E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f417vgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 ARM[®] Cortex[®]-M4 core with FPU and embedded Flash and SRAM

The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F415xx and STM32F417xx family is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F41xxx family.

Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.

2.2.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz.

2.2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.4 Embedded Flash memory

The STM32F41xxx devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data.

DocID022063 Rev 8

	1	Pin r	numb					unu		definitions (continued)	
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
40	E3	66	99	F14	118	PC9	I/O	FT	-	I2S_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4/ EVENTOUT	-
41	D1	67	100	F15	119	PA8	I/O	FT	-	MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF/ EVENTOUT	-
42	D2	68	101	E15	120	PA9	I/O	FT	-	USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/ EVENTOUT	OTG_FS_VBUS
43	D3	69	102	D15	121	PA10	I/O	FT	-	USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1/ EVENTOUT	-
44	C1	70	103	C15	122	PA11	I/O	FT	-	USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM/ EVENTOUT	-
45	C2	71	104	B15	123	PA12	I/O	FT	-	USART1_RTS/CAN1_TX/ TIM1_ETR/OTG_FS_DP/ EVENTOUT	-
46	D4	72	105	A15	124	PA13 (JTMS-SWDIO)	I/O	FT	-	JTMS-SWDIO/ EVENTOUT	-
47	B1	73	106	F13	125	V _{CAP_2}	S	-	-	-	-
-	E7	74	107	F12	126	V _{SS}	S	-	-	-	-
48	E6	75	108	G13	127	V _{DD}	S	-	-	-	-
-	-	-	-	E12	128	PH13	I/O	FT	-	TIM8_CH1N / CAN1_TX/ EVENTOUT	-
-	-	-	-	E13	129	PH14	I/O	FT	-	TIM8_CH2N / DCMI_D4/ EVENTOUT	-
-	-	-	-	D13	130	PH15	I/O	FT	-	TIM8_CH3N / DCMI_D11/ EVENTOUT	-
-	C3	-	-	E14	131	PI0	I/O	FT	-	TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13/ EVENTOUT	-
-	B2	-	-	D14	132	PI1	I/O	FT	-	SPI2_SCK / I2S2_CK / DCMI_D8/ EVENTOUT	-

Table 7. STM32F41xxx pin and ball definitions (continued)

68/206

DocID022063 Rev 8

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FSMC_D2	-	-	EVENTOUT
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FSMC_D3	-	-	EVENTOUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_CMD	DCMI_D11	-	EVENTOUT
	PD3	-	-	-	-	-	-	-	USART2_CTS	-	-	-	-	FSMC_CLK	-	-	EVENTOUT
	PD4	-	-	-	-	-	-	-	USART2_RTS	-	-	-	-	FSMC_NOE	-	-	EVENTOUT
	PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	FSMC_NWE	-	-	EVENTOUT
	PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	FSMC_NWAIT	-	-	EVENTOUT
Port D	PD7	-	-	-	-	-	-	-	USART2_CK	-	-	-	-	FSMC_NE1/ FSMC_NCE2	-	-	EVENTOUT
	PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	FSMC_D13	-	-	EVENTOUT
	PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	FSMC_D14	-	-	EVENTOUT
	PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	-	FSMC_D15	-	-	EVENTOUT
	PD11	-	-	-	-	-	-	-	USART3_CTS	-	-	-	-	FSMC_A16	-	-	EVENTOUT
	PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	-	-	-	-	FSMC_A17	-	-	EVENTOUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	FSMC_A18	-	-	EVENTOUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	FSMC_D0	-	-	EVENTOUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	FSMC_D1	-	-	EVENTOUT

 Table 9. Alternate function mapping (continued)

577

Bus	Boundary address	Peripheral
	0x4000 7800 - 0x4000 7FFF	Reserved
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	12C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
APB1	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

 Table 10. STM32F41x register boundary addresses (continued)

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait state (f _{Flashmax})	Maximum Flash memory access frequency with wait states ^{(1) (2)}	I/O operation	Clock output Frequency on I/O pins	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	160 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	168 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	168 MHz with 6 wait states	 Degraded speed performance I/O compensation works 	up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	168 MHz with 5 wait states	 Full-speed operation I/O compensation works 	 up to 60 MHz when V_{DD} = 3.0 to 3.6 V up to 48 MHz when V_{DD} = 2.7 to 3.0 V 	32-bit erase and program operations

 Table 15. Limitations depending on the operating power supply range

1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. V_{DD}/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to *Section : Internal reset OFF*).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 28*. The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog pins by firmware.
- All peripherals are disabled unless otherwise mentioned
- The code is running from Flash memory and the Flash memory access time is equal to 5 wait states at 168 MHz.
- The code is running from Flash memory and the Flash memory access time is equal to 4 wait states at 144 MHz, and the power scale mode is set to 2.
- The ART accelerator is ON.
- The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- When the peripherals are enabled: HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- The typical values are obtained for V_{DD} = 3.3 V and T_A= 25 °C, unless otherwise specified.

