
E·XFL

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DDR, PCIe, SERDES
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB
Speed	166MHz
Primary Attributes	FPGA - 90K Logic Modules
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2s090t-1fg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Power Consumption

5.1 Quiescent Supply Current

Table 8 • Quiescent Supply Current Characteristics

	Modes and Configurations				
Power Supplies/Blocks	Non-Flash*Freeze Mode	Flash*Freeze Mode	Notes		
FPGA Core	On	Off	-		
VDD / SERDES_[01]_VDD	On	On	1		
VPP / VPPNVM	On	On	-		
MDDR_PLL_VDDA CCC_XX[01]_PLL_VDDA PLL0_PLL1_MDDR_VDDA FDDR_PLL_VDDA	0 V	0 V	_		
SERDES_[01]_PLL_VDDA	0 V	0 V	3		
SERDES_[01]_L[0123]_VDDAPLL / VDD_2V5	On	On	3		
SERDES_[01]_L[0123]_VDDAIIO	On	On	3		
VDDIx	On	On	2, 4		
VREFx	On	On	-		
MSSDDR CLK	32 kHz	32 kHz	-		
RAM	On	Sleep state	-		
HPMS Controller	50 MHz	50 MHz	-		
50 MHz Oscillator (enable/disable)	Enabled	Disabled	-		
1 MHz Oscillator (enable/disable)	Disabled	Disabled	-		
Crystal Oscillator (enable/disable)	Disabled	Disabled	_		

Notes:

1. SERDES_[01]_VDD Power Supply is shorted to VDD.

2. VDDIx has been set to ON for test conditions as described. Banks on the east side should always be powered with the appropriate VDDI Bank supplies. For details on bank power supplies, refer to the "Recommendation for Unused Bank Supplies" table in the AC393: SmartFusion2 and IGLOO2 Board Design Guidelines Application Note.

3. SERDES and DDR blocks to be unused.

4. No Differential (that is to say, LVDS) I/O's or ODT attributes to be used.

			010	025	050	090	150	
Parameter	Modes	Conditions	VDD=1.2 V	Units				
IDC1	Non-	Typical (T _J = 25°C)	6.9	8.9	13.1	15.4	27.5	mA
		Military (T _J = 125°C)	73.0	106.4	180.9	217.5	390.5	mA
IDC2	Flash*Freeze	Typical (T _J = 25°C)	2.6	3.7	5.1	5.1	8.9	mA
		Military (T _J = 125°C)	55.6	74.2	98.5	99.5	161.0	mA

8.2. Output Buffer and AC Loading

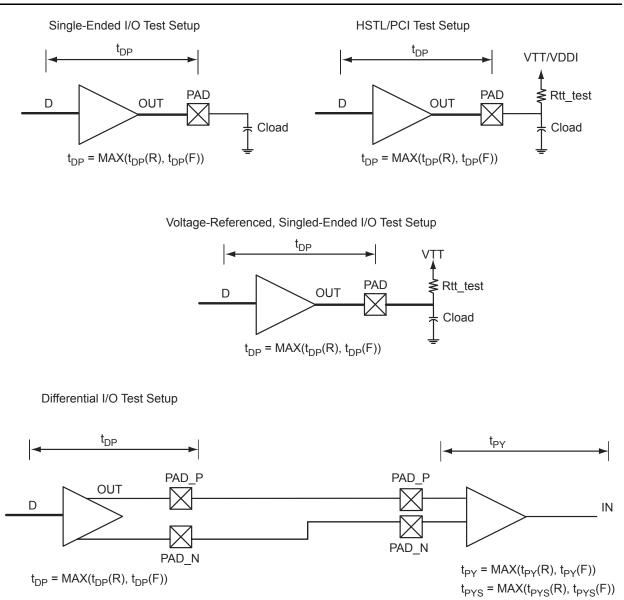


Figure 3 • Output Buffer AC Loading

8.5 Detailed I/O Characteristics

Table 18 • Input Capacitance

Symbol	Definition	Min	Мах	Units
CIN	Input Capacitance	-	10	pF

 Table 19 •
 I/O Weak Pull-Up/Pull-Down Resistance Values for DDRIO, MSIO, and MSIOD Banks

 Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values at VOH/VOL Level

VDDI Domain	DDRIO I/O Bank		ĸ	MSIO I/O Bank			MSIOD I/O Bank						
	R _{(WEAK} PULL-UP) at VOH (Ω)		PULL-I	eak Down) DL (Ω)	-	EAK UP) Η (Ω)	PULL-	ΈΑΚ DOWN) DL (Ω)	R _{(W} PULI at VO	UP)	PULL	veak ·Down) DL (Ω)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Notes
3.3 V	N/A	N/A	N/A	N/A	9.9K	14.5K	9.98K	14.9K	N/A	N/A	N/A	N/A	
2.5 V	10K	15.1K	9.98K	15.3K	10K	15K	10.1K	15.6K	9.6K	14.1K	9.5K	13.9K	1,2
1.8 V	10.3K	16.2K	10.3K	16.6K	10.4K	16.2K	10.4K	17.3K	9.7K	14.7K	9.7K	14.5K	1,2
1.5 V	10.6K	17.2K	10.6K	17.9K	10.7K	17.3K	10.8K	18.9K	9.9K	15.3K	9.8K	15K	1,2
1.2 V	11.1K	19.3K	11.2K	20.9K	11.3K	19.7K	11.5K	22.7K	10.3K	16.7K	10K	16.2K	1,2
Notes:	-					-	-						-

1. R(WEAK PULL-DOWN) = (VOLspec)/I(WEAK PULL-DOWN MAX)

2. R(WEAK PULL-UP) = (VDDImax - VOHspec)/I(WEAK PULL-UP MIN)

Table 20 • Schmitt Trigger Input Hysteresis

Hysteresis Voltage Value for Schmitt Trigger Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (Typical, unless otherwise noted)
3.3 V LVTTL / LVCMOS / PCI / PCI-X	0.05 × VDDI (Worst-case)
2.5 V LVCMOS	0.05 × VDDI (Worst-case)
1.8 V LVCMOS	0.1 × VDDI (Worst-case)
1.5 V LVCMOS	60 mV
1.2 V LVCMOS	20 mV

8.6 Single-Ended I/O Standards

8.6.1 Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS)

LVCMOS is a widely used switching standard implemented in CMOS transistors. This standard is defined by JEDEC (JESD 8-5). The LVCMOS standards supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs are: LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, and LVCMOS33.

Table 63 • DDR1/SSTL2 AC Switching Characteristics for Transmitter (Output and Tristate Buffers)
Worst-Case Military Conditions: T _J = 125°C, VDD = 1.14 V, VDDI= 2.375 V (continued)

		Speed Grade -1						
	t _{DP}	t _{ZL}	t _{ZH}	t _{HZ}	t _{LZ}	Units		
MSIO I/O Bank								
Single Ended	2.563	2.208	2.19	2.205	2.187	ns		
Differential	2.703	2.566	2.555	2.363	2.353	ns		

8.7.4 Stub-Series Terminated Logic 1.8 V (SSTL18)

SSTL18 Class I and Class II are supported in IGLOO2 and SmartFusion2 SoC FPGAs, and also comply with the reduced and full drive double date rate (DDR2) standard. IGLOO2 and SmartFusion2 SoC FPGA I/Os support both standards for single-ended signaling and differential signaling for SSTL18. This standard requires a differential amplifier input buffer and a push-pull output buffer.

