E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072rzi6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction												
2	Desc	ription												
	2.1	Device overview												
	2.2	Ultra-low-power device continuum 14												
3	Func	Functional overview												
	3.1	Low-power modes	1											
	3.2	Interconnect matrix												
	3.3	ARM® Cortex®-M0+ core with MPU 21												
	3.4	Reset and supply management 22												
		3.4.1 Power supply schemes												
		3.4.2 Power supply supervisor												
		3.4.3 Voltage regulator												
	3.5	Clock management												
	3.6	Low-power real-time clock and backup registers												
	3.7	General-purpose inputs/outputs (GPIOs) 26												
	3.8	Memories												
	3.9	Boot modes												
	3.10	Direct memory access (DMA) 28	ļ											
	3.11	Analog-to-digital converter (ADC) 28	ļ											
	3.12	Temperature sensor 28	,											
		3.12.1 Internal voltage reference (V _{REFINT})												
	3.13	Digital-to-analog converter (DAC) 29												
	3.14	Ultra-low-power comparators and reference voltage												
	3.15	Touch sensing controller (TSC)												
	3.16	Timers and watchdogs												
		3.16.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)												
		3.16.2 Low-power Timer (LPTIM)												
		3.16.3 Basic timer (TIM6, TIM7)												
		3.16.4 SysTick timer												
		3.16.5 Independent watchdog (IWDG)												

7	Pack	age info	ormation	118
	7.1	LQFP1	00 package information	
	7.2	UFBGA	100 package information	121
	7.3	LQFP6	4 package information	123
	7.4	UFBGA	64 package information	126
	7.5	TFBGA	64 package information	129
	7.6	WLCSF	P49 package information	132
	7.7	LQFP4	8 package information	135
	7.8	LQFP3	2 package information	138
	7.9	UFQFF	N32 package information	140
	7.10	Therma	Il characteristics	142
		7.10.1	Reference document	143
8	Dart	numbor	ing	111
0	rait	number	g	144
9	Revis	sion his	tory	145

3.4 Reset and supply management

3.4.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{DD_USB} = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V_{DD_USB} must be above 3.0V. If USB is not used this pin must be tied to V_{DD}.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USB, USARTS, I2C, LPUART, LPTIMER or comparator events.

DocID027100 Rev 3

USART modes/features ⁽¹⁾	USART1 and USART2	USART4 and USART5
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection (4 modes)	Х	-
Driver Enable	Х	Х

Table 13. USART implementation (continued)

1. X = supported.

2. This mode allows using the USART as an SPI master.

3.17.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.17.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 14* for the differences between SPI1 and SPI2.

1 2 3	4 5	6 7	8	9	10	11	12
A (PE3) (PE1) (PB8 B (PE4) (PE2) (PB8	`ヽ_ノ`ヽ_ノ ` /「ヽ /「ヽ) (PD5) (PB4		2)=('	1	X
c PC13) (PE5) (PE0]	(PD2)	(PD0)			
D QSC32 PE6) USS PC S- E (OSC32 VDD) USS -QUT	.')=((PA8)	\geq
F 05C_1N (PH9) PH4 > (05C_1N (PH9) PH4 > (05C_1) (PH10) OUP > (040)							ヽ'
H (PC0) (NRS) (VDE)					(PD14)	1
) (PA5) (PC4	· · · · · · ·	\geq	(PD8)	\geq	兴	\geq
M (VDDA) (PA1) (PA3) IPB2) I PE8) I PB1) I PE7	\geq			(PB11)	

Figure 4. STM32L072xx UFBGA100 ballout - 7x 7 mm

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

Nar	ne	Abbreviation	Definition				
Pin n	ame		ed in brackets below the pin name, the pin function during ne as the actual pin name				
		S	Supply pin				
Pin t	уре	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
		FTf	5 V tolerant I/O, FM+ capable				
I/O stru	ucture	TC	Standard 3.3V I/O				
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
Not	es	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.					
Pin functions	Alternate functions	Functions selected throu	gh GPIOx_AFR registers				
	Additional functions	Functions directly selected	ed/enabled through peripheral registers				