		I _{DD} (T	I _{DD} (Typ) ⁽¹⁾			
Perip	heral	Scale1 (up t 168 MHz)	Scale2 (up to 144 MHz)	Unit		
	GPIOA	2.70	2.40			
	GPIOB	2.50	2.22			
	GPIOC	2.54	2.28			
	GPIOD	2.55	2.28			
	GPIOE	2.68	2.40			
	GPIOF	2.53	2.28			
	GPIOG	2.51	2.22			
	GPIOH	2.51	2.22			
AHB1	GPIOI	2.50	2.22	µA/MHz		
(up to 168 MHz)	OTG_HS+ULPI	28.33	25.38			
	CRC	0.41	0.40			
	BKPSRAM	0.63	0.58			
	DMA1	37.44	33.58			
	DMA2	37.69	33.93			
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	20.43	18.39			

Table 28. Peripheral current consumption

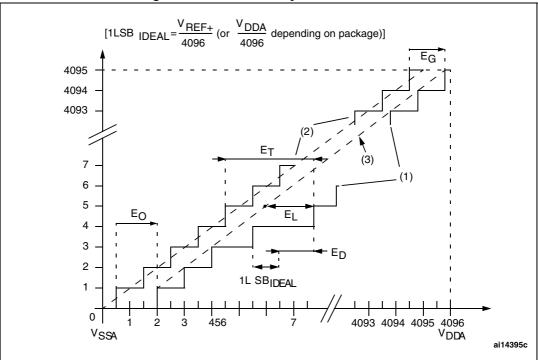
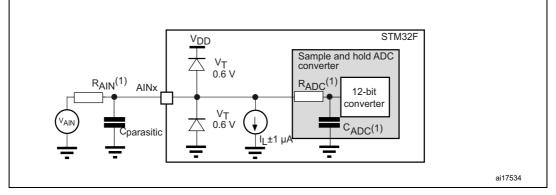



Figure 49. ADC accuracy characteristics

- See also Table 68. 1.
- 2. Example of an actual transfer curve.
- Ideal transfer curve. 3.
- 4. End point correlation line.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. 5. EG = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one.
 - ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- Refer to Table 67 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}\,\text{and}\,\mathsf{C}_{ADC}.$ 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

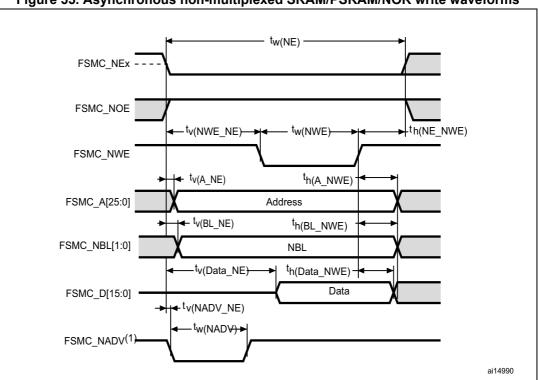


Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ⁽¹⁾⁽²⁾
Table To. Asynchronous non-multiplexed Strawn Strawnort write unings

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK}	3T _{HCLK} + 4	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	T _{HCLK} –0.5	T _{HCLK} +0.5	ns
t _{w(NWE)}	FSMC_NWE low time	T _{HCLK} –1	T _{HCLK} +2	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK} –1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK} – 2	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1	-	ns
t _{v(Data_NE)}	Data to FSMC_NEx low to Data valid	-	T _{HCLK} +3	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} –1	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK} +0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization.

