
Microchip Technology - AT32AP7000-CTUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 150MHz

Connectivity EBI/EMI, Ethernet, I²C, Memory Card, PS/2, SPI, SSC, UART/USART, USB

Peripherals AC'97, DMA, I²S, LCD, POR, PWM, WDT

Number of I/O 160

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters D/A 2x16b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 256-LBGA

Supplier Device Package 256-CTBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32ap7000-ctur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32ap7000-ctur-4434946
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2
32003MS–AVR32–09/09

AT32AP7000

1. Part Description

The AT32AP7000 is a complete System-on-chip application processor with an AVR32 RISC
processor achieving 210 DMIPS running at 150 MHz. AVR32 is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high application performance.

AT32AP7000 implements a Memory Management Unit (MMU) and a flexible interrupt controller
supporting modern operating systems and real-time operating systems. The processor also
includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom
applications.

AT32AP7000 incorporates SRAM memories on-chip for fast and secure access. For applica-
tions requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM
controller provides off-chip volatile memory access as well as controllers for all industry standard
off-chip non-volatile memories, like Compact Flash, MultiMedia Card (MMC), Secure Digital
(SD)-card, SmartCard, NAND Flash and Atmel DataFlash™.

The Direct Memory Access controller for all the serial peripherals enables data transfer between
memories without processor intervention. This reduces the processor overhead when transfer-
ring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform a wide range of functions including frequency measure-
ment, event counting, interval measurement, pulse generation, delay timing and pulse width
modulation.

AT32AP7000 also features an onboard LCD Controller, supporting single and double scan
monochrome and color passive STN LCD modules and single scan active TFT LCD modules.
On monochrome STN displays, up to 16 gray shades are supported using a time-based dither-
ing algorithm and Frame Rate Control (FRC) method. This method is also used in color STN
displays to generate up to 4096 colors.

The LCD Controller is programmable for supporting resolutions up to 2048 x 2048 with a pixel
depth from 1 to 24 bits per pixel.

A pixel co-processor provides color space conversions for images and video, in addition to a
wide variety of hardware filter support

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC modules
provides on-chip solutions for network-connected devices.

Synchronous Serial Controllers provide easy access to serial communication protocols, audio
standards like I2S and frame-based protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high-speed Java
byte-code execution. AVR32 implements Java instructions in hardware, reusing the existing
RISC data path, which allows for a near-zero hardware overhead and cost with a very high
performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses.

PS2 connectivity is provided for standard input devices like mice and keyboards.

6
32003MS–AVR32–09/09

AT32AP7000

• Configurable coefficients with flexible fixed-point representation.

2.0.3 Debug and Test system

• IEEE1149.1 compliant JTAG and boundary scan
• Direct memory access and programming capabilities through JTAG interface
• Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
• Auxiliary port for high-speed trace information
• Hardware support for 6 Program and 2 data breakpoints
• Unlimited number of software breakpoints supported
• Advanced Program, Data, Ownership, and Watchpoint trace supported

2.0.4 DMA Controller

• 2 HSB Master Interfaces
• 3 Channels
• Software and Hardware Handshaking Interfaces

– 11 Hardware Handshaking Interfaces
• Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
• Single-block DMA Transfer
• Multi-block DMA Transfer

– Linked Lists
– Auto-Reloading
– Contiguous Blocks

• DMA Controller is Always the Flow Controller
• Additional Features

– Scatter and Gather Operations
– Channel Locking

– Bus Locking
– FIFO Mode
– Pseudo Fly-by Operation

2.0.5 Peripheral DMA Controller

• Transfers from/to peripheral to/from any memory space without intervention of the processor.
• Next Pointer Support, forbids strong real-time constraints on buffer management.
• Eighteen channels

– Two for each USART
– Two for each Serial Synchronous Controller
– Two for each Serial Peripheral Interface

2.0.6 Bus system

• HSB bus matrix with 10 Masters and 8 Slaves handled
– Handles Requests from the CPU Icache, CPU Dcache, HSB bridge, HISI, USB 2.0 Controller,

LCD Controller, Ethernet Controller 0, Ethernet Controller 1, DMA Controller 0, DMA
Controller 1, and to internal SRAM 0, internal SRAM 1, PB A, PB B, EBI and, USB.

