

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072rzh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

The ultra-low-power STM32L072xx are offered in 9 different package typesfrom 32 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L072xx microcontrollers suitable for a wide range of applications:

- Gas/water meters and industrial sensors
- Healthcare and fitness equipment
- Remote control and user interface
- PC peripherals, gaming, GPS equipment
- Alarm system, wired and wireless sensors, video intercom

This STM32L072xx datasheet should be read in conjunction with the STM32L0x2xx reference manual (RM0376).

For information on the ARM[®] Cortex[®]-M0+ core please refer to the Cortex[®]-M0+ Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L072xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

			Low-	Low-		Stop	5	Standby
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
Temperature sensor	0	0	0	0	0			
Comparators	0	0	0	0	0	0		
16-bit timers	0	0	0	0				
LPTIMER	0	0	0	0	0	0		
IWDG	0	0	0	0	0	0	0	0
WWDG	0	0	0	0				
Touch sensing controller (TSC)	0	О						
SysTick Timer	0	0	0	0				
GPIOs	0	0	0	0	0	0		2 pins
Wakeup time to Run mode	0 µs	0.36 µs	3 µs	32 µs		3.5 µs		50 µs
					0.4 µA (No RTC) V _{DD} =1.8 V 0.8 µA (with RTC) V _{DD} =1.8 V		0.: RTC	28 µA (No) V _{DD} =1.8 V
Consumption V _{DD} =1.8 to 3.6 V (Typ)	Down to 140 µA/MHz	Down to 37 µA/MHz	Down to	Down to			0.65 μA (with RTC) V _{DD} =1.8 V	
	(from Flash memory)	(from Flash memory)	8 µA	4.5 µA	0. RTC	4 μΑ (No) V _{DD} =3.0 V	0.29 μA (No RTC) V _{DD} =3.0 V	
					1 μΑ V	(with RTC) _{DD} =3.0 V	0.8 RTC	5 μΑ (with) V _{DD} =3.0 V

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

1.

Legend: "Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available

2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.

- Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

1. The above figure shows the package top view.

Figure 10. STM32L072xx UFQFPN32 pinout

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

5 Memory mapping

Figure 11. Memory map

1. Refer to the STM32L072xx reference manual for details on the Flash memory organization for each memory size.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 12*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 13*.

6.1.6 Power supply scheme

Figure 14. Power supply scheme

6.1.7 Current consumption measurement

Figure 15. Current consumption measurement scheme

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		BOR detector enabled	0	-	∞		
t _{VDD} ⁽¹⁾	V _{DD} rise time rate	BOR detector disabled	0	-	1000		
		BOR detector enabled	20	-	×	μs/v	
	V _{DD} fail time rate	BOR detector disabled	0	-	1000		
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3		
RSTTEMPO	Resertemponzation	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms	
V	Power on/power down reset	Falling edge	1	1.5	1.65		
VPOR/PDR	threshold	Rising edge	1.3	1.5	1.65		
V	Drown out react threshold 0	Falling edge	1.67	1.7	1.74		
VBOR0	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8		
V	Drown out react threshold 1	Falling edge	1.87	1.93	1.97		
VBOR1		Rising edge	1.96	2.03	2.07		
M	Brown out reset threshold 2	Falling edge	2.22	2.30	2.35		
VBOR2		Rising edge	2.31	2.41	2.44		
N/ s	Brown out reset threshold 3	Falling edge	2.45	2.55	2.6		
VBOR3		Rising edge	2.54	2.66	2.7		
V	Prown out report throshold 4	Falling edge	2.68	2.8	2.85		
VBOR4		Rising edge	2.78	2.9	2.95	V	
V	Programmable voltage detector	Falling edge	1.8	1.85	1.88		
V PVD0	threshold 0	Rising edge	1.88	1.94	1.99		
V	D\/D threehold 1	Falling edge	1.98	2.04	2.09		
VPVD1		Rising edge	2.08	2.14	2.18		
V	D\/D threehold 2	Falling edge	2.20	2.24	2.28		
VPVD2		Rising edge	2.28	2.34	2.38		
V	D\/D throshold 3	Falling edge	2.39	2.44	2.48		
♥ PVD3		Rising edge	2.47	2.54	2.58		
V	D\/D throshold 4	Falling edge	2.57	2.64	2.69		
YPVD4		Rising edge	2.68	2.74	2.79		
V	D\/D threshold 5	Falling edge	2.77	2.83	2.88		
V PVD5		Rising edge	2.87	2.94	2.99]	