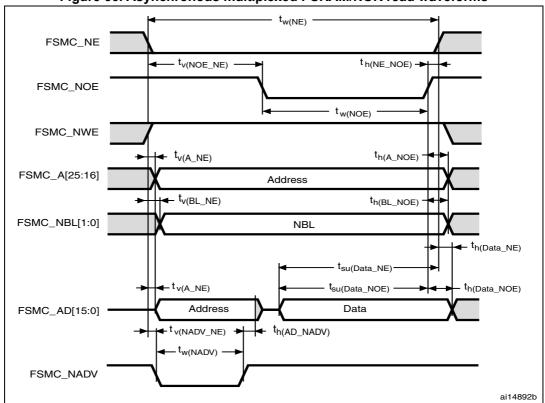


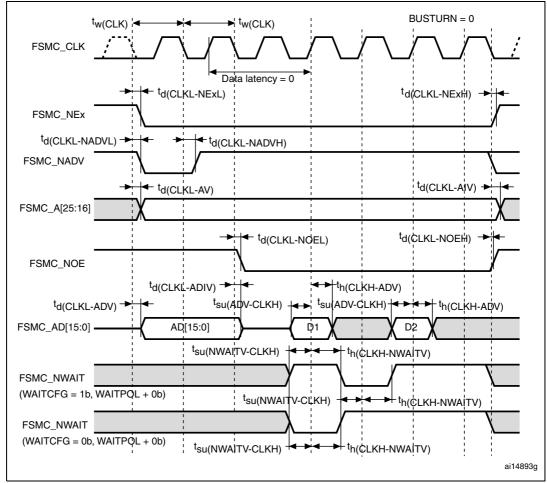
Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 77. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK} –1	3T _{HCLK} +1	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	2T _{HCLK} -0.5	2T _{HCLK} +0.5	ns
t _{w(NOE)}	FSMC_NOE low time	T _{HCLK} –1	T _{HCLK} +1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	3	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	1	2	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 2	T _{HCLK} +1	ns
t _{h(AD_NADV)}	FSMC_AD(adress) valid hold time after FSMC_NADV high)	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK} –1	-	ns
t _{h(BL_NOE)}	FSMC_BL time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	2	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} +4	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	T _{HCLK} +4	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization.


2. Guaranteed by characterization.

Synchronous waveforms and timings

Figure 58 through *Figure 61* represent synchronous waveforms and *Table 80* through *Table 82* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the T_{HCLK} is the HCLK clock period (with maximum FSMC_CLK = 60 MHz).

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 WLCSP90 package information

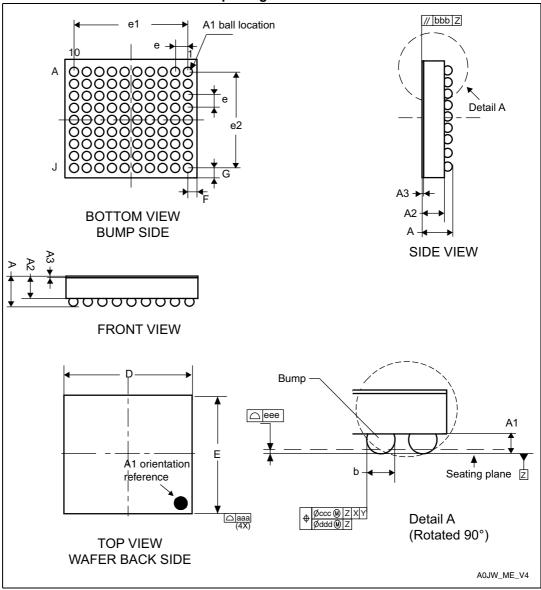
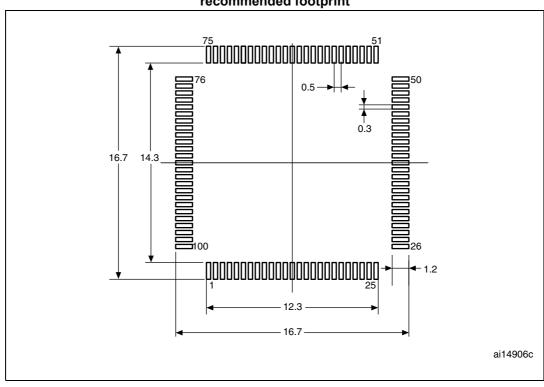
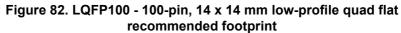


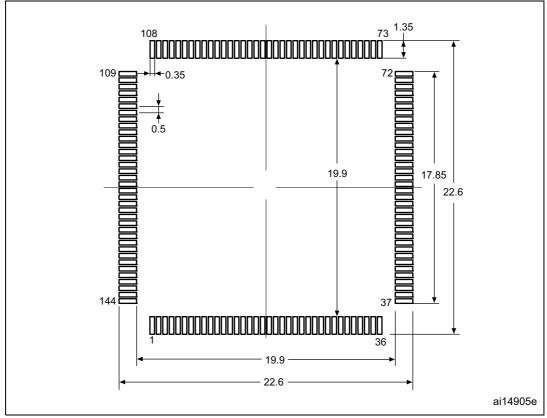
Figure 75. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale package outline

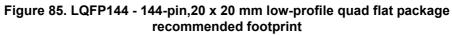
1. Drawing is not to scale.


