

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	84
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	3K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l072vzi6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

The ultra-low-power STM32L072xx are offered in 9 different package typesfrom 32 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L072xx microcontrollers suitable for a wide range of applications:

- Gas/water meters and industrial sensors
- Healthcare and fitness equipment
- Remote control and user interface
- PC peripherals, gaming, GPS equipment
- Alarm system, wired and wireless sensors, video intercom

This STM32L072xx datasheet should be read in conjunction with the STM32L0x2xx reference manual (RM0376).

For information on the ARM[®] Cortex[®]-M0+ core please refer to the Cortex[®]-M0+ Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

2 Description

The ultra-low-power STM32L072xx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L072xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L072xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two DACs, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L072xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application.

The STM32L072xx also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L072xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

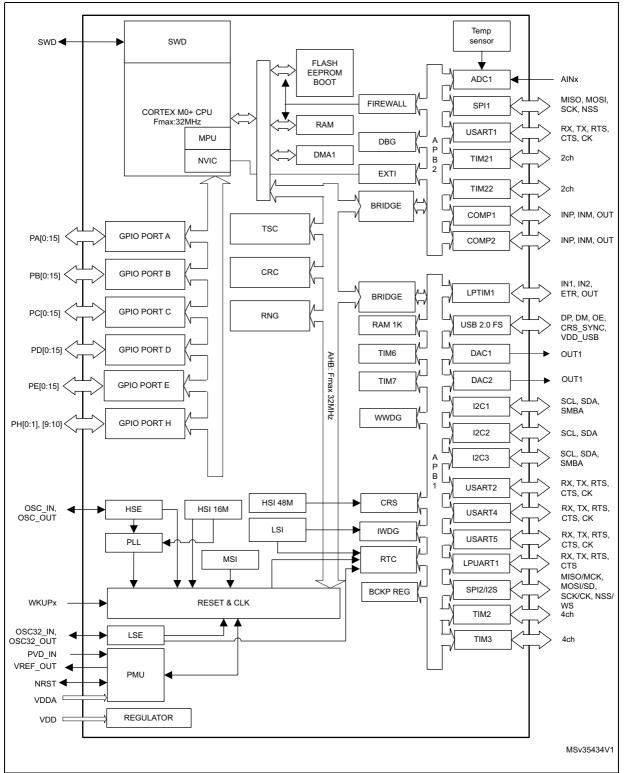


Figure 1. STM32L072xx block diagram

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

• Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

USB clock source

A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface.

3.14 Ultra-low-power comparators and reference voltage

The STM32L072xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - DAC output
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.15 Touch sensing controller (TSC)

The STM32L072xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 14. SPI/I2S implementation

1. X = supported.

3.17.5 Universal serial bus (USB)

The STM32L072xx embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.18 Clock recovery system (CRS)

The STM32L072xx embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.19 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.20 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

		I	Pin n	umb	er							nition (continued)	
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	2	2	A2	B7	7	C1	PC13	I/O	FT	-	-	RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2
2	1	3	3	A1	C6	8	D1	PC14- OSC32_IN (PC14)	I/O	FT	-	-	OSC32_IN
3	2	4	4	B1	C7	9	E1	PC15- OSC32_OUT (PC15)	I/O	тс	-	-	OSC32_OUT
-	-	-	-	-	-	10	F2	PH9	I/O	FT	-	-	-
-	-	-	-	-	-	11	G2	PH10	I/O	FT	-	-	-
-	-	5	5	C1	D6	12	F1	PH0-OSC_IN (PH0)	I/O	тс	-	USB_CRS_SYNC	OSC_IN
-	-	6	6	D1	D7	13	G1	PH1- OSC_OUT (PH1)	I/O	тс	-	-	OSC_OUT
4	3	7	7	E1	D5	14	H2	NRST	I/O		-	-	-
-	_	_	8	E3	C5	15	H1	PC0	I/O	FTf	-	LPTIM1_IN1, EVENTOUT, TSC_G7_IO1, LPUART1_RX, I2C3_SCL	ADC_IN10
-	_	-	9	E2	C4	16	J2	PC1	I/O	FTf	-	LPTIM1_OUT, EVENTOUT, TSC_G7_IO2, LPUART1_TX, I2C3_SDA	ADC_IN11
-	-	-	10	F2	E7	17	J3	PC2	I/O	FTf	-	LPTIM1_IN2, SPI2_MISO/I2S2_MCK, TSC_G7_IO3	ADC_IN12
-	-	-	11	-	-	18	К2	PC3	I/O	FT	-	LPTIM1_ETR, SPI2_MOSI/I2S2_SD, TSC_G7_I04	ADC_IN13
-	4	8	12	F1	-	19	J1	VSSA	S		-	-	-