8
32003MS–AVR32–09/09

AT32AP7000

2.1 Package and PinoutAVR32AP7000

Figure 2-2. 256 CTBGA Pinout

TOP VIEW BOTTOM VIEW
Ball A1

AVR32

A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T

A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T

16151413121110987654321 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 2-1. CTBGA256 Package Pinout A1..T8

1 2 3 4 5 6 7 8

A VDDIO PE15 PE13 PE11 PE07 PE02 AGNDPLL OSCEN_N

B GNDIO PE16 PE12 PE09 PE04 PLL0 AVDDOSC PC30

C PD01 PD00 PE14 PE10 PE06 PE00 PLL1 PC31

D PE17 PE18 PD02 PE08 PE03 GND AGNDOSC PC29

E PX48 PX50 PX49 PX47 PE05 PE01 XOUT32 PC28

F PX32 PX00 PX33 VDDIO PX51 AVDDPLL XIN0 PC27

G PX04 VDDCORE PX05 PX03 PX02 PX01 XOUT0 PC26

H PD06 VDDIO PD07 PD05 PD04 PD03 GND XIN32

J TRST_N TMS TDI TCK TDO PD09 PD08 EVTI_N

K PA05 PA01 PA02 PA00 RESET_N PA03 PA04 HSDP

L PA09 PB25 VDDIO PA08 GND PB24 AGNDUSB VDDCORE

M PA14 PA11 PA13 PA10 PA12 VDDIO VDDIO GND

N PA18 PA16 PA17 PA15 PD14 GND FSDM VBG

P PA20 PA19 PA21 PD11 PD16 XOUT1 GND PA25

R PA22 PD10 PA23 PD13 PD17 AVDDUSB HSDM PA26

T VDDIO GND PA24 PD12 PD15 XIN1 FSDP VDDIO

12
32003MS–AVR32–09/09

AT32AP7000

TX_CLK Transmit Clock or Reference Clock Input

TX_EN Transmit Enable Output

TX_ER Transmit Coding Error Output

External Bus Interface - EBI

PX0 - PX53 I/O Controlled by EBI I/O

ADDR0 - ADDR25 Address Bus Output

CAS Column Signal Output Low

CFCE1 Compact Flash 1 Chip Enable Output Low

CFCE2 Compact Flash 2 Chip Enable Output Low

CFRNW Compact Flash Read Not Write Output

DATA0 - DATA31 Data Bus I/O

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

NCS0 - NCS5 Chip Select Output Low

NRD Read Signal Output Low

NWAIT External Wait Signal Input Low

NWE0 Write Enable 0 Output Low

NWE1 Write Enable 1 Output Low

NWE3 Write Enable 3 Output Low

RAS Row Signal Output Low

SDA10 SDRAM Address 10 Line Output

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output

SDWE SDRAM Write Enable Output Low

Image Sensor Interface - ISI

DATA0 - DATA11 Image Sensor Data Input

HSYNC Horizontal Synchronization Input

PCLK Image Sensor Data Clock Input

Table 3-1. Signal Description List

Signal Name Function Type
Active
Level Comments

15
32003MS–AVR32–09/09

AT32AP7000

TXD Transmit Data Output

Pulse Width Modulator - PWM

PWM0 - PWM3 PWM Output Pins Output

USB Interface - USBA

HSDM High Speed USB Interface Data - Analog

FSDM Full Speed USB Interface Data - Analog

HSDP High Speed USB Interface Data + Analog

FSDP Full Speed USB Interface Data + Analog

VBG USB bandgap Analog
Connected to a 6810 Ohm ± 0.5%
resistor to gound and a 10 pF
capacitor to ground.

Table 3-1. Signal Description List

Signal Name Function Type
Active
Level Comments

16
32003MS–AVR32–09/09

AT32AP7000

4. Power Considerations

4.1 Power Supplies

The AT32AP7000 has several types of power supply pins:

• VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.
• VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.
• VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.
• VDDUSB pin: Powers the USB. Voltage is 1.8V nominal.
• VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is
GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See ”Electrical Characteristics” on page 928 for power consumption on the various supply pins.

