

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072rbt3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L072xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

3.4 Reset and supply management

3.4.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{DD_USB} = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V_{DD_USB} must be above 3.0V. If USB is not used this pin must be tied to V_{DD}.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, LPUART, general-purpose timers, DAC, and ADC.

3.11 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L072xx device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~240 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.12 Temperature sensor

The temperature sensor (T_{SENSE}) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TSENSE_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2	TS ADC raw data acquired at temperature of 130 °C V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

 Table 7. Temperature sensor calibration values

3.12.1 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, V_{REF+} , is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Table 8. Internal voltage reference measured values

3.13 Digital-to-analog converter (DAC)

Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance.

This digital Interface supports the following features:

- One data holding register (for each channel)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels with independent or simultaneous conversions
- DMA capability (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Six DAC trigger inputs are used in the STM32L072xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.14 Ultra-low-power comparators and reference voltage

The STM32L072xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - DAC output
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.15 Touch sensing controller (TSC)

The STM32L072xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match.

Each I2C interface can be served by the DMA controller.

Refer to *Table 12* for an overview of I2C interface features.

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	x	X ⁽²⁾	х
Independent clock	Х	-	Х
SMBus	Х	-	Х
Wakeup from STOP	Х	-	Х

1. X = supported.

 See Table 16: STM32L072xxx pin definition on page 43 for the list of I/Os that feature Fast Mode Plus capability

3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)

The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode using baudrates up to 42 Kbaud.

All USART interfaces can be served by the DMA controller.

Table 13 for the supported modes and features of USART interfaces.

USART modes/features ⁽¹⁾	USART1 and USART2	USART4 and USART5
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode ⁽²⁾	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-

Table 1	3. USART	implementation
---------	----------	----------------

			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1 /TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1 COMP1/2/TIM3
		PE0	-		EVENTOUT	-	-	-	-	-
		PE1	-		EVENTOUT	-	-	-	-	-
		PE2	-		TIM3_ETR	-	-	-	-	-
	Γ	PE3	TIM22_CH1		TIM3_CH1	-	-	-	-	-
	Γ	PE4	TIM22_CH2	-	TIM3_CH2	-	-	-	-	-
	Γ	PE5	TIM21_CH1	-	TIM3_CH3	-	-	-	-	-
		PE6	TIM21_CH2	-	TIM3_CH4	-	-	-	-	-
Port E		PE7	-		-	-	-	-	USART5_CK/U SART5_RTS_D E	-
		PE8	-		-	-	-	-	USART4_TX	-
	Ī	PE9	TIM2_CH1		TIM2_ETR	-	-	-	USART4_RX	-
	Ī	PE10	TIM2_CH2		-	-	-	-	USART5_TX	-
	Ī	PE11	TIM2_CH3	-	-	-	-	-	USART5_RX	-
	ſ	PE12	TIM2_CH4	-	SPI1_NSS	-	-	-	-	-
	Ī	PE13	-		SPI1_SCK	-	-	-	-	-
	F	PE14	-		SPI1_MISO	-	-	-	-	-
	Ī	PE15	-		SPI1_MOSI	-	-	-	-	-

55/147

STM32L072xx

Pin descriptions

6.1.6 Power supply scheme

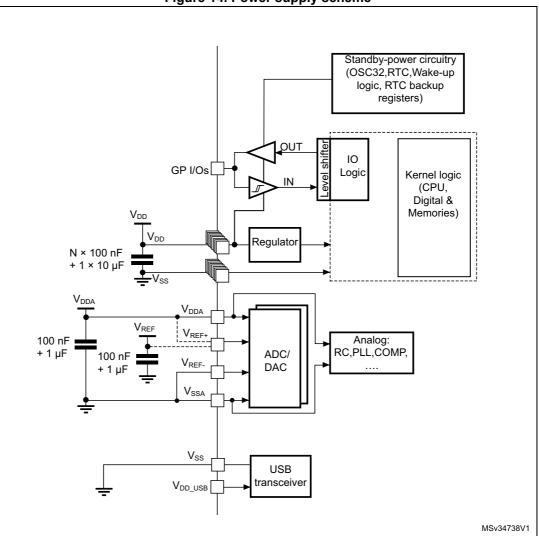


Figure 14. Power supply scheme

6.1.7 Current consumption measurement

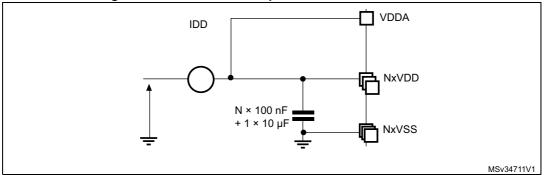


Figure 15. Current consumption measurement scheme

Symbol	Parameter	Conditio	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit	
			Range3,	1	190	250	
I _{DD} (Run			Vcore=1.2 V	2	345	380	μA
			VOS[1:0]=11	4	650	670	
		f _{HSE} = f _{HCLK} up to	Range2,	4	0,8	0,86	
		16MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	1,55	1,7	
	Supply current in Run mode code executed from Flash memory	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	2,95	3,1	mA
			Range1, Vcore=1.8 V	8	1,9	2,1	
				16	3,55	3,8	
from Flash memory)			VOS[1:0]=01	32	6,65	7,2	
memory		MSI clock source	Range3,	0,065	39	130	
			Vcore=1.2 V	0,524	115	210	μA
			VOS[1:0]=11	4,2	700	770	
		HSI clock source (16MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,9	3,2	mA
			Range1, Vcore=1.8 V VOS[1:0]=01	32	7,15	7,4	

