E ·) (Fahalog Devices Inc./Maxim Integrated - 73S1210F-44IMR/F/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	80515
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SmartCard, UART/USART
Peripherals	LED, POR, WDT
Number of I/O	8
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-QFN (7×7)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/73s1210f-44imr-f-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Hard	ware Description	8
	1.1	Pin Description	8
	1.2	Hardware Overview	11
	1.3	80515 MPU Core	11
		1.3.1 80515 Overview	11
		1.3.2 Memory Organization	11
	1.4	Program Security	16
	1.5	Special Function Registers (SFRs)	18
		1.5.1 Internal Data Special Function Registers (SFRs)	18
		1.5.2 IRAM Special Function Registers (Generic 80515 SFRs)	19
		1.5.3 External Data Special Function Registers (SFRs)	20
	1.6	Instruction Set	22
	1.7	Peripheral Descriptions	22
		1.7.1 Oscillator and Clock Generation	22
		1.7.2 Power Supply Management	25
		1.7.3 Power ON/OFF	26
		1.7.4 Power Control Modes	27
		1.7.5 Interrupts	33
		1.7.6 UART	40
		1.7.7 Timers and Counters	45
		1.7.0 VVD TIMER (Soliware Watchdog Timer)	47
		1.7.9 USEI (USR) FUIS	49
		1.7.10 Analog Vollage Comparator	52
		1.7.11 LED Driver	57
		1713 Keynad Interface	61
		1 7 14 Emulator Port	68
		1 7 15 Smart Card Interface Function	69
		1.7.16 VDD Fault Detect Function	03
2	Typic	al Application Schematic 1	04
2	турк		07
3	Elect	rical Specification1	05
	3.1	Absolute Maximum Ratings1	05
	3.2	Recommended Operating Conditions1	05
	3.3	Digital IO Characteristics1	06
	3.4	Oscillator Interface Requirements1	07
	3.5	DC Characteristics: Analog Input1	07
	3.6	Smart Card Interface Requirements1	08
	3.7	DC Characteristics	10
	3.8	Current Fault Detection Circuits1	11
4	Equi	valent Circuits1	12
5	Pack	age Pin Designation	20
•	51	68-pin QEN Pinout	20
	5.2	44-pin QFN Pinout	21
c	Deek	aging Information	
0	Pack		22
	6.1	68-Pin QFN Package Outline	22
	6.2	44-Pin QFN Package Outline	23
7	Orde	ring Information1	24
8	Relat	ed Documentation1	24
9	Cont	act Information1	24
Revi	ision	History1	25

		Address	Use						
		0xFFFF	Peripheral Control						
		0XFF80	Registers (128b)						
		0xFF7F	Smart Card Control						
		0XFE00	(384b)						
Address	Use	0xFBFF							
0x7FFF			-						
		0x0800		A daha a a	Us	e			
		0x07FF		Address	Indirect Access	Direct Access			
				0xFF		050-			
				0x80	Byte RAM	SFRS			
				0x7F					
				0x48	Byte RAM				
	Flash Program Memory 32K Bytes	Program			0x47	Dit/Dute	DAM		
				0x20	DIVDYLE				
		32K Bytes	32K Bytes	32K Bytes		XRAM	0x1F	Dogistor	hank 2
					0x18	Regisier	Dank 3		
				0x17	Dogistor	hank 2			
					0x10	Regisier	Dank Z		
				0x0F	Dogistor	honk 1			
				0x08	Regisier	DANKI			
				0x07	Pogiatar	book 0			
0x0000		0x0000		0x00	Register				
Program	Memory	Ext	ernal Data Memory		Internal Data Mer	nory			

Figure 2: Memory Map

Dual Data Pointer: The Dual Data Pointer accelerates the block moves of data. The standard DPTR is a 16-bit register that is used to address external memory. In the 80515 core, the standard data pointer is called DPTR, the second data pointer is called DPTR1. The data pointer select bit chooses the active pointer. The data pointer select bit is located at the LSB of the DPS IRAM special function register (DPS.0). DPTR is selected when DPS.0 = 0 and DPTR1 is selected when DPS.0 = 1.

The user switches between pointers by toggling the LSB of the DPS register. All DPTR-related instructions use the currently selected DPTR for any activity.

The second data pointer may not be supported by certain compilers.

