E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f417vet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		2.2.30	Universal serial bus on-the-go full-speed (OTG_FS)
		2.2.31	Universal serial bus on-the-go high-speed (OTG_HS)40
		2.2.32	Digital camera interface (DCMI)40
		2.2.33	Cryptographic acceleration41
		2.2.34	Random number generator (RNG)41
		2.2.35	General-purpose input/outputs (GPIOs)41
		2.2.36	Analog-to-digital converters (ADCs)41
		2.2.37	Temperature sensor
		2.2.38	Digital-to-analog converter (DAC)42
		2.2.39	Serial wire JTAG debug port (SWJ-DP)42
		2.2.40	Embedded Trace Macrocell™43
3	Pino	uts and	pin description 44
4	Mem	lory maj	oping
5	Elec	trical ch	aracteristics
	5.1	Param	eter conditions
		5.1.1	Minimum and maximum values79
		5.1.2	Typical values
		5.1.3	Typical curves
		5.1.4	Loading capacitor
		5.1.5	Pin input voltage
		5.1.6	Power supply scheme
		5.1.7	Current consumption measurement81
	5.2	Absolu	te maximum ratings 81
	5.3	Operat	ing conditions
		5.3.1	General operating conditions82
		5.3.2	VCAP_1/VCAP_2 external capacitor
		5.3.3	Operating conditions at power-up / power-down (regulator ON)85
		5.3.4	Operating conditions at power-up / power-down (regulator OFF)85
		5.3.5	Embedded reset and power control block characteristics
		5.3.6	Supply current characteristics
		5.3.7	Wakeup time from low-power mode
		5.3.8	External clock source characteristics
		5.3.9	Internal clock source characteristics
		5.3.10	PLL characteristics

	recommended footprint	79
Figure 86.	LQFP144 marking example (package top view)1	
Figure 87.	UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
-	ball grid array package outline	81
Figure 88.	UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
	ball grid array recommended footprint 1	82
Figure 89.	UFBGA176+25 marking example (package top view) 1	83
Figure 90.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline 1	84
Figure 91.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint 1	86
Figure 92.	LQFP176 marking example (package top view)	87
Figure 93.	USB controller configured as peripheral-only and used	
	in Full speed mode	90
Figure 94.	USB controller configured as host-only and used in full speed mode	90
Figure 95.	USB controller configured in dual mode and used in full speed mode 1	91
Figure 96.	USB controller configured as peripheral, host, or dual-mode	
	and used in high speed mode	92
Figure 97.	MII mode using a 25 MHz crystal 1	93
Figure 98.	RMII with a 50 MHz oscillator	93
Figure 99.	RMII with a 25 MHz crystal and PHY with PLL 1	94

		Table 2. STM3	32F415xx and S	TM32F417xx: fe	atures and per	ipheral	counts				
Perip	herals	STM32F415RG	STM32F415OG	STM32F415VG	STM32F415ZG	STM32	F417Vx	STM32	F417Zx	STM32	2F417lx
Flash memory i	n Kbytes		10	24	I	512	1024	512	1024	512	1024
SRAM in	System				192(112+16+64)		1				и
Kbytes Backup					4						
FSMC memory	controller	No Yes ⁽¹⁾									
Ethernet			N	0				Ye	s		
	General- purpose				10						
	Advanced- control				2						
Timers	Basic	2									
	IWDG	Yes									
	WWDG		Yes								
	RTC	Yes									
Random numbe	er generator				Yes						
	SPI / I ² S			3	8/2 (full duplex) ⁽²⁾						
	l ² C		3								
.	USART/UART	4/2									
Communicatio n interfaces	USB OTG FS	Yes									
	USB OTG HS		Yes								
	CAN				2						
	SDIO				Yes						
Camera interfac	ce		Ν	0				Ye	s		

Yes

57

Cryptography

15/206

Description

2.1 Full compatibility throughout the family

The STM32F415xx and STM32F417xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F415xx and STM32F417xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F415xx and STM32F417xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F41xxx family remains simple as only a few pins are impacted.