Table 30. Current consumption in Run mode, code with data processing running fromFlash memory

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 31. Current consumption in Run mode vs code type,code with data processing running from Flash memory

Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit
				Dhrystone		650	
				CoreMark		655	
			Range 3, V _{CORE} =1.2 V,	Fibonacci	4 MHz	485	μA
	Supply		VOS[1:0]=11	while(1)		385	Pr. 1
from loode, 16 MHz included	$f_{HSE} = f_{HCLK}$ up to 16 MHz included, f_{HSE}	uded, f _{HSE}	while(1), 1WS, prefetch off		375		
Flash	Flash executed = $f_{HCLK}/2$ above 16 MHz (PLL on) ⁽¹⁾		Dhrystone		6,65		
memory) from Flash memory	nemory	Range 1,	CoreMark		6,9		
		V _{CORE} =1.8 V,	Fibonacci	32 MHz	6,75	mA	
			VOS[1:0]=01	while(1)		5,8	
				while(1), prefetch off		5,5]

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

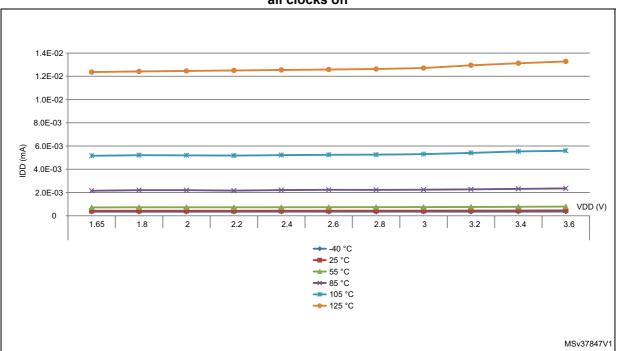


Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Table 38. Typical and maximum current consumptions in Standby mode
--

Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
I _{DD} Supply current in St (Standby) mode			T _A = 55 °C	-	2,90	
		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
			T _A = 105 °C	-	4,10	
	Supply current in Standby mode		T _A = 125 °C	-	8,50	
		Independent watchdog and LSI off	T _A = − 40 to 25°C	0,29	0,60	μA
			T _A = 55 °C	0,32	1,20	-
			T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

Symbol	Paripharal	Typical consum	ption, T _A = 25 °C	– Unit
Symbol	Peripheral –	V _{DD} =1.8 V	V _{DD} =3.0 V	
I _{DD(PVD / BOR)}	-	0.7	1.2	
I _{REFINT}	-	-	1.7	
-	LSE Low drive ⁽²⁾	0.11	0,13	
-	LSI	0.27	0.31	
-	IWDG	0.2	0.3	
-	LPTIM1, Input 100 Hz	0.01	0,01	μΑ
-	LPTIM1, Input 1 MHz	11	12	
-	LPUART1	-	0,5	
-	RTC	0.16	0,3	

1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.

2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.-

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4.
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	7	8	
t _{WUSLEEP_} LP Wakeup from Low-power sleep mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash memory enabled	7	8	Number of clock	
	f _{HCLK} = 262 kHz Flash memory switched OFF	9	10	cycles	

Table 12	Low power	modo	wakoup	timinac
Table 42.	Low-power	moae	wakeup	timings

Output voltage levels

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ , I _{IO} = +8 mA	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	voltage for an I/O $\begin{array}{c} \text{TTL port}^{(2)},\\ \text{I}_{\text{IO}} = + 8 \text{ mA}\\ 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$		0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{c} {\sf TTL} \ {\sf port}^{(2)}, \\ {\sf I}_{IO} = \ {\sf -6} \ {\sf mA} \\ {\sf 2.7} \ {\sf V} \leq {\sf V}_{DD} \leq \ {\sf 3.6} \ {\sf V} \end{array}$	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	$\begin{array}{l} \text{I}_{IO} = +15 \text{ mA} \\ \text{2.7 V} \leq \text{V}_{DD} \leq \ \text{3.6 V} \end{array}$	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{\text{IO}} \text{ = -15 mA} \\ \text{2.7 V} \leq \text{V}_{\text{DD}} \leq \ \text{3.6 V} \end{array}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +4 mA 1.65 V \leq V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{IO} = \text{-4 mA} \\ 1.65 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	V _{DD} -0.45	-	
V (1)(4)	Output low level voltage for an FTf	$\begin{array}{l} \text{I}_{\text{IO}} = 20 \text{ mA} \\ 2.7 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	-	0.4	
VOLFM+	V _{OLFM+} ⁽¹⁾⁽⁴⁾ Output low level voltage for an FTf I/O pin in Fm+ mode		-	0.4	

Table 61.	Output voltage characteristics
-----------	--------------------------------

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 24*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

6.3.16 DAC electrical specifications

Data guaranteed by design, not tested in production, unless otherwise specified.

