

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192КВ (192К х 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072rzt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Functionalities depending on the operating power supply range								
Operating power supply range	DAC and ADC operation	Dynamic voltage scaling range	I/O operation	USB					
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance	Not functional					
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾					
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾					
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾					
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾					

Table 3 Functionalities	depending	on the c	nerating	nower	sunnly	range
Table 5. Functionalities	uepenunny		perainiy	power	Suppiy	lange

CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. To be USB compliant from the I/O voltage standpoint, the minimum $V_{\text{DD_USB}}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

	1	2	3	4	5	6	7	8
А	PC14. (DSC32) `_IN'	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	アCT5- OSC32 QUオ		(PB8)		(PD2)	(PC11)	(PC10)	(PA12)
С	/PHO-1 OSC_IN	(vss)	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	/₽Ħ┶ (OSC) \QUJ		(PB6)	(vss)	(vss)		(PA8)	(PC9)
E		(PC1)	(PC0)		(VDD)		(PC7)	(PC8)
F	(vssa)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	(VREF)	(PA0)	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
Н	(VDDA)	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)

Figure 6. STM32L072xx UFBGA64/TFBGA64 ballout - 5x 5 mm

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

		I	Pin n	umb	er								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	20	K1	VREF-	S		-	-	-
-	-	-	-	G1	E6	21	L1	VREF+	S		-	-	-
5	5	9	13	H1	F7	22	M1	VDDA	S		-	-	-
6	6	10	14	G2	E5	23	L2	PA0	I/O	TTa	-	TIM2_CH1, TSC_G1_IO1, USART2_CTS, TIM2_ETR,USART4_TX, COMP1_OUT	COMP1_INM, ADC_IN0, RTC_TAMP2/WKUP1
7	7	11	15	H2	E4	24	M2	PA1	I/O	FT	-	EVENTOUT, TIM2_CH2, TSC_G1_IO2, USART2_RTS, TIM21_ETR, USART4_RX	COMP1_INP, ADC_IN1
8	8	12	16	F3	F6	25	КЗ	PA2	I/O	FT	-	TIM21_CH1, TIM2_CH3, TSC_G1_IO3, USART2_TX, LPUART1_TX, COMP2_OUT	COMP2_INM, ADC_IN2
9	9	13	17	G3	G7	26	L3	PA3	I/O	FT	-	TIM21_CH2, TIM2_CH4, TSC_G1_IO4, USART2_RX, LPUART1_RX	COMP2_INP, ADC_IN3
-	-	-	18	C2	-	27	D3	VSS	S	-	-	-	-
-	-	-	19	D2	-	28	H3	VDD	S	-	-	-	-
10	10	14	20	H3	F5	29	М3	PA4	I/O	тс	(2)	SPI1_NSS, TSC_G2_IO1, USART2_CK, TIM22_ETR	COMP1_INM, COMP2_INM, ADC_IN4, DAC_OUT1
11	11	15	21	F4	G6	30	K4	PA5	I/O	тс	-	SPI1_SCK, TIM2_ETR, TSC_G2_IO2, TIM2_CH1	COMP1_INM, COMP2_INM, ADC_IN5, DAC_OUT2

Table 16. STM32L072xxx pin definition (continued)