Figure 4, *Figure 3*, *Figure 2*, and *Figure 1* give compatible board designs between the STM32F41xxx, STM32F2, and STM32F10xxx families.

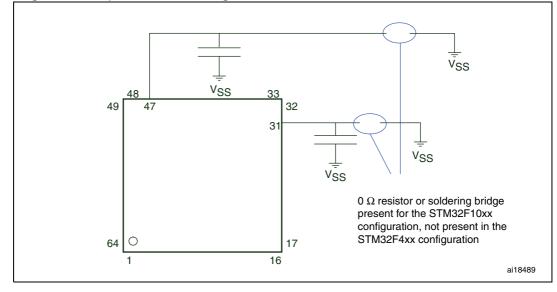
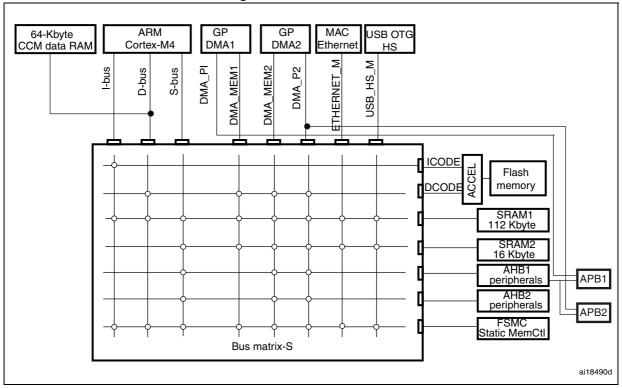
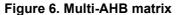




Figure 1. Compatible board design between STM32F10xx/STM32F41xxx for LQFP64

2.2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Cryptographic acceleration
- Camera interface (DCMI)
- ADC.

2.2.9 Flexible static memory controller (FSMC)

The FSMC is embedded in the STM32F415xx and STM32F417xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

- Write FIFO
- Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.2.10 Nested vectored interrupt controller (NVIC)

The STM32F415xx and STM32F417xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

2.2.22 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz). They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.23 Universal synchronous/asynchronous receiver transmitters (USART)

The STM32F415xx and STM32F417xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

	I	Pin r	numb				- P			definitions (continued)	
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
33	J3	51	73	P12	92	PB12	I/O	FT	-	SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID/ EVENTOUT	-
34	J1	52	74	P13	93	PB13	I/O	FT	-	SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ EVENTOUT	OTG_HS_VBUS
35	J2	53	75	R14	94	PB14	I/O	FT	-	SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM/ USART3_RTS / TIM8_CH2N/I2S2ext_SD/ EVENTOUT	-
36	H1	54	76	R15	95	PB15	I/O	FT	-	SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP/ EVENTOUT	RTC_REFIN
-	H2	55	77	P15	96	PD8	I/O	FT	-	FSMC_D13 / USART3_TX/ EVENTOUT	-
-	H3	56	78	P14	97	PD9	I/O	FT	-	FSMC_D14 / USART3_RX/ EVENTOUT	-
-	G3	57	79	N15	98	PD10	I/O	FT	-	FSMC_D15/USART3_CK/ EVENTOUT	-
-	G1	58	80	N14	99	PD11	I/O	FT	-	FSMC_CLE / FSMC_A16/USART3_CTS/ EVENTOUT	-
-	G2	59	81	N13	100	PD12	I/O	FT	-	FSMC_ALE/ FSMC_A17/TIM4_CH1 / USART3_RTS/ EVENTOUT	-