Table 16. STM32L072xxx pin definition (continued)

		I	Pin n	umb	er					•		niion (continueu)	
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64/TFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	46	M12	PE15	I/O	FT	-	SPI1_MOSI	-
-	-	21	29	G7	G3	47	L10	PB10	I/O	FT	-	TIM2_CH3, TSC_SYNC, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX	-
-	-	22	30	H7	F3	48	L11	PB11	I/O	FT	-	EVENTOUT, TIM2_CH4, TSC_G6_IO1, LPUART1_RX, I2C2_SDA, LPUART1_TX	-
16	16	23	31	D6	D4	49	F12	VSS	S		I	-	-
17	17	24	32	E5	G2	50	G12	VDD	S		-	-	-
-	-	25	33	H8	G1	51	L12	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, TSC_G6_IO2, I2C2_SMBA, EVENTOUT	-
-	-	26	34	G8	F2	52	K12	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, MCO, TSC_G6_IO3, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
-	-	27	35	F8	F1	53	K11	PB14	I/O	FTf		SPI2_MISO/I2S2_MCK, RTC_OUT, TSC_G6_IO4, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
-	-	28	36	F7	E1	54	K10	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, RTC_REFIN	-
-	-	-	-	-	-	55	K9	PD8	I/O	FT	-	LPUART1_TX	-
-	-	-	-	-	-	56	K8	PD9	I/O	FT	-	LPUART1_RX	-
-	-	-	-	-	-	57	J12	PD10	I/O	FT	-	-	-
-	-	-	-	-	-	58	J11	PD11	I/O	FT	-	LPUART1_CTS	-
-	-	-	-	-	-	59	J10	PD12	I/O	FT	-	LPUART1_RTS_DE	-

Table 16. STM32L072xxx pin definition (continued)

					Table 19. Alter	mate functior	ns port C			
٤I			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	1	Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3
		PC0	LPTIM1_IN1		EVENTOUT	TSC_G7_IO1			LPUART1_RX	I2C3_SCL
		PC1	LPTIM1_OUT		EVENTOUT	TSC_G7_IO2			LPUART1_TX	I2C3_SDA
		PC2	LPTIM1_IN2		SPI2_MISO/ I2S2_MCK	TSC_G7_103				
D		PC3	LPTIM1_ETR		SPI2_MOSI/ I2S2_SD	TSC_G7_104				
DocID027100 Rev		PC4	EVENTOUT		LPUART1_TX					
027		PC5			LPUART1_RX	TSC_G3_IO1				
.100	U	PC6	TIM22_CH1		TIM3_CH1	TSC_G8_IO1				
Rev	Port	PC7	TIM22_CH2		TIM3_CH2	TSC_G8_IO2				
ώ	_	PC8	TIM22_ETR		TIM3_CH3	TSC_G8_IO3				
		PC9	TIM21_ETR		USB_OE/TIM3_CH4	TSC_G8_IO4				I2C3_SDA
		PC10	LPUART1_TX						USART4_TX	
		PC11	LPUART1_RX						USART4_RX	
		PC12			USART5_TX				USART4_CK	
		PC13								
		PC14								
		PC15								