8.7.4.1 Minimum and Maximum Input and Output Levels Specification

Symbols	Parameters Conditions	Min	Тур	Max	Units	Notes
Recommend	ded DC Operating Conditions					
VDDI	Supply voltage	1.71	1.8	1.89	V	_
VTT	Termination voltage	0.838	0.900	0.964	V	-
VREF	Input reference voltage	0.838	0.900	0.964	V	_
SSTL18 DC	Input Voltage Specification			•		-
VIH (DC)	DC input logic High	VREF + 0.125	_	1.89	V	—
VIL (DC)	DC input logic Low	-0.3	_	VREF – 0.125	V	_
IIH (DC)	Input current High	-	_	10	μA	-
IIL (DC)	Input current Low	-	_	10	μA	_
SSTL18 DC	Output Voltage Specification			•		-
SSTL18	Class I (DDR2 Reduced Drive)					
VOH	DC output logic High	VTT + 0.603	_	-	V	—
VOL	DC output logic Low	-	_	VTT- 0.603	V	_
IOH at VOH	Output minimum source DC current (DDRIC Bank only)	0 I/O 6.0	-	-	mA	_
IOL at VOL	Output minimum sink current (DDRIO I/O E only)	Bank –6.0	_	-	mA	_
SSTL18	Class II (DDR2 Full Drive)	ł				*
VOH	DC output logic High	VTT + 0.603	-	-	V	_
VOL	DC output logic Low	-	-	VTT- 0.603	V	_
IOH at VOH	Output minimum source DC current (DDRIC Bank only)	D I/O 12.0	_	_	mA	_

AC Switching Characteristics for Transmitter (Output and Tristate Buffers

Table 82 •	LPDDR - LVCMOS 1.8 V AC Switching Characteristics for Transmitter DDRIO I/O Bank (Output and
	Tristate Buffers)

Output Drive				Speed Grade –1)		
Selection	Slew Control	t _{DP}	t _{ZL}	t _{zH}	t _{HZ}	t _{LZ}	Units
	slow	4.681	4.017	4.69	5.388	4.852	ns
2 mA	medium	4.211	3.599	4.219	5.058	4.488	ns
	medium_fast	3.978	3.392	3.986	4.874	4.327	ns
	fast	3.953	3.373	3.961	4.858	4.316	ns
	slow	4.355	3.657	4.346	5.967	5.399	ns
4 ~ 4	medium	3.886	3.246	3.879	5.628	5.01	ns
4 mA	medium_fast	3.656	3.05	3.647	5.461	4.845	ns
	fast	3.635	3.033	3.626	5.447	4.838	ns
	slow	4.105	3.422	4.092	6.221	5.599	ns
6 4	medium	3.68	3.05	3.668	5.9	.9 5.257	ns
6 mA	medium_fast	3.477	2.867	3.463	5.739	5.118	ns
	fast	3.451	2.849	3.437	5.72	5.104	ns
	slow	4.015	3.32	3.998	6.458	5.808	ns
8 mA	medium	3.59	2.947	3.574	6.129	5.449	ns
oma	medium_fast	3.383	2.761	3.366	5.963	5.304	ns
	fast	3.357	2.746	3.34	5.954	5.289	ns
	slow	3.888	3.18	3.864	6.739	6.045	ns
10 mA	medium	3.485	2.822	3.467	6.422	5.7	ns
10 IIIA	medium_fast	3.281	2.642	3.26	6.277	5.553	ns
	fast	3.258	2.627	3.238	6.27	5.546	ns
	slow	3.795	3.096	3.773	6.773	6.067	ns
12 mA	medium	3.408	2.764	3.389	6.47	5.743	ns
12 MA	medium_fast	3.215	2.599	3.194	6.346	5.61	ns
	fast	3.196	2.584	3.175	6.335	5.604	ns
	slow	3.744	3.035	3.719	6.944	6.207	ns
16 mA	medium	3.358	2.712	3.339	6.657	5.868	ns
	medium_fast	3.175	2.546	3.153	6.547	5.751	ns
	fast	3.156	2.531	3.133	6.541	5.747	ns

Worst-Case Military Conditions: $T_J = 125^{\circ}C$, VDD = 1.14 V, VDDI = 1.71 V

8.8. Differential I/O Standards

Configuration of the I/O modules as a differential pair is handled by Microsemi SoC Products Group Libero[®] Systemon-Chip (SoC) software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input register (InReg), Output register (OutReg), Enable register (EnReg), and Double Data Rate registers (DDR).