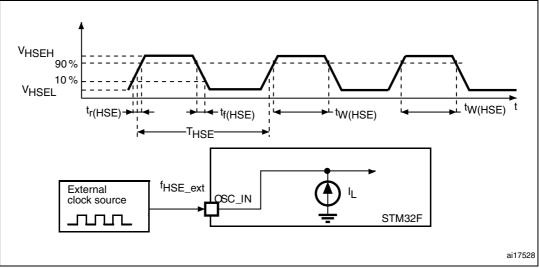
10.0	e zo. Periprieral cui	-	· /	1	
		I _{DD} (T			
Perip	oheral	Scale1 (up t 168 MHz)	Scale2 (up to 144 MHz)	Unit	
	OTG_FS	26.45	26.67	µA/MHz	
	DCMI	5.87	5.35		
AHB2 (up to 168 MHz)	RNG	1.50	1.67		
	Hash	9.73	8.86		
	Crypto	2.23	2.08		
AHB3 (up to 168 MHz)	FSMC	12.46	11.31	µA/MHz	
Bus m	atrix ⁽²⁾	13.10	11.81	µA/MHz	

Table 28. Peripheral current consumption (continued)

		-	Гур) ⁽¹⁾		
Perip	bheral	Scale1 (up t 168 MHz)	Scale2 (up to 144 MHz)	Unit	
	TIM2	16.71	16.50		
	TIM3	12.33	11.94	-	
	TIM4	13.45	12.92	-	
	TIM5	17.14	16.58	-	
	TIM6	2.43	3.06	-	
	TIM7	2.43	2.22	-	
	TIM12	6.62	6.83		
	TIM13	5.05	5.47		
	TIM14	5.26	5.61		
	PWR	1.00	0.56		
	USART2	2.69	2.78		
	USART3	2.74	2.78		
APB1 (up to 42 MHz)	UART4	3.24	3.33	µA/MHz	
(up to +2 mil2)	UART5	2.69	2.78		
	I2C1	2.67	2.50		
	I2C2	2.83	2.78		
	I2C3	2.81	2.78		
	SPI2	2.43	2.22		
	SPI3	2.43	2.22		
	I2S2 ⁽³⁾	2.43	2.22		
	I2S3 ⁽³⁾	2.26	2.22		
	CAN1	5.12	5.56		
	CAN2	4.81	5.28		
	DAC ⁽⁴⁾	1.67	1.67		
	WWDG	1.00	0.83		

Table 28. Peripheral current consumption (continued)


Low-speed external user clock generated from an external source


The characteristics given in *Table 31* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 31. Low-speed external user clock characteristic	s
	<u> </u>

1. Guaranteed by design.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit		
			inequency band	25/168 MHz			
		$V_{1} = 2.2 V_{1} = 25 \circ C_{1} OED 176$	0.1 to 30 MHz	32			
		V _{DD} = 3.3 V, T _A = 25 °C, LQFP176 package, conforming to SAE J1752/3	30 to 130 MHz	25	dBµV		
		EEMBC, code running from Flash with ART accelerator enabled	130 MHz to 1GHz	29			
6	Peak level		SAE EMI Level	4	-		
S _{EMI}		reak level	reak level	reak level	$V_{DD} = 3.3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ LQFP176}$	0.1 to 30 MHz	19
		package, conforming to SAE J1752/3	30 to 130 MHz	16	dBµV		
		EEMBC, code running from Flash with ART accelerator and PLL spread	130 MHz to 1GHz	18			
		spectrum enabled	SAE EMI level	3.5	-		

Table 44. EMI characteris

5.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C conforming to JESD22-A114}$	2	2000 ⁽²⁾	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESD STM5.3.1	II	500	v

Table 45. ESD absolute maximum ratings

1. Guaranteed by characterization.

2. On V_{BAT} pin, $V_{ESD(HBM)}$ is limited to 1000 V.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 47.

Symbol	Paran	neter	Conditions	Min	Тур	Max	Unit
	FT, TTa and NRS hysteresis	ST I/O input	1.7 V ≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-	
V _{HYS}	BOOT0 I/O input	hystoresis	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	0.1			V
		nysteresis	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	0.1	-	-	
	I/O input leakage	e current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	
l _{lkg}	I/O FT input leak	age current ⁽⁵⁾	V _{IN} = 5 V	-	-	3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10 and PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
	16313101	PA10 and PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10 and PB12	$V_{IN} = V_{DD}$	30	40	50	
		PA10 and PB12	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitance			-	5	-	pF

 Table 48. I/O static characteristics (continued)

1. Guaranteed by design.

2. Tested in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 47: I/O current injection susceptibility
- To sustain a voltage higher than V_{DD} + 0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 47: I/O current injection susceptibility.
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

5.3.18 TIM timer characteristics

The parameters given in Table 52 and Table 53 are guaranteed by design.