53/147

STM32L072xx

Pin descriptions

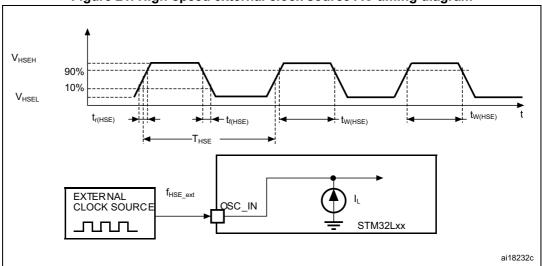
Figure 18. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter		Condition		Тур	Max (1)	Unit
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash memory OFF	$T_{A} = -40$ to 25°C	4,7	-	
		$T_A = -40$ to $25^{\circ}C$	17	24			
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz	T _A = 85°C	19,5	30	
		All peripherals OFF, code		T _A = 105°C	23	47	- - - - - μΑ
				T _A = 125°C	32,5	70	
	Supply current in		MSI clock = 65 kHz,	T_A = - 40 to 25°C	17	24	
I _{DD} (LP Sleep)	Low-power sleep mode	executed from Flash memory, V _{DD}		T _A = 85°C	20	31	
	mode	from 1.65 to 3.6 V	f _{HCLK} = 65 kHz	T _A = 105°C	23,5	47	
				T _A = 125°C	32,5	70	
				T_A = - 40 to 25°C	19,5	27	-
				T _A = 55°C	20,5	28	
			MSI clock = 131kHz, f _{HCLK} = 131 kHz	T _A = 85°C	22,5	33	
			HOLIX	T _A = 105°C	26	50	
				T _A = 125°C	35	73	

Table 36. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

6.3.6 External clock source characteristics


High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 21*.

Parameter	Conditions	Min	Тур	Max	Unit
User external clock source	CSS is on or PLL is used	1	8	32	MHz
frequency	CSS is off, PLL not used	0	8	32	MHz
OSC_IN input pin high level voltage		$0.7 V_{DD}$	-	V _{DD}	V
OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{DD}$	v
OSC_IN high or low time		12	-	-	ns
OSC_IN rise or fall time	-	-	-	20	115
OSC_IN input capacitance		-	2.6	-	pF
Duty cycle		45	-	55	%
OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
	User external clock source frequency OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time OSC_IN rise or fall time OSC_IN input capacitance Duty cycle	User external clock source frequency CSS is on or PLL is used CSS is off, PLL not used OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time OSC_IN rise or fall time OSC_IN input capacitance Duty cycle	User external clock source frequencyCSS is on or PLL is used1CSS is off, PLL not used0OSC_IN input pin high level voltage OSC_IN input pin low level voltage0.7V_DDOSC_IN high or low time12OSC_IN rise or fall time-OSC_IN input capacitance-Duty cycle45	User external clock source frequency $\begin{bmatrix} CSS \text{ is on or} \\ PLL \text{ is used} \end{bmatrix}$ 1 8 $\begin{bmatrix} CSS \text{ is off, PLL} \\ not used \end{bmatrix}$ 0 8 $OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time 12 -OSC_IN \text{ input capacitance} - \begin{bmatrix} 0.7V_{DD} \\ V_{SS} \end{bmatrix} - 12 -\begin{bmatrix} 0.7V_{DD} \\ V_{SS} \end{bmatrix} - 12 -\begin{bmatrix} 0.7V_{DD} \\ V_{SS} \end{bmatrix} - 2.6Duty cycle 2.6$	User external clock source frequencyCSS is on or PLL is used1832CSS is off, PLL not used0832OSC_IN input pin high level voltage OSC_IN input pin low level voltage0.7V_DD-V_DDOSC_IN high or low time-12-0.3V_DDOSC_IN rise or fall time20OSC_IN input capacitance-45-55

Table 43. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

6.3.7 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI16 user-	Trimming code is not a multiple of 16	- ± - 1 ⁽³⁾ -1.5 -2 -2.5 -4 -5.45	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	± 1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
		-1.5	-	1.5	%	
ACC .	Accuracy of the	V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI16}	factory-calibrated HSI16 oscillator	V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = − 40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

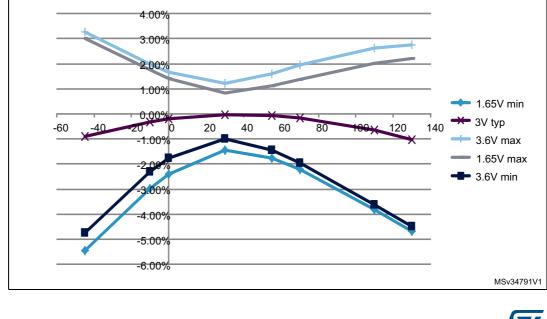


Figure 25. HSI16 minimum and maximum value versus temperature

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
dOffset/dT ⁽²⁾	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-20	-10	0	uV//°C	
donset/d1	coefficient (code 0x800)	oefficient (code 0x800) $V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_{A} = 0 \text{ to } 50 \text{ °C}$ DAC output buffer on		20	50	µV/°C	
Gain ⁽²⁾	Gain error ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	+0.1 / -0.2%	+0.2 / -0.5%	%	
Gain	Gainenor	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	+0 / -0.2%	+0 / -0.4%	70	
dGain/dT ⁽²⁾	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-10	-2	0		
dGain/d1	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	-40	-8	0	µV/°C	
TUE ⁽²⁾	Total upadiustad arrar	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	12	30		
	Total unadjusted error	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	8	12	LSB	
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
twakeup	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁹⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 67. DAC characteristics (continued)