			Pin n	umb	er								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
12	12	16	22	G4	G5	31	L4	PA6	I/O	FT	-	SPI1_MISO, TIM3_CH1, TSC_G2_IO3, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6
13	13	17	23	H4	F4	32	M4	PA7	I/O	FT	-	SPI1_MOSI, TIM3_CH2, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7
-	-	-	24	H5	-	33	K5	PC4	I/O	FT	-	EVENTOUT, LPUART1_TX	ADC_IN14
-	-	-	25	H6	-	34	L5	PC5	I/O	FT	-	LPUART1_RX, TSC_G3_IO1	ADC_IN15
14	14	18	26	F5	G4	35	M5	PB0	I/O	FT	-	EVENTOUT, TIM3_CH3, TSC_G3_IO2	ADC_IN8, VREF_OUT
15	15	19	27	G5	D3	36	M6	PB1	I/O	FT	-	TIM3_CH4, TSC_G3_IO3, LPUART1_RTS	ADC_IN9, VREF_OUT
-	-	20	28	G6	E3	37	L6	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4, I2C3_SMBA	-
-	-	-	-	-	-	38	M7	PE7	I/O	FT	-	USART5_CK/USART5_R TS_DE	-
-	-	-	-	-	-	39	L7	PE8	I/O	FT	-	USART4_TX	-
-	-	-	-	-	-	40	M8	PE9	I/O	FT	-	TIM2_CH1, TIM2_ETR, USART4_RX	-
-	-	-	-	-	-	41	L8	PE10	I/O	FT	-	TIM2_CH2, USART5_TX	-
-	-	-	-	-	-	42	M9	PE11	I/O	FT	-	TIM2_CH3, USART5_RX	-
-	-	-	-	-	-	43	L9	PE12	I/O	FT	-	TIM2_CH4, SPI1_NSS	-
-	-	-	-	-	-	44	M10	PE13	I/O	FT	-	SPI1_SCK	-
-	-	-	-	-	-	45	M11	PE14	I/O	FT	-	SPI1_MISO	-

Table 16. STM32L072xxx pin definition (continued	Table 16	. STM32L072xxx pin	definition	(continued)
--	----------	--------------------	------------	-------------

		I	Pin n	umb	er					-			
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	24	36	48	E6	A1	75	G11	VDD_USB	S		-	-	-
24	25	37	49	A7	B2	76	A10	PA14	I/O	FT	-	SWCLK, USART2_TX, LPUART1_TX	-
25	-	38	50	A6	A2	77	A9	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1, USART4_RTS_DE	-
-	-	-	51	В7	-	78	B11	PC10	I/O	FT	-	LPUART1_TX, USART4_TX	-
-	-	-	52	B6	-	79	C10	PC11	I/O	FT	-	LPUART1_RX, USART4_RX	-
-	-	-	53	C5	-	80	B10	PC12	I/O	FT	-	USART5_TX, USART4_CK	-
-	-	-	-	-	-	81	С9	PD0	I/O	FT	-	TIM21_CH1, SPI2_NSS/I2S2_WS	-
-	-	-	-	-	-	82	B9	PD1	I/O	FT	-	SPI2_SCK/I2S2_CK	-
-	-	-	54	B5	-	83	C8	PD2	I/O	FT	-	LPUART1_RTS_DE, TIM3_ETR, USART5_RX	-
-	-	-	-	-	-	84	B8	PD3	I/O	FT	-	USART2_CTS, SPI2_MISO/I2S2_MCK	-
-	-	-	-	-	-	85	B7	PD4	I/O	FT	-	USART2_RTS_DE, SPI2_MOSI/I2S2_SD	-
-	-	-	-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX	-
-	-	-	-	-	-	87	B6	PD6	I/O	FT	-	USART2_RX	-
-	-	-	-	-	-	88	A5	PD7	I/O	FT	-	USART2_CK, TIM21_CH2	-
26	-	39	55	A5	A3	89	A8	PB3	I/O	FT	-	SPI1_SCK, TIM2_CH2, TSC_G5I_O1, EVENTOUT, USART1RTS_DE, USART5_TX	COMP2_INM

Table 16. STM32L072xxx pin definition (continued)	Table 16.	STM32L072xxx p	in definition	(continued)
---	-----------	----------------	---------------	-------------

Symbol	Ratings	Max.	Unit				
$\Sigma I_{VDD}^{(2)}$	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	105					
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	105					
ΣI _{VDD_USB}	Total current into V _{DD_USB} power lines (source)	25					
I _{VDD(PIN)}	I VDD(PIN)Maximum current into each V DD power pin (source)I VSS(PIN)Maximum current out of each V SS ground pin (sink)						
I _{VSS(PIN)}							
I _{IO}	Output current sunk by any I/O and control pin except FTf pins	16					
	Output current sunk by FTf pins	22					
	Output current sourced by any I/O and control pin	-16	mA				
	Total output current sunk by sum of all IOs and control pins except PA11 and PA12 $^{(2)}$	90					
$\Sigma I_{IO(PIN)}$	Total output current sunk by PA11 and PA12	25					
	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-90					
1	Injected current on FT, FFf, RST and B pins	-5/+0 ⁽³⁾					
'INJ(PIN)	Injected current on TC pin	± 5 ⁽⁴⁾					
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25					