Refer to *Section 5.3.16: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 84 MHz	11.9	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 42 MHz	23.8	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4		0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock		1	65536	t _{TIMxCLK}
t	period when internal clock is selected	f _{TIMxCLK} = 84 MHz APB1= 42 MHz	0.0119	780	μs
^t COUNTER	32-bit counter clock		1	-	t _{TIMxCLK}
	period when internal clock is selected		0.0119	51130563	μs
+	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	Maximum possible count		-	51.1	S

Table 52. Characteristics of TIMx connected to the APB1 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

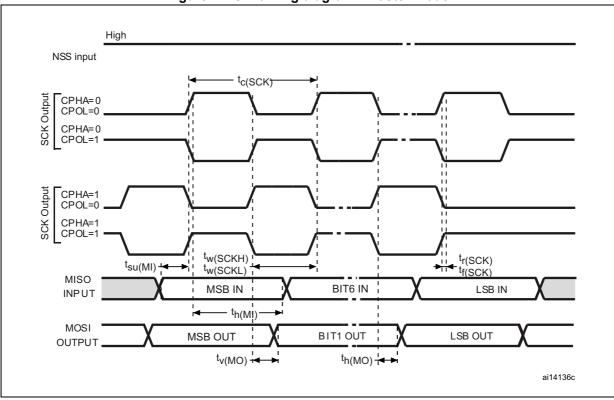


Figure 41. SPI timing diagram - master mode

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 56* for the i^2S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I ² S main clock output	-	256 x 8K	256 x F _S ⁽²⁾	MHz
f	I ² S clock frequency	Master data: 32 bits	-	64 x F _S	MHz
f _{CK}		Slave data: 32 bits	-	64 x F _S	
D _{CK}	I ² S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	
t _{h(SD_SR)}		Slave receiver	0	-	
t _{v(SD_ST)} t _{h(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	27	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

1. Guaranteed by characterization.

2. The maximum value of 256 x F_S is 42 MHz (APB1 maximum frequency).

Note: Refer to the l^2S section of RM0090 reference manual for more details on the sampling frequency (F_S). f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV + ODD). F_S maximum value is supported for each mode/condition.

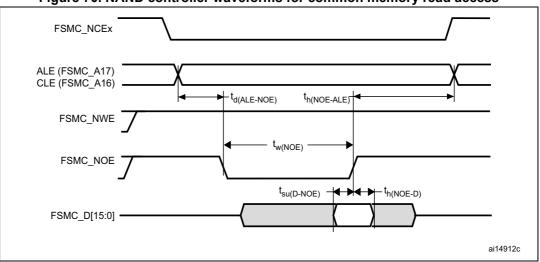


Figure 70. NAND controller waveforms for common memory read access

Figure 71. NAND controller waveforms for common memory write access

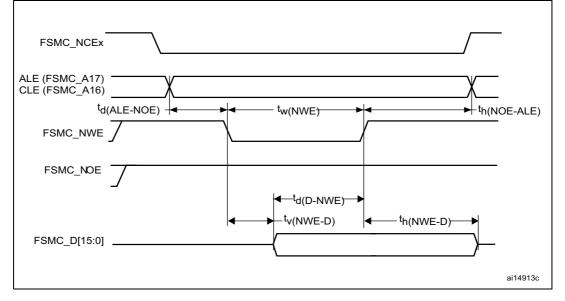


Table 85. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NOE)}	FSMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} + 3	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	10	-	ns
t _{h(NOE-D)}	FSMC_D[15-0] valid data after FSMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} – 2	-	ns