1. Guaranteed by characterization results.

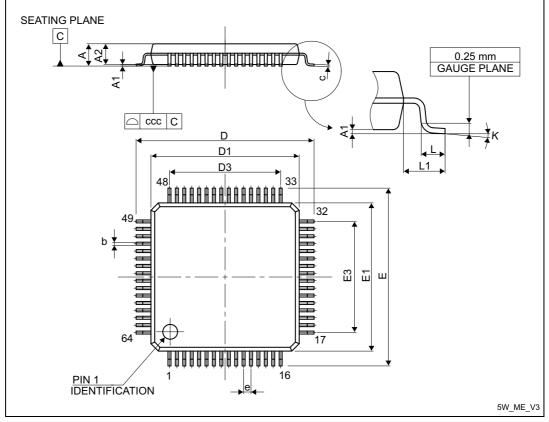
2. Guaranteed by design, not tested in production.

3. Connected between DAC_OUT and V_{SSA} .

4. Difference between two consecutive codes - 1 LSB.

5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

Cumhal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031


Table 82. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

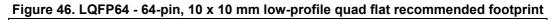
1. Values in inches are converted from mm and rounded to 4 decimal digits.

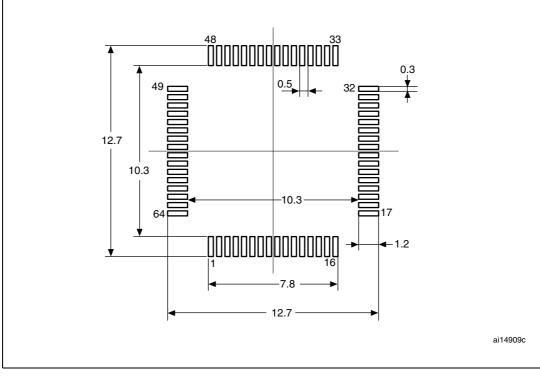
7.3 LQFP64 package information

Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 85. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat				
package mechanical data				


Symbol	Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	



	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 85. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking for UFBGA64

The following figure gives an example of topside marking versus ball A 1 position identifier location.

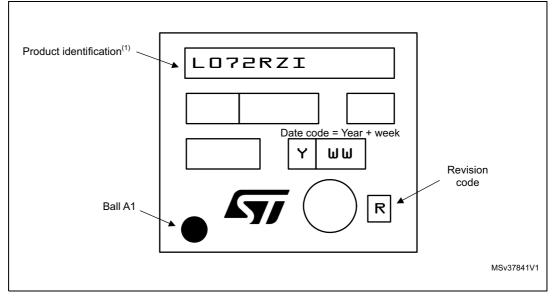


Figure 50. UFBGA64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

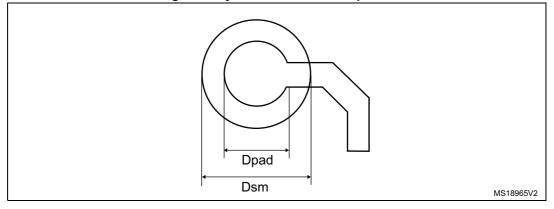


Table 88. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 89. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

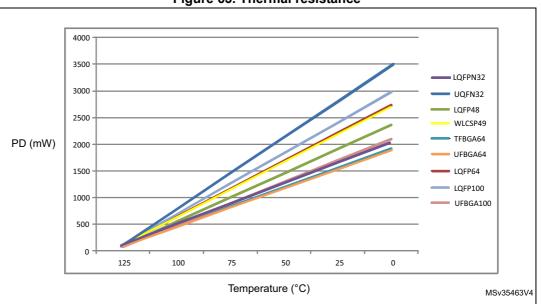


Figure 63. Thermal resistance

7.10.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