8.8.1 LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard.

8.8.1.1 Minimum and Maximum Input and Output Levels

Symbols	Parameters	Conditions	Min	Тур	Max	Units
LVDS Rec	ommended DC Operating Condi	tions				<u>e</u>
VDDI	Supply voltage	2.5 V range	2.375	2.5	2.625	V
VDDI	Supply voltage	3.3 V range	3.15	3.3	3.45	V
LVDS DC	Input Voltage Specification		•	1	1	
VI	DC Input voltage	2.5 V range	0	_	2.925	V
VI	DC input voltage	3.3 V range	0	-	3.45	V
IIH (DC)	Input current High			-	10	μA
IIL (DC)	Input current Low		-	_	10	μA
LVDS DC	Output Voltage Specification					
VOH	DC output logic High		1.25	1.425	1.6	V
VOL	DC output logic Low		0.9	1.075	1.25	V
LVDS Diffe	erential Voltage Specification					
VOD	Differential output voltage swing		250	350	450	mV
VOCM	Output common mode voltage		1.125	1.25	1.375	V
VICM	Input common mode voltage		0.05	1.25	2.35	V
VID	Input differential voltage		100	350	600	mV

Table 83 • LVDS DC Voltage Specification

Table 84 • LVDS AC Specifications

Symbols	Parameters	Conditions		Тур	Max	Units
LVDS Max	imum AC Switching Speed					
Dmax	Maximum data rate (for MSIO I/O Bank)	AC loading: 12 pF / 100 Ω differential load	_	-	480	Mbps
Dmax	Maximum data rate (for MSIOD I/O Bank)	AC loading: 10 pF / 100 Ω differential load	_	-	480	Mbps
LVDS Imp	edance Specification	•				
Rt	Termination resistance	_	-	100	-	Ω
LVDS AC	Test Parameters Specifications	•				
Vtrip	Measuring/trip point for data path		-	Cross point	-	V
Rent	Resistance for enable path (t_{ZH} , t_{ZL} , t_{HZ} , t_{LZ})			2k	-	Ω
Cent	Capacitive loading for enable path (t_{ZH})	, t _{ZL} , t _{HZ} , t _{LZ})	-	5	-	pF

8.8.2.2. AC Switching Characteristics

AC Switching Characteristics for Receiver (Input Buffers)

Table 91 • B-LVDS AC Switching Characteristics for Receiver (Input Buffers)Worst-Case Military Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V

		Speed Grade –1	
	On-Die Termination (ODT)	t _{PY}	Units
	None	3.011	ns
Bus-LVDS (for MSIO I/O Bank)	100	3.006	ns
	None	2.722	ns
Bus-LVDS (for MSIOD I/O Bank)	100	2.725	ns

AC Switching Characteristics for Transmitter (Output and Tristate Buffers)

Table 92 • B-LVDS AC Switching Characteristics for Transmitter (Output and Tristate Buffers)Worst-Case Military Conditions: TJ = 125°C, VDD = 1.14 V, VDDI = 2.375 V

		Speed Grade –1				
	t _{DP}	t _{ZL}	t _{ZH}	t _{HZ}	t _{LZ}	Units
Bus-LVDS (for MSIO I/O Bank)	2.78	2.632	2.617	2.448	2.436	ns

8.8.3 M-LVDS

M-LVDS specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers.

8.8.3.1 Minimum and Maximum Input and Output Levels

Symbols	Parameters	Conditions	Min	Тур	Max	Units	Notes
M-LVDS Re	ecommended DC Operating Co	onditions					-
VDDI	Supply voltage		2.375	2.5	2.625	V	*
M-LVDS D	C Input Voltage Specification			-	-		-
VI	DC input voltage		0	-	2.925	V	-
IIH (DC)	Input current High		_	-	10	μA	_
IIL (DC)	Input current Low		-	-	10	μA	-
M-LVDS D	C Output Voltage Specification	(for MSIO I/O Bank Only)		-	-		_
VOH	DC output logic High		1.25	1.425	1.6	V	_
VOL	DC output logic Low		0.9	1.075	1.25	V	-
M-LVDS Di	fferential Voltage Specification	1		-	-		_
VOD	Differential output voltage Swin	g (for MSIO I/O Bank only)	300	-	650	mV	_
VOCM	Output common mode voltage	(for MSIO I/O Bank only)	0.3	-	2.1	V	-
VICM	Input common mode voltage		0.3	-	1.2	V	-

licrosemi

Table 106 • LVPECL Maximum AC Switching Speeds (Applicable to MSIO I/O Banks Only))
--	---