Table 24. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

 Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 23* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 23: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 25. Thermal characteristics

Symbol	Parameter	Conditio	on	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit		
			Range3.	1	190	250			
			Vcore=1.2 V	2	345	380	μA		
			VOS[1:0]=11	4	650	670			
		f _{HSE} = f _{HCLK} up to	Range2.	4	0,8	0,86			
I _{DD} (Run		16MHz included,	Vcore=1.5 V VOS[1:0]=10	8	1,55	1,7	- mA - μA		
	Supply current in Run mode code executed from Flash memory	16 MHz (PLL ON) ⁽²⁾		16	2,95	3,1			
			Range1, Vcore=1.8 V	8	1,9	2,1			
				16	3,55	3,8			
from Flash			VOS[1:0]=01	32	6,65	7,2			
memory)		MSI clock source	Range3, Vcore=1.2 V	0,065	39	130			
				0,524	115	210			
			VOS[1:0]=11	4,2	700	770			
		HSI clock source (16MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,9	3,2	m۸		
			Range1, Vcore=1.8 V VOS[1:0]=01	32	7,15	7,4			

Table 30. Current consumption in Run mode, code with data processing running fromFlash memory

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 31. Current consumption in Run mode vs code type,code with data processing running from Flash memory

Symbol	Parameter	Conditions				Тур	Unit
		Supply surrent in Run mode, code executed rom Flash nemory $f_{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL on) ⁽¹⁾		Dhrystone		650	
			Ī	CoreMark		655	
I _{DD} (Run from	Supply current in Run mode, code executed		Range 3, Vcopr=1.2 V.	Fibonacci	4 MHz	485	μA
			VOS[1:0]=11	while(1)		385	
				while(1), 1WS, prefetch off		375	
Flash			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	Dhrystone		6,65	
memory)	memory			CoreMark		6,9	mA
				Fibonacci	32 MHz	6,75	
				while(1)		5,8	
				while(1), prefetch off		5,5	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Table 40. Peripheral current consumption in Run or Sleep mode⁽¹⁾

Peripheral		Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C					
		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit	
	CRS	2.5	2	2	2		
	DAC1/2	4	3.5	3	2.5		
	I2C1	11	9.5	7.5	9		
	I2C3	11	9	7	9		
	LPTIM1	10	8.5	6.5	8		
	LPUART1	8	6.5	5.5	6		
	SPI2	9	4.5	3.5	4		
	USB	8.5	4.5	4	4.5		
APB1	USART2	14.5	12	9.5	11	(f _{HCLK})	
	USART4	5	4	3	5		
	USART5	5	4	3	5		
	TIM2	10.5	8.5	7	9		
	TIM3	12	10	8	11		
	TIM6	3.5	3	2.5	2		
	TIM7	3.5	3	2.5	2		
	WWDG	3	2	2	2		

6.3.7 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions		Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI16 user-	Trimming code is not a multiple of 16	-	± 0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	± 1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI16 oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C		-	1.5	%
100		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
(2)		V_{DDA} = 3.0 V, T_A = -10 to 85 °C		-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = − 40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Figure 25. HSI16 minimum and maximum value versus temperature

DocID027100 Rev 3

Figure 26. V_{IH}/V_{IL} versus VDD (CMOS I/Os)

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 15 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 61*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 24*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 24*).

Figure 29. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 63. Otherwise the reset will not be taken into account by the device.