DocID022063 Rev 8



Cumhal		millimeters		inches							
Symbol	Min	Тур	Max	Min	Тур	Max					
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591					
E3	-	12.000	-	-	0.4724	-					
е	-	0.500	-	-	0.0197	-					
L	0.450	0.600	0.750	0.0177	0.0236	0.0295					
L1	-	1.000	-	-	0.0394	-					
k	0°	3.5°	7°	0°	3.5°	7°					
CCC	-	-	0.080	-	-	0.0031					


Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package mechanical data⁽¹⁾ (continued)


1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

1. Dimensions are in millimeters.

Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch	
ball grid array mechanical data (continued)	

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 88. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array recommended footprint

00000000000000000000000000000000000000	
0000 00000 0000	
0000 00000 0000	
0000 00000 0000	
0000 00000 0000	
0000 0000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000	0E7_FP_V1

Table 96. UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)

Note:

Non solder mask defined (NSMD) pads are recommended.
 4 to 6 mils solder paste screen printing process.
 Stencil opening is 0.300 mm.
 Stencil thickness is between 0.100 mm and 0.125 mm.
 Pad trace width is 0.100 mm.

mechanical data (continued)						
Cumhal		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
ZD	-	1.250	-	-	0.0492	-
Е	23.900	-	24.100	0.9409	-	0.9488
HE	25.900	-	26.100	1.0197	-	1.0276
ZE	-	1.250	-	-	0.0492	-
е	-	0.500	-	-	0.0197	-
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	-	7°	0°	-	7°
CCC	-	-	0.080	-	-	0.0031

Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

8 Revision history

Date	Revision	Changes
15-Sep-2011	1	Initial release.
24-Jan-2012	2	Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in Table 2: STM32F415xx and STM32F417xx: features and peripheral counts. Updated Figure 3: Compatible board design between STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package and Figure 4: Compatible board design between STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package and Figure 4: Compatible board design between STM32F2 and STM32F41xxx for LQFP176 and BGA176 packages, and removed note 1 and 2. Updated Section 2.2.9: Flexible static memory controller (FSMC). Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in Section 2.2.13: Boot modes. Updated note in Section 2.2.14: Power supply schemes. PDR_ON no more available on LQFP100 package. Updated Section 2.2.16: Voltage regulator. Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in Table 5: USART feature comparison. Removed support of I2C for OTG PHY in Section 2.2.30: Universal serial bus on-the-go full-speed (OTG_FS). Added Table 6: Legend/abbreviations used in the pinout table. Table 7: STM32F41xxx pin and ball definitions: replaced V _{SS} _3, V _{SS} _4, and V _{SS} _8 by V _{SS} ; reformatted Table 7: STM32F41xxx pin and ball definitions to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to V _{SS} ; EVENTOUT added in the list of alternate functions for all I/OS; ADC3_IN8 added as alternate functions for PD11 and PD12, respectively; PH10 alternate function TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7: STM32F41xxx pin and ball definitions and Table 9: Alternate function mapping. Changed TCM data RAM to CCM data RAM in Figure 18: STM32F41xxx memory map. Added I _{VDD} and I _{VSS} maximum values

Table 100. Document revision history

Date	Revision	Changes
24-Jan-2012	2 (continued)	Updated Table 61: USB HS clock timing parameters Updated Table 67: ADC characteristics. Updated Table 68: ADC accuracy at fADC = 30 MHz. Updated Note 1 in Table 74: DAC characteristics. Section 5.3.26: FSMC characteristics: updated Table 75 to Table 86, changed C _L value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 59: Synchronous multiplexed PSRAM write timings. Updated Table 98: Package thermal characteristics. Appendix A.1: USB OTG full speed (FS) interface solutions: modified Figure 93: USB controller configured as peripheral-only and used in Full speed mode added Note 2, updated Figure 94: USB controller configured as host-only and used in full speed mode and added Note 2, changed Figure 95: USB controller configured in dual mode and used in full speed mode and added Note 3. Appendix A.2: USB OTG high speed (HS) interface solutions: removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode, and updated Figure 96: USB controller configured as peripheral, host, or dual-mode and used in high speed mode and added Note 2. Added Appendix A.3: Ethernet interface solutions.