Table 27. Embedded reset and	power control block	characteristics
------------------------------	---------------------	-----------------

Symbol	Parameter	Condition		f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3.	1	190	250	
			Vcore=1.2 V	2	345	380	μA
			VOS[1:0]=11	4	650	670	
		f _{HSE} = f _{HCLK} up to	Range2.	4	0,8	0,86	
I _{DD} (Run Supply current in F		16MHz included,	Vcore=1.5 V	8	1,55	1,7	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	2,95	3,1	μA
			Range1, Vcore=1.8 V VOS[1:0]=01	8	1,9	2,1	
	Supply current in Run mode code executed			16	3,55	3,8	
from Flash				32	6,65	7,2	
memory)	nom ridon memory		Range3, Vcore=1.2 V	0,065	39	130	
		MSI clock source		0,524	115	210	
			VOS[1:0]=11	4,2	700	770	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,9	3,2	m۸
		(16MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	7,15	7,4	mA

Table 30. Current consumption in Run mode, code with data processing running fromFlash memory

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 31. Current consumption in Run mode vs code type,code with data processing running from Flash memory

Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit
				Dhrystone		650	
			CoreMark		655		
			Range 3, Vcopr=1.2 V.	Fibonacci	4 MHz	485	uА
Supply I _{DD} current in (Run Run mode, from code 16 MHz		VOS[1:0]=11	while(1)		385		
	$f_{HSE} = f_{HCLK}$ up to 16 MHz included, f_{HSE}		while(1), 1WS, prefetch off		375		
Flash	executed from Elash	^{= 1} _{HCLK} /2 above 16 MHz (PLL on) ⁽¹⁾	Range 1	Dhrystone		6,65	
memory)	memory			CoreMark		6,9	1
		V _{CORE} =1.8 V,	Fibonacci	32 MHz	6,75	mA	
			VOS[1:0]=01	while(1)		5,8	
				while(1), prefetch off		5,5	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Table 38.	Typical and	maximum	current	consum	otions i	n Standb	v mode
	Typical and	maximum	current	consum	puona i	in Otaniab	y moue

Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_{A} = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
			T _A = 55 °C	-	2,90	
I _{DD} Supply current in Standby		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
		T _A = 105 °C	-	4,10		
		T _A = 125 °C	-	8,50		
(Standby)	mode		T _A = − 40 to 25°C	0,29	0,60	μΑ
			T _A = 55 °C	0,32	1,20	-
		Independent watchdog and LSI off	T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

Symbol	parameter	System frequency	Current consumption during wakeup	Unit
		HSI	1	
		HSI/4	0,7	
I _{DD} (Wakeup from Stop)	Supply current during Wakeup from Stop mode	MSI clock = 4,2 MHz	0,7	
		MSI clock = 1,05 MHz	0,4	
		MSI clock = 65 KHz	0,1	mA
I _{DD} (Reset)	Reset pin pulled down	-	0,21	
I _{DD} (Power-up)	BOR on	-	0,23	
I _{DD} (Wakeup from	With Fast wakeup set	MSI clock = 2,1 MHz	0,5	
StandBy)	With Fast wakeup disabled	MSI clock = 2,1 MHz	0,12	