4.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB.
Figure 4-1 shows how this should be done.

Figure 4-1. Connecting analog power supplies

AVDDUSB
AVDDPLL
AVDDOSC

AGNDUSB
AGNDPLL
AGNDOSC

VDDCORE VCC_1V8

3.3uH

C54
0.10u

C55
0.10u

C56
0.10u

18
32003MS–AVR32–09/09

AT32AP7000

6. Memories

6.1 Embedded Memories

• 32 Kbyte SRAM
– Implemented as two 16Kbyte blocks
– Single cycle access at full bus speed

6.2 Physical Memory Map

The system bus is implemented as an HSB bus matrix. All system bus addresses are fixed, and
they are never remapped in any way, not even in boot. Note that AT32AP7000 by default uses
segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical
address space is mapped as follows:

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG2 is associated
with the HSB-HSB bridge.

Table 6-1. AT32AP7000 Physical Memory Map

Start Address Size Device

0x0000_0000 64 Mbyte EBI SRAM CS0

0x0400_0000 64 Mbyte EBI SRAM CS4

0x0800_0000 64 Mbyte EBI SRAM CS2

0x0C00_0000 64 Mbyte EBI SRAM CS3

0x1000_0000 256 Mbyte EBI SRAM/SDRAM CS1

0x2000_0000 64 Mbyte EBI SRAM CS5

0x2400_0000 16 Kbyte Internal SRAM 0

0x2400_4000 16 Kbyte Internal SRAM1

0xFF00_0000 4 Kbyte LCDC configuration

0xFF20_0000 1 KByte DMACA configuration

0xFF30_0000 1 MByte USBA Data

0xFFE0_0000 1 MByte PBA

0xFFF0_0000 1 MByte PBB

21
32003MS–AVR32–09/09

AT32AP7000

0xFFE03800
PIOE Parallel Input/Output 2 - PIOE PB A

0xFFE03C00
PSIF PS2 Interface - PSIF PB A

0xFFF00000
PM Power Manager - PM PB B

0xFFF00080
RTC Real Time Counter- RTC PB B

0xFFF000B0
WDT WatchDog Timer- WDT PB B

0xFFF00100
EIC External Interrupt Controller - EIC PB B

0xFFF00400
INTC Interrupt Controller - INTC PB B

0xFFF00800
HMATRIX HSB Matrix - HMATRIX PB B

0xFFF00C00
TC0 Timer/Counter - TC0 PB B

0xFFF01000
TC1 Timer/Counter - TC1 PB B

0xFFF01400
PWM Pulse Width Modulation Controller - PWM PB B

0xFFF01800
MACB0 Ethernet MAC - MACB0 PB B

0xFFF01C00
MACB1 Ethernet MAC - MACB1 PB B

0xFFF02000
ABDAC Audio Bitstream DAC - ABDAC PB B

0xFFF02400
MCI MultiMedia Card Interface - MCI PB B

0xFFF02800
AC97C AC97 Controller - AC97C PB B

0xFFF02C00
ISI Image Sensor Interface - ISI PB B

0xFFF03000
USBA USB Configuration Interface - USBA PB B

0xFFF03400
SMC Static Memory Controller - SMC PB B

Table 7-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus

23
32003MS–AVR32–09/09

AT32AP7000

12 0 SSC2

13 0 PIOA

14 0 PIOB

15 0 PIOC

16 0 PIOD

17 0 PIOE

18 0 PSIF

19 0 EIC0

1 EIC1

2 EIC2

3 EIC3

20 0 PM

21 0 RTC

22 0 TC00

1 TC01

2 TC02

23 0 TC10

1 TC11

2 TC12

24 0 PWM

25 0 MACB0

26 0 MACB1

27 0 ABDAC

28 0 MCI

29 0 AC97C

30 0 ISI

31 0 USBA

32 0 EBI

Table 7-2. Interrupt Request Signal Map

Group Line Signal

25
32003MS–AVR32–09/09

AT32AP7000

7.4 Clock Connections

7.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its
counter:

7.4.2 USARTs

Each USART can be connected to an internally divided clock:

Table 7-4. Timer/Counter clock connections

Timer/Counter Source Name Connection

0 Internal TIMER_CLOCK1 clk_osc32

TIMER_CLOCK2 clk_pbb / 4

TIMER_CLOCK3 clk_pbb / 8

TIMER_CLOCK4 clk_pbb / 16

TIMER_CLOCK5 clk_pbb / 32

External XC0 See Section 7.7

XC1

XC2

1 Internal TIMER_CLOCK1 clk_osc32

TIMER_CLOCK2 clk_pbb / 4

TIMER_CLOCK3 clk_pbb / 8

TIMER_CLOCK4 clk_pbb / 16

TIMER_CLOCK5 clk_pbb / 32

External XC0 See Section 7.7

XC1

XC2

Table 7-5. USART clock connections

USART Source Name Connection

0 Internal CLK_DIV clk_pba / 8

1

2

3

28
32003MS–AVR32–09/09

AT32AP7000

7.7.2 PIO Controller B Multiplexing

M9 PA29 PWM - PWM[1] TC1 - B2

N9 PA30 PM - GCLK[0] TC1 - CLK1

R9 PA31 PM - GCLK[1] TC1 - CLK2

Table 7-9. PIO Controller A Multiplexing

Table 7-10. PIO Controller B Multiplexing

CTBGA256 I/O Line Peripheral A Peripheral B

E12 PB00 ISI - DATA[0] SPI1 - MISO

E14 PB01 ISI - DATA[1] SPI1 - MOSI

E16 PB02 ISI - DATA[2] SPI1 - NPCS[0]

D13 PB03 ISI - DATA[3] SPI1 - NPCS[1]

D15 PB04 ISI - DATA[4] SPI1 - NPCS[2]

D14 PB05 ISI - DATA[5] SPI1 - SCK

D16 PB06 ISI - DATA[6] MCI - CMD[1]

C15 PB07 ISI - DATA[7] MCI - DATA[4]

C16 PB08 ISI - HSYNC MCI - DATA[5]

C14 PB09 ISI - VSYNC MCI - DATA[6]

B14 PB10 ISI - PCLK MCI - DATA[7]

A14 PB11 PSIF - CLOCK[1] ISI - DATA[8]

C13 PB12 PSIF - DATA[1] ISI - DATA[9]

A13 PB13 SSC2 - TX_DATA ISI - DATA[10]

B13 PB14 SSC2 - RX_DATA ISI - DATA[11]

D12 PB15 SSC2 - TX_CLOCK USART3 - CTS

A12 PB16 SSC2 - TX_FRAME_SYNC USART3 - RTS

C12 PB17 SSC2 - RX_FRAME_SYNC USART3 - TXD

B12 PB18 SSC2 - RX_CLOCK USART3 - RXD

E11 PB19 PM - GCLK[2] USART3 - CLK

D11 PB20 ABDAC - DATA[1] AC97C - SDO

A11 PB21 ABDAC - DATA[0] AC97C - SYNC

C11 PB22 ABDAC - DATAN[1] AC97C - SCLK

B11 PB23 ABDAC - DATAN[0] AC97C - SDI

L6 PB24 NMI_N DMACA - DMARQ[0]

L2 PB25 EXTINT0 DMACA - DMARQ[1]

T9 PB26 EXTINT1 USART2 - RXD

J9 PB27 EXTINT2 USART2 - TXD

M10 PB28 EXTINT3 USART2 - CLK

R13 PB29 PM - GCLK[3] USART2 - CTS

P13 PB30 PM - GCLK[4] USART2 - RTS

34
32003MS–AVR32–09/09

AT32AP7000

PX32 EBI - ADDR[16]

PX33 EBI - ADDR[17]

PX34 EBI - ADDR[18]

PX35 EBI - ADDR[19]

PX36 EBI - ADDR[20]

PX37 EBI - ADDR[21]

PX38 EBI - ADDR[22]