Symbols	Parameters	Conditions	Min	Тур	Max	Units	
LVPECL AC Specifications							
Fmax	Maximum data rate (for MSIO I/O E	Bank)	_	_	810	Mbps	

8.8.6.2 AC Switching Characteristics

AC Switching Characteristics for Receiver (Input Buffers)

Table 107 • LVPECL Receiver Characteristics Worst-case Military conditions: T_J = 125°C, VDD = 1.14 V, VDDI = 3.15 V

		t _{PY}	
	On-Die Termination (ODT)	Speed Grade –1	Units
	None	2.71	ns
LVPECL (for MSIO I/O Bank)	100	2.71	ns

8.9 I/O Register Specifications

8.9.1 Input Register

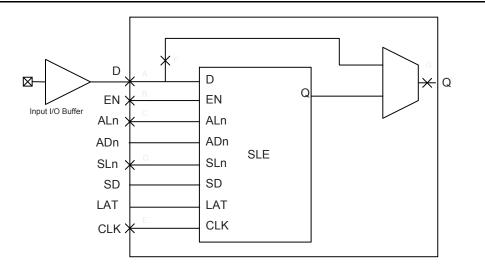


Figure 5 • Timing Model for Input Register

Parameter	Description	Measuring Nodes (from, to)*	Speed Grade –1	Units
t _{IREMALn}	Asynchronous Load Removal Time for the Input Register	C,E	0	ns
t _{IRECALn}	Asynchronous Load Recovery Time for the Input Register	C,E	0.076	ns
t _{IWALn}	Asynchronous Load Minimum Pulse Width for the Input Register	C,C	0.313	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Register	E,E	0.078	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Register	E,E	0.164	ns

Table 108 • Input Data Register Propagation Delays (continued) Worst-Case Military Conditions: T_J = 125°C, VDD = 1.14 V

8.9.2 Output/Enable Register

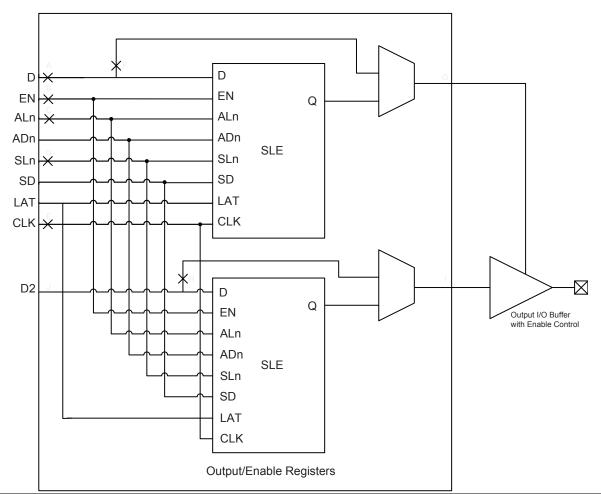
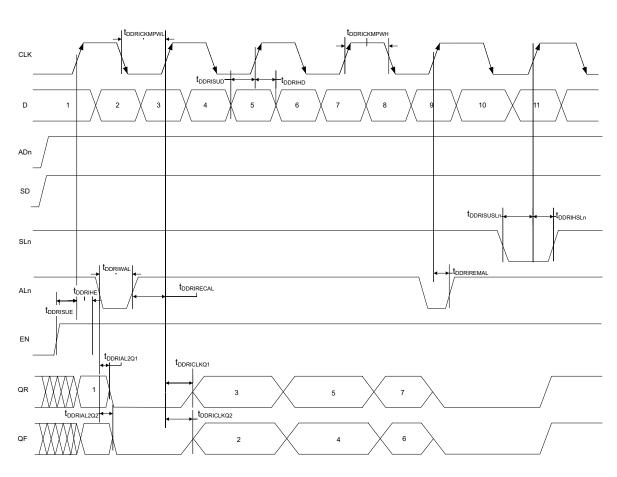