Table 100.	Document revision	history	(continued)
	Boounion	motory	(continuou)

Table 100. Document revision history (continued)

	Table 100. Document revision history (continued)				
Date	Revision	Changes			
		Updated Figure 6: Multi-AHB matrix.			
		Updated Figure 7: Power supply supervisor interconnection with internal reset OFF			
		Changed 1.2 V to V ₁₂ in <i>Section : Regulator OFF</i>			
		Updated LQFP176 pin 48.			
		Updated Section 1: Introduction.			
		Updated Section 2: Description.			
		Updated operating voltage in <i>Table 2:</i> STM32F415xx and STM32F417xx: features and peripheral counts.			
		Updated Note 1.			
		Updated Section 2.2.15: Power supply supervisor.			
		Updated Section 2.2.16: Voltage regulator.			
		Updated Figure 9: Regulator OFF.			
		Updated Table 3: Regulator ON/OFF and internal reset ON/OFF availability.			
		Updated Section 2.2.19: Low-power modes.			
		Updated Section 2.2.20: VBAT operation.			
		Updated Section 2.2.22: Inter-integrated circuit interface (I ² C)			
		Updated pin 48 in Figure 15: STM32F41xxx LQFP176 pinout.			
		Updated Table 6: Legend/abbreviations used in the pinout table.			
		Updated Table 7: STM32F41xxx pin and ball definitions.			
		Updated Table 14: General operating conditions.			
04 Jun 2012	4	Updated Table 15: Limitations depending on the operating power			
04-Jun-2013	(continued)	supply range			
		Updated Section 5.3.7: Wakeup time from low-power mode.			
		Updated Table 34: HSI oscillator characteristics.			
		Updated Section 5.3.15: I/O current injection characteristics.			
		Updated Table 48: I/O static characteristics.			
		Updated Table 51: NRST pin characteristics.			
		Updated Table 56: I ² C characteristics.			
		Updated Figure 39: I ² C bus AC waveforms and measurement circuit.			
	Updated Section 5.3.19: Communications interfaces.				
		Updated Table 67: ADC characteristics.			
		Added Table 70: Temperature sensor calibration values.			
		Added Table 73: Internal reference voltage calibration values.			
		Updated Section 5.3.26: FSMC characteristics.			
		Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO) characteristics.			
		Updated Table 23: Typical and maximum current consumptions in Stop mode.			
		Updated Section : SPI interface characteristics included Table 55.			
		Updated Section : I2S interface characteristics included Table 56.			
		Updated Table 64: Dynamic characteristics: Eternity MAC signals for SMI.			
		Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII.			

Table 100. Document revision history (continued)
--

Date	Revision	Changes
22-Oct-2015	6	In the whole document, updated notes related to values guaranteed by design or by characterization. Updated <i>Table 34: HSI oscillator characteristics</i> . Changed f _{VCO_OUT} minimum value and VCO freq to 100 MHz in <i>Table 36: Main PLL characteristics</i> and <i>Table 37: PLLI2S (audio PLL) characteristics</i> . Updated <i>Figure 39: SPI timing diagram - slave mode and CPHA = 0</i> . Updated <i>Figure 53: 12-bit buffered /non-buffered DAC</i> . Removed note 1 related to better performance using a restricted V _{DD} range in <i>Table 68: ADC accuracy at fADC = 30 MHz</i> . Updated <i>Figure 84: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline</i> . Updated <i>Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline</i> and <i>Table 95: UFBGA176+25 ball, 10 x 10 x 0.65 mm pitch, ultra thin fine pitch ball grid array mechanical data</i> .
16-Mar-2016	 7 ⁷ Updated Figure 2: Compatible board design STM32F10xx/STM32F2/STM32F41xxx for LQFP100 package. Updated Vssx-Vss in Table 11: Voltage characteristics to add V_R Added V_{REF-}in Table 67: ADC characteristics. Updated Table 90: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale package mechanical data. 	
09-Sep-2016	8	Removed note 1 below <i>Figure 5: STM32F41xxx block diagram</i> . Updated definition of stresses above maximum ratings in Section 5.2: <i>Absolute maximum ratings</i> . Updated $t_{h(NSS)}$ in <i>Figure 39: SPI timing diagram - slave mode and</i> <i>CPHA = 0Figure</i> and <i>Figure 40: SPI timing diagram - slave mode and</i> <i>CPHA = 1.</i> Added note related to optional marking and inset/upset marks in all package marking sections. Updated <i>Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,</i> <i>ultra fine pitch ball grid array package outline</i> and <i>Table 95:</i> <i>UFBGA176+25 ball, 10 x 10 x 0.65 mm pitch, ultra thin fine pitch ball</i> <i>grid array mechanical data.</i>

Table 100. Document revision history (continued)