Table 15. Legend/abbreviations used in the	pinout table

Table 16. STM32L072xxx pin definition

			Pin n	umb	er								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	Bin type Structure Note Note Note Alternate functions Additiona		Additional functions	
-	-	-	-	-	-	1	B2	PE2	I/O	FT	-	TIM3_ETR	-
-	-	-	-	-	-	2	A1	PE3	I/O	FT	-	TIM22_CH1, TIM3_CH1	-
-	-	-	-	-	-	3	B1	PE4	I/O	FT	-	TIM22_CH2, TIM3_CH2	-
-	-	-	-	-	-	4	C2	PE5	I/O	FT	-	TIM21_CH1, TIM3_CH3	-
-	-	-	-	-	-	5	D2	PE6	I/O	FT	I	TIM21_CH2, TIM3_CH4	RTC_TAMP3/WKUP3
1	-	1	1	B2	B6	6	E2	VDD	S		-	_	-

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
		SPI1/SPI2/I2S2/		SPI1/SPI2/I2S2/						
Port		USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ TIM2/21	LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/TIM3	
	PD0	TIM21_CH1	SPI2_NSS/I2S2_WS	-	-	-	-	-	-	
	PD1	-	SPI2_SCK/I2S2_CK	-	-	-	-	-	-	
	PD2	LPUART1_RTS_ DE		TIM3_ETR	-	-	-	USART5_RX	-	
	PD3	USART2_CTS		SPI2_MISO/ I2S2_MCK	-	-	-	-	-	
	PD4	USART2_RTS_D E	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-	
	PD5	USART2_TX	-	-	-	-	-	-	-	
	PD6	USART2_RX	-	-	-	-	-	-	-	
Port D	PD7	USART2_CK	TIM21_CH2	-	-	-	-	-	-	
_	PD8	LPUART1_TX		-	-	-	-	-	-	
	PD9	LPUART1_RX		-	-	-	-	-	-	
	PD10	-		-	-	-	-	-	-	
	PD11	LPUART1_CTS		-	-	-	-	-	-	
	PD12	LPUART1_RTS_ DE		-	-	-	-	-	-	
	PD13	-		-	-	-	-	_	-	
	PD14	-		-	-	-	-	-	-	
	PD15	USB_CRS_SYNC		-	-	-	-	-	-	

5

			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
	Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1 /TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/TIM3	
		PE0	-		EVENTOUT	-	-	-	-	-	
		PE1	-		EVENTOUT	-	-	-	-	-	
		PE2	-		TIM3_ETR	-	-	-	-	-	
	Γ	PE3	TIM22_CH1		TIM3_CH1	-	-	-	-	-	
	Γ	PE4	TIM22_CH2	-	TIM3_CH2	-	-	-	-	-	
	Γ	PE5	TIM21_CH1	-	TIM3_CH3	-	-	-	-	-	
		PE6	TIM21_CH2	-	TIM3_CH4	-	-	-	-	-	
Port E		PE7	-		-	-	-	-	USART5_CK/U SART5_RTS_D E	-	
		PE8	-		-	-	-	-	USART4_TX	-	
	Ī	PE9	TIM2_CH1		TIM2_ETR	-	-	-	USART4_RX	-	
	Ī	PE10	TIM2_CH2		-	-	-	-	USART5_TX	-	
	Ī	PE11	TIM2_CH3	-	-	-	-	-	USART5_RX	-	
	ſ	PE12	TIM2_CH4	-	SPI1_NSS	-	-	-	-	-	
	Ī	PE13	-		SPI1_SCK	-	-	-	-	-	
	F	PE14	-		SPI1_MISO	-	-	-	-	-	
	Ī	PE15	-		SPI1_MOSI	-	-	-	-	-	

55/147

STM32L072xx

Pin descriptions

High-speed internal 48 MHz (HSI48) RC oscillator

		Usernator charac				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI48}	Frequency		-	48	-	MHz
TRIM	HSI48 user-trimming step		0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%
DuCy _(HSI48)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
ACC _{HSI48}	Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration)	T _A = 25 °C	-4 ⁽³⁾	-	4 ⁽³⁾	%
t _{su(HSI48)}	HSI48 oscillator startup time		-	-	6 ⁽²⁾	μs
I _{DDA(HSI48)}	HSI48 oscillator power consumption		-	330	380 ⁽²⁾	μA