Figure 7 • Timing Model for Output/Enable Register

8.10.2 Input DDR Timing Diagram

Figure 10 • Input DDR Timing Diagram

8.10.3 Timing Characteristics

Table 110 • Input DDR Propagation Delays Worst-Case Military Conditions: T_J = 125°C, VDD=1.14 V

Parameter	Description	Measuring Nodes (from, to)	Speed Grade -1	Units
tDDRICLKQ1	Clock-to-Out Out_QR for Input DDR	B,C	0.165	ns
tDDRICLKQ2	Clock-to-Out Out_QF for Input DDR	B,D	0.172	ns
tDDRISUD	Data Setup for Input DDR	A,B	0.372	ns
tDDRIHD	Data Hold for Input DDR	A,B	0	ns
tDDRISUE	Enable Setup for Input DDR	E,B	0.475	ns
tDDRIHE	Enable Hold for Input DDR	E,B	0	ns
tDDRISUSLn	Synchronous Load Setup for Input DDR	G,B	0.475	ns
tDDRIHSLn	Synchronous Load Hold for Input DDR	G,B	0	ns
tDDRIAL2Q1	Asynchronous Load-to-Out QR for Input DDR	F,C	0.606	ns
tDDRIAL2Q2	Asynchronous Load-to-Out QF for Input DDR	F,D	0.558	ns
tDDRIREMAL	Asynchronous Load Removal time for Input DDR	F,B	0	ns
tDDRIRECAL	Asynchronous Load Recovery time for Input DDR	F,B	0.076	ns
tDDRIWAL	Asynchronous Load Minimum Pulse Width for Input DDR	F,F	0.313	ns
tDDRICKMPWH	Clock Minimum Pulse Width High for Input DDR	B,B	0.078	ns
tDDRICKMPWL	Clock Minimum Pulse Width Low for Input DDR	B,B	0.164	ns

		Speed		
Parameter	Description	Min	Мах	Units
tplclkmpwl	Pipelined Clock Minimum pulse Width Low	1.5	-	ns
	Read Access Time with Pipeline Register	_	0.332	ns
tclk2q	Read Access Time without Pipeline Register	_	2.342	ns
	Access Time with Feed-Through Write Timing	_	1.559	ns
taddrsu	Address Setup Time	0.646	-	ns
taddrhd	Address Hold Time	0.282	-	ns
tdsu	Data Setup Time	0.332	-	ns
tdhd	Data Hold Time	0.084	-	ns
tblksu	Block Select Setup Time	0.214	-	ns
tblkhd	Block Select Hold Time	0.223	-	ns
tblk2q	Block Select to Out Disable Time (when Pipe-Lined Registered is Disabled)	_	1.559	ns
tblkmpw	Block Select Minimum Pulse Width	0.218	-	ns
trdesu	Read Enable Setup Time	0.547	-	ns
trdehd	Read Enable Hold Time	0.073	-	ns
trdplesu	Pipelined Read Enable Setup Time (A_DOUT_EN, B_DOUT_EN)	0.256	-	ns
trdplehd	Pipelined Read Enable Hold Time (A_DOUT_EN, B_DOUT_EN)	0.106	-	ns
tr2q	Asynchronous Reset to Output Propagation Delay		1.603	ns
trstrem	Asynchronous Reset Removal Time	0.522	-	ns
trstrec	Asynchronous Reset Recovery Time	0.005	-	ns
trstmpw	Asynchronous Reset Minimum Pulse Width	0.352	-	ns
tpIrstrem	Pipelined Register Asynchronous Reset Removal Time	-0.288	-	ns
tpIrstrec	Pipelined Register Asynchronous Reset Recovery Time	0.338	-	ns
tpIrstmpw	Pipelined Register Asynchronous Reset Minimum Pulse Width	0.33	-	ns
tsrstsu	Synchronous Reset Setup Time	0.233	_	ns
tsrsthd	Synchronous Reset Hold Time	0.037	_	ns
twesu	Write Enable Setup Time	0.468	_	ns
twehd	Write Enable Hold Time	0.05	_	ns
Fmax	Maximum Frequency	_	300	MHz