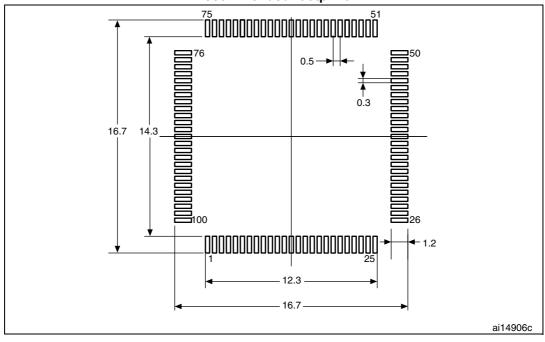
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}	1.8	-	3.6	V	
V _{REF-}	Lower reference voltage	-		V _{SSA}		V	
I _{DDVREF+} (1)	Current consumption on V _{REF+}	No load, middle code (0x800)	-	130	220	μA	
'DDVREF+`´	$V_{\text{REF+}} = 3.3 \text{ V}$	No load, worst code (0x000)	-	220	350	μΛ	
I _{DDA} ⁽²⁾	Current consumption on V _{DDA} supply,	No load, middle code (0x800)	-			μA	
'DDA`´	$V_{\text{DDA}} = 3.3 \text{ V}$	No load, worst code (0xF1C)	-			μΑ	
$R_L^{(3)}$	Resistive load	DAC output buffer on	5	-	-	kΩ	
C _L ⁽³⁾	Capacitive load		-	-	50	pF	
R _O	Output impedance	DAC output buffer off	12	16	20	kΩ	
V _{DAC_OUT}		DAC output buffer ON	0.2	-	V _{DDA} – 0.2	v	
	Voltage on DAC_OUT output	DAC output buffer OFF	0.5	-	V _{REF+} – 1LSB	mV	
DNL ⁽²⁾	Differential non linearity ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	1.5	3		
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	1.5	3		
INL ⁽²⁾	Integral non linearity ⁽⁵⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	2	4		
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	2	4	LSB	
Offset ⁽²⁾	Offset error at code 0x800 ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	±10	±25		
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	±5	±8		
Offset1 ⁽²⁾	Offset error at code 0x001 ⁽⁷⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	±1.5	±5		

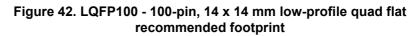
Tahlo	67	DAC	characteristics
Table	0 7.	DAC	characteristics

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 26*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time Slave mode, SPI presc = 2 4*Tpclk -		-	-		
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
4		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
t _{v(SO)}	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}]	Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	


Table 75. SPI characteristics in	voltage Range 1 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

1. Dimensions are expressed in millimeters.

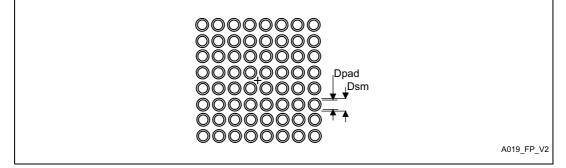


Table 86. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitchball grid array package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array package recommended footprint

Table 87. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

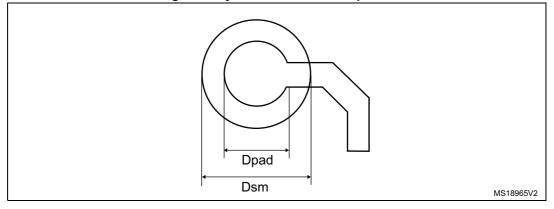


Table 88. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

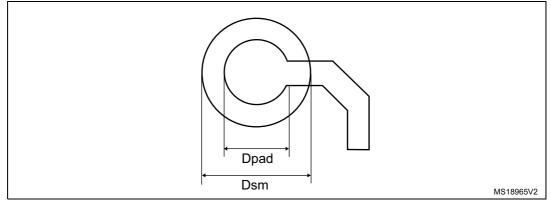
Figure 52. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 89. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

package mechanical data						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.259	3.294	3.329	0.1283	0.1297	0.1311
E	3.223	3.258	3.293	0.1269	0.1283	0.1296
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.447	-	-	0.0176	-
G	-	0.429	-	-	0.0169	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ССС	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020


Table 90. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 55. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale recommended footprint

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 92. L	QFP48 - 48-pin, 7 x	7 mm low-profile	e quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