PX39 EBI - NCS[0]

PX40 EBI - NCS[1]

PX41 EBI - NCS[3]

PX42 EBI - NRD

PX43 EBI - NWE0

PX44 EBI - NWE1

PX45 EBI - NWE3

PX46 EBI - SDCK

PX47 EBI - SDCKE

PX48 EBI - RAS

PX49 EBI - CAS

PX50 EBI - SDWE

PX51 EBI - SDA10

PX52 EBI - NANDOE

PX53 EBI - NANDWE

Table 7-14. IO Pins without multiplexing (Continued)

36
32003MS–AVR32–09/09

AT32AP7000

• Energy-saving Capabilities
– Self-refresh, Power-down and Deep Power Modes Supported
– Supports Mobile SDRAM Devices

• Error Detection
– Refresh Error Interrupt

• SDRAM Power-up Initialization by Software
• CAS Latency of 1, 2, 3 Supported
• Auto Precharge Command Not Used

7.8.4 Error Corrected Code Controller

• Hardware Error Corrected Code (ECC) Generation
– Detection and Correction by Software

• Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
• Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified

by Software

7.8.5 Serial Peripheral Interface

• Supports communication with serial external devices
– Four chip selects with external decoder support allow communication with up to 15

peripherals
– Serial memories, such as DataFlash™ and 3-wire EEPROMs
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
– External co-processors

• Master or slave serial peripheral bus interface
– 8- to 16-bit programmable data length per chip select
– Programmable phase and polarity per chip select
– Programmable transfer delays between consecutive transfers and between clock and data

per chip select
– Programmable delay between consecutive transfers
– Selectable mode fault detection

• Very fast transfers supported
– Transfers with baud rates up to MCK
– The chip select line may be left active to speed up transfers on the same device

7.8.6 Two-wire Interface

• Compatibility with standard two-wire serial memory
• One, two or three bytes for slave address
• Sequential read/write operations

41
32003MS–AVR32–09/09

AT32AP7000

8. Boot Sequence

This chapter summarizes the boot sequence of the AT32AP7000. The behaviour after power-up
is controlled by the Power Manager.

8.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset (POR) circuitry
until the voltage has reached the power-on reset rising threshold value (see Electrical Character-
istics for details). This ensures that all critical parts of the device are properly reset.

Once the power-on reset is complete, the device will use the XIN0 pin as clock source. XIN0 can
be connected either to an external clock, or a crystal. The OSCEN_N pin is connected either to
VDD or GND to inform the Power Manager on how the XIN0 pin is connected. If XIN0 receives a
signal from a crystal, dedicated circuitry in the Power Manager keeps the part in a reset state
until the oscillator connected to XIN0 has settled. If XIN0 receives an external clock, no such set-
tling delay is applied.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system recieves a clock with the same frequency as the
XIN0 clock.

Note that the power-on reset will release reset at a lower voltage threshold than the minimum
specified operating voltage. If the voltage is not guaranteed to be stable by the time the device
starts executing, an external brown-out reset circuit should be used.

8.2 Fetching of initial instructions

After reset has been released, the AVR32AP CPU starts fetching instructions from the reset
address, which is 0xA000_0000. This address lies in the P2 segment, which is non-translated,
non-cacheable, and permanently mapped to the physical address range 0x0000_0000 to
0x2000_0000. This means that the instruction being fetched from virtual address 0xA000_0000
is being fetched from physical address 0x0000_0000. Physical address 0x0000_0000 is
mapped to EBI SRAM CS0. This is the external memory the device boots from.

The code read from the SRAM CS0 memory is free to configure the system to use for example
the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

42
32003MS–AVR32–09/09

AT32AP7000

9. Ordering Information

Table 9-1. Ordering Information

Ordering Code Package Package Type Packing
Temperature

Operating Range

AT32AP7000-CTUR CTBGA256 Green Reel Industrial (-40°C to 85°C)

AT32AP7000-CTUT CTBGA256 Green Tray Industrial (-40°C to 85°C)

47
32003MS–AVR32–09/09

AT32AP7000

Fix/Workaround
Before executing any code the user should enable the RTC with the smallest prescaler and
poll that the RTC is counting before doing anything in your program. Another way to ensure
that the osc32 is valid is to use interrupts with TOP=1.