Table 123 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16Kx1Worst-Case Military Conditions: $T_J = 125^{\circ}$ C, VDD = 1.14 V (continued)

12. Embedded NVM (eNVM) Characteristics

Table 132 • eNVM Read Performance

Worst-Case Conditions: VDD = 1.14 V, VPPNVM = VPP = 2.375 V

Symbol	Description	Operating Temperature Range					Unit	
Тj	Junction Temperature Range	-55°C to 125°C		-40°C to 100°C		0°C to 85°C		°C
Speed grade		-1	Std	-1	Std	-1	Std	-
F _{MAXREAD}	eNVM Maximum Read Frequency	25	25	25	25	25	25	MHz

Table 133 • eNVM Page Programming Worst-Case Conditions: VDD = 1.14 V, VPPNVM = VPP = 2.375 V

Symbol	Description	Operating Temperature Range				Unit		
Т _ј	Junction Temperature Range	-55°C to 125°C		-40°C to 100°C		0°C to 85°C		°C
Speed grade		-1	Std	-1	Std	-1	Std	-
t _{PAGEPGM}	eNVM Page Programming Time	40	40	40	40	40	40	ms

21. DDR Memory Interface Characteristics

Table 150 • DDR Memory Interface Characteristics Worst-Case Military Conditions: T_J = 125°C, VDD = 1.14 V

	Supported Data Rate				
Standard	Min	Тур	Max	Unit	
DDR3		667		Mbps	
DDR2		667		Mbps	
LPDDR	50	_	400	Mbps	

23. PCIe Electrical and Timing AC and DC Characteristics

PCIe[®] is a high speed, packet-based, point-to-point, low pin count, serial interconnect bus. The IGLOO2 and SmartFusion2 SoC FPGAs has up to four hard high-speed serial interface blocks. Each SERDES block contains a PCIe system block. The PCIe system is connected to the SERDES block.

Parameter	Parameter Description		Тур	Max	Units
VTX-DIFF-PP	Differential swing PCIe Gen1	0.8	-	1.2	V
VTX-CM-AC-P	Output common mode voltage PCIe Gen1	-	-	20	mV
VTX-RISE-FALL	Rise and fall time (20% to 80%) PCIe Gen1	0.125	-	-	UI
ZTX-DIFF-DC	Output impedance – differential	80	-	120	Ω
LTX-SKEW	Lane-to-lane TX skew within a SERDES block PCle Gen1	_	-	500 ps + 2 UI	ps
RLTX-DIFF	Return loss differential mode PCIe Gen1	-10	-	-	dB
RLTX-CM	Return loss common mode PCIe Gen1		_	-	dB
TX-LOCK-RST	Transmit PLL lock time from reset	_	-	10	μs

Table 152 • Transmitter Parameters Worst-Case Military Conditions: T_J = 125°C, VDD = 1.14 V

Table 153 • Receiver ParametersWorst-Case Military Conditions: T_J = 125°C, VDD = 1.14 V

Parameter	Description	Min	Тур	Max	Units
VRX-DIFF-PP-CC	Input levels PCIe Gen1	0.175	-	1.2	V
VRX-CM-DC-P Input common mode range (DC coupled) Note: PCIe standard mandates AC coupling		NA	NA	NA	-
VRX-CM-AC-P	Input common mode range (AC coupled)	-	-	150	mV
VRX-DIFF-PP-CC	Differential input sensitivity Gen1	0.175	-	-	mV
ZRX-DIFF-DC	Differential input termination	80	100	120	Ω
REXT	External calibration resistor	1,188	1,200	1,212	Ω
CDR-LOCK-RST	CDR relock time from reset	_	-	15	μs
RLRX-DIFF	Return loss differential mode PCIe Gen1	-10	-	-	dB
RLRX-CM	Return loss common mode PCIe Gen1	-6	-	-	dB
	CID limit (set by 8B/10B coding, not the receiver PLL)	-	-	4	UI
VRX-IDLE-DET-DIFF-PP	Signal detect limit	65	-	175	mV