1. V_{DDA} = 3.3 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 49. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_A \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Table 50. MSI oscillator characteristics

Symbol	Parameter	Condition	Тур	Max	Unit	
	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 0	65.5	-		
		MSI range 1	131	-	kHz	
		MSI range 2	262	-		
f _{MSI}		MSI range 3	524	-		
		MSI range 4	1.05	-		
		MSI range 5	2.1	-	MHz	
		MSI range 6	4.2	-		

Symbol	Parameter	Conditions	Value	Unit
	Farameter	Conditions	Min ⁽¹⁾	onit
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T _{RFT} = +85 °C	30	years
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	1 _{RET} - +65 C	30	
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T_A = 105 °C	T _{RFT} = +105 °C	- 10	
'RET`	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105$ °C	TRET - FIUS C		
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T - +125 °C		
	Data retention (EEPROM data memory) after 2 kcycles at T _A = 125 °C	T _{RET} = +125 °C		

 Table 54. Flash memory and data EEPROM endurance and retention (continued)

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 55*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{ LQFP100}, \text{ T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP100}, \text{T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 55. EMS characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (3)(5)	Calibration time	f _{ADC} = 16 MHz		5.2		μs
t _{CAL} ⁽³⁾⁽⁵⁾	Calibration time	-		83		1/f _{ADC}
		ADC clock = HSI16	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽⁶⁾	ADC_DR register write latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2 = 16 \text{ MHz}$	0.266			μs
		$f_{ADC} = f_{PCLK}/2$	8.5		1/f _{PCLK}	
t _{latr} (3)		$f_{ADC} = f_{PCLK}/4 = 8 \text{ MHz}$	0.516			μs
		$f_{ADC} = f_{PCLK}/4$	16.5		1/f _{PCLK}	
		f _{ADC} = f _{HSI16} = 16 MHz	0.252	-	0.260	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI16}	-	1	-	1/f _{HSI16}
ts ⁽³⁾	Sampling time	f _{ADC} = 16 MHz	0.093	-	10.03	μs
LS (*)		-	1.5	-	160.5	1/f _{ADC}
t _{UP_LDO} ⁽³⁾⁽⁵⁾	Internal LDO power-up time	-	-	-	10	μs
t _{STAB} ⁽³⁾⁽⁵⁾	ADC stabilization time	-	14			1/f _{ADC}
+ (3)	Total conversion time	f _{ADC} = 16 MHz, 12-bit resolution	0.875	-	10.81	μs
t _{ConV} ⁽³⁾	(including sampling time)	12-bit resolution	14 to 173 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

Table 64. ADC	characteristics	(continued)
---------------	------------------------	-------------

1. V_{DDA} minimum value can be decreased in specific temperature conditions. Refer to Table 65: RAIN max for fADC = 16 MHz.

2. A current consumption proportional to the APB clock frequency has to be added (see *Table 40: Peripheral current consumption in Run or Sleep mode*).

3. Guaranteed by design.

Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 65: RAIN max for fADC = 16 MHz.

5. This parameter only includes the ADC timing. It does not take into account register access latency.

6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error	1.65 V < V _{REF+} <v<sub>DDA < 3.6 V, range 1/2/3</v<sub>	-	1.5	3	
ED	Differential linearity error		-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 66. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 30. ADC accuracy characteristics

Figure 36. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 37. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

7.7 LQFP48 package information

Figure 57. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

7.8 LQFP32 package information

Figure 59. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

package mechanical data							
Symphol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 94. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

7.10 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
Θ _{JA}	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	-
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	48	
	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	64	°C/W
	Thermal resistance junction-ambient UFBGA64 - 5 x 5 mm / 0.5 mm pitch	65	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch	57	

Table 95. Thermal characteristics

Figure 63. Thermal resistance

7.10.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