Example:

//reset the counter register

AVR32_RTC.val = 0x0;

//enable the RTC with the smallest prescaler

AVR32_RTC.ctrl = 0x1;

//wait until the value increases

while(AVR32_RTC.val == 0);

26. SPI can generate a false RXREADY signal in SLAVE mode
In slave mode the SPI can generate a false rxready signal during enabling of the SPI or dur-
ing the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA

2. Enable SPI

3. Set the polarity CPOL of the line in the opposite value of the required one

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register

Transfers can now begin and RXREADY will now behave as expected.

27. EBI address lines 23, 24, and 25 are pulled up when booting up
After reset the EBI address lines 23, 24 and 25 are tristated with pullups. Booting from a
flash larger than 8 MB using these lines will fail, as the flash will be accessed with these
address bits set.

Fix/Workaround
Add external pulldown resistors (5 kΩ) on these lines if booting from a flash larger than 8 MB
using these address lines.

28. SSC - Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge

RFMR.FSOS = None (input)

Fix/Workaround
None.

29. SSC - TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

50
32003MS–AVR32–09/09

AT32AP7000

MCI data write operation with less than 12 bytes is impossible. The Data Write operation
with a number of bytes less than 12 leaves the internal MCI FIFO in an inconsistent state.
Subsequent reads and writes will not function properly.

Fix/Workaround
Always transfer 12 or more bytes at a time. If less than 12 bytes are transferred, the only
recovery mechanism is to perform a software reset of the MCI.

5. MMC SDIO interrupt only works for slot A
If 1-bit data bus width and on other slots than slot A, the SDIO interrupt can not be cap-
tured.

Fix/Workaround
Use slot A.

6. PSIF TXEN/RXEN may disable the transmitter/receiver
Writing a '0' to RXEN will disable the receiver. Writing '0' to TXEN will disable the transmitter.

Fix/Workaround
When accessing the PS/2 Control Register always write '1' to RXEN to keep the receiver
enabled, and write '1' to TXEN to keep the transmitter enabled.

7. PSIF TXRDY interrupt corrupts transfers
When writing to the Transmit Holding Register (THR), the data will be transferred to the data
shift register immediately, regardless of the state of the data shift register. If a transfer is
ongoing, it will be interrupted and a new transfer will be started with the new data written to
THR.

Fix/Workaround
Use the TXEMPTY-interrupt instead of the TXRDY-interrupt to update the THR. This
ensures that a transfer is completed.

8. PSIF Status Register bits return 0
The PARITY, NACK and OVRUN bits in the PSIF Status Register cannot be read. Reading
these bits will always return zero.

Fix/Workaround
None

9. PSIF Transmit does not work as intended
While PSIF receiving works, transmitting using the PSIF does not work.

Fix/Workaround
Do not transmit using the PSIF.

10. LCD memory error interupt does not work
Writing to the MERIT-bit in the LCD Interrupt Test Register (ITR) does not cause an interrupt
as intended. The MERIC-bit in the LCD Interrupt Clear Register (ICR) cannot be written.
This means that if the MERIS-bit in ISR is set, it cannot be cleared.

Fix/Workaround
Memory error interrupt should not be used.

54
32003MS–AVR32–09/09

AT32AP7000

PDC/PDCA transfers: None.

Manual transfers (no PDC and TX slave only): Read the RHR every time the THR is written.
The OVRS flag of the status register will track any UNDERRUN on the TX side.

30. HMATRIX - Fixed priority arbitration does not work
Fixed priority arbitration does not work.

Fix/Workaround
Use Round-robin arbitration instead.

31. OSC32 is not available for RTC, WDT, TIMERs and USARTs at startup
Right after startup the osc32 clock to internal modules is not valid. The osc32 clock will be
valid for use approximately 128 osc32 cycles after the the first instruction is executed. This
has consequences if you are planning to use the RTC, WDT, going into sleep mode and
USARTs with SCK and TCs with TIMER_CLOCK0.