6.3.15 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 64* are derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 26: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
M	Analog supply voltage for	Fast channel	1.65	-	3.6	V	
VDDA	ADC on	Standard channel	1.75 ⁽¹⁾	-	3.6	v	
V _{REF+}	Positive reference voltage	-	1.65		V _{DDA}	V	
V _{REF-}	Negative reference voltage	-	-	0	-		
	Current consumption of the	1.14 Msps	-	200	-		
1	ADC on $V_{\mbox{DDA}}$ and $V_{\mbox{REF}^+}$	10 ksps	-	40	-		
^I DDA (ADC)	Current consumption of the	1.14 Msps	-	70	-	μΑ	
	ADC on V _{DD} ⁽²⁾	10 ksps	-	1	-		
		Voltage scaling Range 1	0.14	-	16	MHz	
f _{ADC}	ADC clock frequency	Voltage scaling Range 2	0.14	-	8		
		Voltage scaling Range 3	0.14	-	4		
f _S ⁽³⁾	Sampling rate	12-bit resolution	0.01	-	1.14	MHz	
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 16 MHz, 12-bit resolution	-	-	941	kHz	
		-	-	-	17	1/f _{ADC}	
V _{AIN}	Conversion voltage range	-	0	-	V _{REF+}	V	
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> and <i>Table 65</i> for details	-	-	50	kΩ	
R _{ADC} ⁽³⁾⁽⁴⁾	Sampling switch resistance	-	-	-	1	kΩ	

Table 64. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (3)(5)	Calibration time	f _{ADC} = 16 MHz		5.2		μs
CAL		-		83		1/f _{ADC}
		ADC clock = HSI16	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽⁶⁾	ADC_DR register write latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2 = 16 \text{ MHz}$	0.266			μs
		$f_{ADC} = f_{PCLK}/2$ 8.5			1/f _{PCLK}	
t _{latr} ⁽³⁾		f _{ADC} = f _{PCLK} /4 = 8 MHz 0.516			μs	
		$f_{ADC} = f_{PCLK}/4$		16.5		1/f _{PCLK}
		f _{ADC} = f _{HSI16} = 16 MHz	0.252	-	0.260	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI16}	-	1	-	1/f _{HSI16}
+ (3)	Sampling time	f _{ADC} = 16 MHz	0.093	-	10.03	μs
lS(")		-	1.5	-	160.5	1/f _{ADC}
t _{UP_LDO} (3)(5)	Internal LDO power-up time	-	-	-	10	μs
t _{STAB} ⁽³⁾⁽⁵⁾	ADC stabilization time	-		14		1/f _{ADC}
+ (3)	Total conversion time	f _{ADC} = 16 MHz, 12-bit resolution	0.875	-	10.81	μs
t _{ConV} ⁽³⁾	(including sampling time)	12-bit resolution	14 to 173 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Table 64.	ADC	characteristics	(continued)
-----------	-----	-----------------	-------------

1. V_{DDA} minimum value can be decreased in specific temperature conditions. Refer to Table 65: RAIN max for fADC = 16 MHz.

2. A current consumption proportional to the APB clock frequency has to be added (see *Table 40: Peripheral current consumption in Run or Sleep mode*).

3. Guaranteed by design.

Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 65: RAIN max for fADC = 16 MHz.

5. This parameter only includes the ADC timing. It does not take into account register access latency.

6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error		-	1.5	3	
ED	Differential linearity error	1.65 V < V _{REF+} <v<sub>DDA < 3.6 V, range 1/2/3</v<sub>	-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 66. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 30. ADC accuracy characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
-10#	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-20	-10	0	
dOffset/dT ⁽²⁾	coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	0	20	50	μν/°C
Coin ⁽²⁾		$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	+0.1 / -0.2%	+0.2 / -0.5%	0/
Gain	Gain error."	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	+0 / -0.2%	+0 / -0.4%	%
dGain/dT ⁽²⁾	Gain error temperature coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-10	-2	0	
		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	-40	-8	0	μν/ C
TUF(2)	Total upadiustad arrar	$\begin{array}{l} C_L \leq \ 50 \ pF, \ R_L \geq 5 \ k\Omega \\ DAC \ output \ buffer \ on \end{array}$	-	12	30	
	Total unadjusted error	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	8	12	LOD
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁹⁾	$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$	-	9	15	μs
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB

Table 67. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Guaranteed by design, not tested in production.

3. Connected between DAC_OUT and V_{SSA} .

4. Difference between two consecutive codes - 1 LSB.

5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

DocID027100 Rev 3

Figure 36. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 37. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

1. Dimensions are expressed in millimeters.

7.3 LQFP64 package information

Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 85. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

7.5 **TFBGA64** package information

Figure 51. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 88. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-

Table 88. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 89. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

Figure 58. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

