-	K22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	
td	Propagation delay ⁽²⁾	-	-	3	10	μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 \text{ V}, V_{IN+} = 0 \text{ V}, V_{IN-} = V_{REFINT}, T_A = 25 ^{\circ}\text{C}$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter Conditions		Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comparator startup time	Fast mode	-	15	20	
t _{START}		Slow mode	-	20	25	
+	Propagation delay ⁽²⁾ in slow mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	1.8	3.5	
t _{d slow}	Fropagation delay V in slow mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6	μs
4	Propagation delay ⁽²⁾ in fast mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2	
t _{d fast}	Propagation delay. In fast mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	±20	mV
dThreshold/ dt	Threshold voltage temperature coefficient $V_{DDA} = 3.3V, T_{A} = 0 \text{ tr}$ $V_{-} = V_{REFINT}, 3/4 V_{REFINT}, 1/2 V_{REFINT}, 1/2 V_{REFINT}, 1/4 V_{REFINT}.$		-	15	30	ppm /°C
L	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
ICOMP2		Slow mode	-	0.5	2	μA

Table 71. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

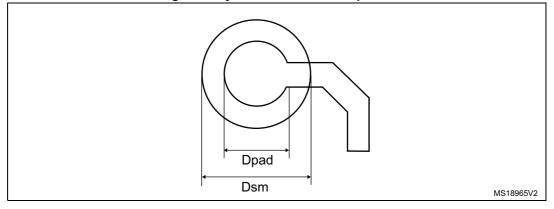


Table 88. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

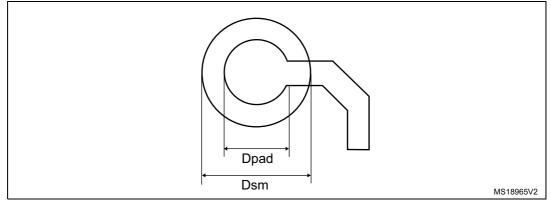
Figure 52. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 89. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

package mechanical data						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.259	3.294	3.329	0.1283	0.1297	0.1311
E	3.223	3.258	3.293	0.1269	0.1283	0.1296
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.447	-	-	0.0176	-
G	-	0.429	-	-	0.0169	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ССС	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020


Table 90. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

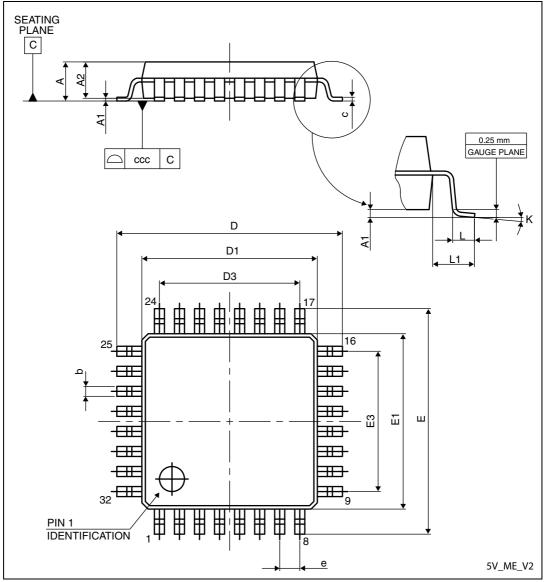
1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 55. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale recommended footprint

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031


Table 92. L	QFP48 - 48-pin, 7 x	7 mm low-profile	e quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.8 LQFP32 package information

Figure 59. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