1. C_L = 30 pF.

Date	Revision	Changes
Date 24-Jan-2012	Revision 2 (continued)	Changes Added V ₁₂ in Table 19: Embedded reset and power control block characteristics. Updated Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure , Figure 25, Figure 26, and Figure 27. Updated Table 22: Typical and maximum current consumption in Sleep mode and removed Note 1. Updated Table 23: Typical and maximum current consumptions in Stop mode and Table 24: Typical and maximum current consumptions in Stop mode and Table 25: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in Standby mode, and Table 27: Switching output I/O current consumption. Section : On-chip peripheral current consumption: modified conditions, and updated Table 28: Peripheral current consumption and Note 2. Changed f _{HSE_ext} to 50 MHz and t _{r(HSE)} /t _{f(HSE)} maximum value in Table 30: High-speed external user clock characteristics. Added C _{in(LSE)} in Table 31: Low-speed external user clock characteristics. Updated maximum PLL input clock frequency, removed related note, and deleted jitter for MCO for RMII Ethernet typical value in Table 36: Main PLL characteristics. Updated maximum PLLI2S input clock frequency and removed related note in Table 37: PLLI2S (audio PLL) characteristics. Updated Section : Flash memory to specify that the devices are shipped to customers with the Flash memory erased. Updated Table 39: Fl

Table 100. Document revision history (continued)

	lable 1	100. Document revision history (continued)
Date	Revision	Changes
		Updated Figure 6: Multi-AHB matrix.
		Updated Figure 7: Power supply supervisor interconnection with internal reset OFF
		Changed 1.2 V to V ₁₂ in <i>Section : Regulator OFF</i>
		Updated LQFP176 pin 48.
		Updated Section 1: Introduction.
		Updated Section 2: Description.
		Updated operating voltage in <i>Table 2:</i> STM32F415xx and STM32F417xx: features and peripheral counts.
		Updated Note 1.
		Updated Section 2.2.15: Power supply supervisor.
		Updated Section 2.2.16: Voltage regulator.
		Updated Figure 9: Regulator OFF.
		Updated Table 3: Regulator ON/OFF and internal reset ON/OFF availability.
		Updated Section 2.2.19: Low-power modes.
		Updated Section 2.2.20: VBAT operation.
		Updated Section 2.2.22: Inter-integrated circuit interface (I ² C)
		Updated pin 48 in Figure 15: STM32F41xxx LQFP176 pinout.
		Updated Table 6: Legend/abbreviations used in the pinout table.
		Updated Table 7: STM32F41xxx pin and ball definitions.
		Updated Table 14: General operating conditions.
04 Jun 2012	4	Updated Table 15: Limitations depending on the operating power
04-Jun-2013	(continued)	supply range
		Updated Section 5.3.7: Wakeup time from low-power mode.
		Updated Table 34: HSI oscillator characteristics.
		Updated Section 5.3.15: I/O current injection characteristics.
		Updated Table 48: I/O static characteristics.
		Updated Table 51: NRST pin characteristics.
		Updated Table 56: I ² C characteristics.
		Updated Figure 39: I ² C bus AC waveforms and measurement circuit.
		Updated Section 5.3.19: Communications interfaces.
		Updated Table 67: ADC characteristics.
		Added Table 70: Temperature sensor calibration values.
		Added Table 73: Internal reference voltage calibration values.
		Updated Section 5.3.26: FSMC characteristics.
		Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO) characteristics.
		Updated Table 23: Typical and maximum current consumptions in Stop mode.
		Updated Section : SPI interface characteristics included Table 55.
		Updated Section : I2S interface characteristics included Table 56.
		Updated Table 64: Dynamic characteristics: Eternity MAC signals for SMI.
		Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII.

Table 100. Document revision history (continued)
--