Fix/Workaround
Before executing any code the user should enable the RTC with the smallest prescaler and
poll that the RTC is counting before doing anything in your program. Another way to ensure
that the osc32 is valid is to use interrupts with TOP=1.

Example:

//reset the counter register

AVR32_RTC.val = 0x0;

//enable the RTC with the smallest prescaler

AVR32_RTC.ctrl = 0x1;

//wait until the value increases

while(AVR32_RTC.val == 0);

32. SPI can generate a false RXREADY signal in SLAVE mode
In slave mode the SPI can generate a false rxready signal during enabling of the SPI or dur-
ing the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA

2. Enable SPI

3. Set the polarity CPOL of the line in the opposite value of the required one

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register

Transfers can now begin and RXREADY will now behave as expected.

33. EBI address lines 23, 24, and 25 are pulled up when booting up
After reset the EBI address lines 23, 24 and 25 are tristated with pullups. Booting from a
flash larger than 8 MB using these lines will fail, as the flash will be accessed with these
address bits set.

Fix/Workaround
Add external pulldown resistors (5 kΩ) on these lines if booting from a flash larger than 8 MB
using these address lines.

55
32003MS–AVR32–09/09

AT32AP7000

34. SSC - Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge

RFMR.FSOS = None (input)

Fix/Workaround
None.

35. SSC - TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround
None.

36. USART - TXD signal is floating in Modem and Hardware Handshaking mode
The TXD signal is floating in Modem and Hardware Handshaking mode, but should be
pulled up.

Fix/Workaround
Enable pullup on this line in the PIO.

37. PWM - Impossible to update a period equal to 0 by using the CUPD register
It is impossible to UPDATE a period equal to 0 by the using of the UPDATE register
(CUPD).

Fix/Workaround
To update a period equal to 0, write directly to the CPRD register.

38. WDT Clear is blocked after WDT Reset
A watchdog timer event will, after reset, block writes to the WDT_CLEAR register, prevent-
ing the program to clear the next Watchdog Timer Reset.

Fix/Workaround
If the RTC is not used a write to AVR32_RTC.ctrl.pclr = 1, instead of writing to
AVR32_WDT.clr, will reset the prescaler and thus prevent the watchdog event from happen-
ing. This will render the RTC useless, but prevents WDT reset because the RTC and WDT
share the same prescaler. Another sideeffect of this is that the watchdog timeout period will
be half the expected timeout period.

If the RTC is used one can disable the Watchdog Timer (WDT) after a WDT reset has
occured. This will prevent the WDT resetting the system. To make the WDT functional again
a hard reset (power on reset or RESET_N) must be applied. If you still want to use the WDT
after a WDT reset a smal l code can be inserted at the startup checking the
AVR32_PM.rcause register for WDT reset and use a GPIO pin to reset the system. This
method requires that one of the GPIO pins are available and connected externally to the

i
32003MS–AVR32–09/09

AT32AP7000

Table of Contents

Features ... 1

1 Part Description ... 2

2 Blockdiagram ... 4

2.1Package and PinoutAVR32AP7000 ..8

3 Signals Description ... 10

4 Power Considerations ... 16

4.1Power Supplies ...16

4.2Power Supply Connections ...16

5 I/O Line Considerations ... 17

5.1JTAG pins ..17

5.2WAKE_N pin ...17

5.3RESET_N pin ..17

5.4EVTI_N pin ..17

5.5TWI pins ..17

5.6PIO pins ...17

6 Memories .. 18

6.1Embedded Memories ..18

6.2Physical Memory Map ...18

7 Peripherals ... 20

7.1Peripheral address map ..20

7.2Interrupt Request Signal Map ..22

7.3DMACA Handshake Interface Map ...24

7.4Clock Connections ..25

7.5External Interrupt Pin Mapping ..26

7.6Nexus OCD AUX port connections ...26

7.7Peripheral Multiplexing on IO lines ..27

7.8Peripheral overview ...35

8 Boot Sequence ... 41

8.1Starting of clocks ...41

8.2Fetching of initial instructions ..41

9 Ordering Information ... 42