 Table 154 • SERDES Reference Clock AC Specifications

 Worst-Case Military Conditions: T_J = 125°C, Worst-Case VDD = 1.14V

Symbols	Description	Min	Тур	Max	Units
FREFCLK	Reference Clock Frequency	100	-	160	MHz
TRISE	Reference Clock Rise Time	0.6	-	4	V/ns
TFALL	Reference Clock Fall Time	0.6	-	4	V/ns
TCYC	Reference Clock Duty Cycle	40	-	60	%
Mmrefclk	Reference Clock Mismatch	-300	-	300	ppm
SSCref	Reference Spread Spectrum Clock	0	-	5000	ppm

Table 159 • I2C Switching CharacteristicsWorst-Case Military Conditions: TJ = 125°C, VDD = 1.14 V

			Speed _^		
Parameter	Definition	Conditions	Min	Max	Units
t _{LOW}	Low period of I2C_x_SCL	-	1	-	pclk cycles
t _{HIGH}	High period of I2C_x_SCL	-	1	-	pclk cycles
t _{HD;STA}	START hold time	-	1	-	pclk cycles
t _{SU;STA}	START setup time	-	1	-	pclk cycles
t _{HD;DAT}	DATA hold time	-	1	-	pclk cycles
t _{SU;DAT}	DATA setup time	-	1	-	pclk cycles
t _{su;sto}	STOP setup time	-	1	-	pclk cycles

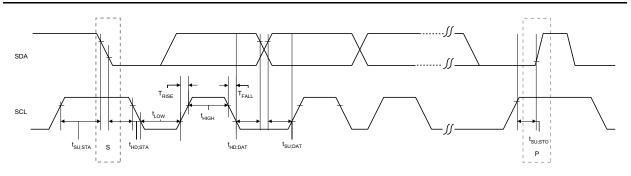


Figure 16 • I²C Timing Parameter Definition

25. CAN Controller Characteristics

Table 161 • CAN Controller Characteristics

Worst-Case Military Conditions: $T_J = 125^{\circ}C$, VDD = 1.14 V

Parameter	Description		Тур	Max	Units	Notes
FCANREFCLK	Internally Sourced CAN Reference Clock Frequency	_	_	128	MHz	*
BAUDCAN	CAN Performance Baud Rate	rformance Baud Rate 0.05 – 1 Mbps		Mbps	-	
Note: PCLK to 0	Note: PCLK to CAN controller must be a multiple of 8 MHz.					

Table 164 • SPI Characteristics

Worst-Case Military Conditions: T_J = 125°C, VDD = 1.14 V (continued)

		All Devices/Speed Grades					
Symbol	Description	Conditions	Min	Тур	Ma x	Uni t	Note s
sp9s	SPI_[0 1]_DI hold time	-	3	-	1	ns	2

Notes:

1. For specific Rise/Fall Times board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:

http://www.microsemi.com/products/fpga-soc/design-resources/ibis-models.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

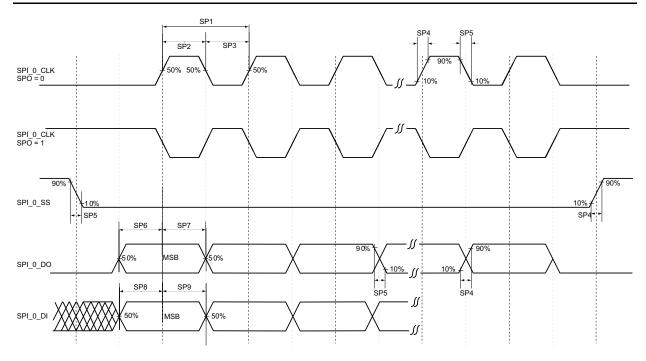


Figure 18 • SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in Table 1 on page 10 is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.