Table 39. Average current consumption during Wakeup

	-	Typical	Typical consumption, V_{DD} = 3.0 V, T _A = 25 °C					
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit		
	ADC1 ⁽²⁾	5.5	5	3.5	4			
	SPI1	4	3	3	2.5			
	USART1	14.5	11.5	9.5	12			
ADD2	TIM21	7.5	6	5	5.5	µA/MHz		
AFDZ	TIM22	7	6	5	6	(f _{HCLK})		
	FIREWALL	1.5	1	1	0.5			
	DBGMCU	1.5	1	1	0.5			
	SYSCFG	2.5	2	2	1.5			
	GPIOA	3.5	3	2.5	2.5			
	GPIOB	3.5	2.5	2	2.5	µA/MHz		
Cortex-	GPIOC	8.5	6.5	5.5	7			
I/O port	GPIOD	1	0.5	0.5	0.5	(f _{HCLK})		
	GPIOE	8	6	5	6			
	GPIOH	1.5	1	1	0.5			
	CRC	1.5	1	1	1			
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾			
AHB	DMA1	10	8	6.5	8.5	μΑ/MHz (fuction)		
	RNG	5.5	1	0.5	0.5	VHCLK/		
	TSC	3	2.5	2	3			
All e	enabled	204	162	130	202	µA/MHz (f _{HCLK})		
F	WR	2.5	2	2	1	µA/MHz (f _{HCLK})		

 Table 40. Peripheral current consumption in Run or Sleep mode⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 µA.

Symbol	Parameter Conc		Тур	Max	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾	MSL oscillator stabilization time	MSI range 4	-	2.5	μs
		MSI range 5	-	2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f _{OVER(MSI)}	MSL oscillator frequency overshoot	Any range to range 5	-	4	MH-7
		Any range to range 6	-	6	

Table 50. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

Table	51.	PLL	chara	cteristics
-------	-----	-----	-------	------------

Symbol	Baramatar		Value		Unit
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
'PLL_IN	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΛ

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $\rm f_{PLL_OUT^{-}}$

Figure 33. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-20	-10	0	
aOnset/aT	coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	0	20	50	μν/°C
		$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	+0.1 / -0.2%	+0.2 / -0.5%	0/
Gain	Gain error."	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	+0 / -0.2%	+0 / -0.4%	%
dCain(dT(2)	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-10	-2	0	
uGain/uT	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	-40	-8	0	μν/ C
TUE(2)	Total upadiustad arrar	$\begin{array}{l} C_L \leq \ 50 \ pF, \ R_L \geq 5 \ k\Omega \\ DAC \ output \ buffer \ on \end{array}$	-	12	30	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	8	12	LOD
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁹⁾	$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$	-	9	15	μs
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB

Table 67. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Guaranteed by design, not tested in production.

3. Connected between DAC_OUT and V_{SSA} .

4. Difference between two consecutive codes - 1 LSB.

5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

DocID027100 Rev 3

6.3.18 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kO
R _{10K}	R _{10K} value	-	-	10	-	K22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μο
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V, V_{IN+} = 0 V,$ $V_{IN-} = V_{REFINT}, T_A = 25 °C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

|--|

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
t	Comparator startup time	Fast mode	-	15	20	
START		Slow mode	-	20	25	
+	Propagation dolay ⁽²⁾ in slow mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	1.8	3.5	
¹ d slow	Fropagation delay in slow mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6	μο
+	Propagation dolo $y^{(2)}$ in fact mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2	
^L d fast	Propagation delay / in fast mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	±20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	$\begin{split} V_{DDA} &= 3.3 \text{V}, \text{T}_{\text{A}} = 0 \text{ to } 50 \ ^{\circ}\text{C}, \\ V- &= V_{\text{REFINT}}, \\ 3/4 \ V_{\text{REFINT}}, \\ 1/2 \ V_{\text{REFINT}}, \\ 1/4 \ V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
'COMP2		Slow mode	-	0.5	2	μΑ

Table 71. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

7.2 UFBGA100 package information

Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 83. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Зупрог	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-

Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol		millimeters	-		inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

|--|

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