Figure 8: Power Down Sequencing

Interrupt Enable 1 Register (IEN1): 0xB8 ← 0x00

Table 20: The IEN1 Register

Bit	Symbol	Function				
IEN1.7	_					
IEN1.6	SWDT	Not used for interrupt control.				
IEN1.5	EX6	EX6 = 0 – disable external interrupt 6.				
IEN1.4	EX5	EX5 = 0 – disable external interrupt 5.				
IEN1.3	EX4	EX4 = 0 – disable external interrupt 4.				
IEN1.2	EX3	EX3 = 0 – disable external interrupt 3.				
IEN1.1	EX2	EX2 = 0 – disable external interrupt 2.				
IEN1.0	-					

Interrupt Enable 2 Register (IEN2): 0x9A ← 0x00

Table 21: The IEN2 Register

Bit	Symbol	Function
IEN2.0	ES1	ES1 = 0 – disable serial channel interrupt.

Enable Bit	Description
EX0	Enable external interrupt 0
EX1	Enable external interrupt 1
EX2	Enable external interrupt 2
EX3	Enable external interrupt 3
EX4	Enable external interrupt 4
EX5	Enable external interrupt 5
EX6	Enable external interrupt 6

Table 26: Control Bits for External Interrupts

Flag Bit	Description
IE0	External interrupt 0 flag
IE1	External interrupt 1 flag
IEX2	External interrupt 2 flag
IEX3	External interrupt 3 flag
IEX4	External interrupt 4 flag
IEX5	External interrupt 5 flag
IEX6	External interrupt 6 flag

1.7.5.4 Power Down Interrupt Logic

The 73S1210F contains special interrupt logic to allow INT0 to wake up the CPU from a power down (CPU STOP) state. See the Power Control Modes section for details.

1.7.5.5 Interrupt Priority Level Structure

All interrupt sources are combined in groups, as shown in Table 27.

Group			
0	External interrupt 0	Serial channel 1 interrupt	
1	Timer 0 interrupt	-	External interrupt 2
2	External interrupt 1	-	External interrupt 3
3	Timer 1 interrupt	-	External interrupt 4
4	Serial channel 0 interrupt	-	External interrupt 5
5	_	-	External interrupt 6

Table 27: Priority Level Groups

Each group of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register IP0 and one in IP1. If requests of the same priority level are received simultaneously, an internal polling sequence as per Table 31 determines which request is serviced first.

IEN enable bits must be set to permit any of these interrupts to occur. Likewise, each interrupt has its own flag bit that is set by the interrupt hardware and is reset automatically by the MPU interrupt handler.

Interrupt Priority 0 Register (IP0): 0xA9 ← 0x00

Table 28: The IP0 Register

Μ	ISB							LSB
	_	WDTS	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0

Note: WDTS is not used for interrupt controls.

Interrupt Priority 1 Register (IP1): 0xB9 ← 0x00

MSB							LSB	;
-	_	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	

Table 29: The IP1 Register

Table 30: Priority Levels

IP1.x	IP0.x	Priority Level
0	0	Level0 (lowest)
0	1	Level1
1	0	Level2
1	1	Level3 (highest)

Table 31: Interrupt Polling Sequence

External interrupt 0	
Serial channel 1 interrupt	
Timer 0 interrupt	
External interrupt 2	JCe
External interrupt 1	Iank
External interrupt 3	sec
Timer 1 interrupt	ling
Serial channel 0 interrupt	Pol
External interrupt 4	
External interrupt 5	
External interrupt 6	

1.7.5.6 Interrupt Sources and Vectors

Table 32 shows the interrupts with their associated flags and vector addresses.

Table 32: Interrupt Vectors

Interrupt Request Flag	Description	Interrupt Vector Address
N/A	Chip Reset	0x0000
IE0	External interrupt 0	0x0003
TF0	Timer 0 interrupt	0x000B
IE1	External interrupt 1	0x0013
TF1	Timer 1 interrupt	0x001B
RI0/TI0	Serial channel 0 interrupt	0x0023
RI1/TI1	Serial channel 1 interrupt	0x0083
IEX2	External interrupt 2	0x004B
IEX3	External interrupt 3	0x0053
IEX4	External interrupt 4	0x005B
IEX5	External interrupt 5	0x0063
IEX6	External interrupt 6	0x006B

Miscellaneous Control Register 0 (MISCtI0): 0xFFF1 ← 0x00

Transmit and receive (TX and RX) pin selection and loop back test configuration are setup via this register.

Table 37: The MISCtI0 Register

Bit	Symbol	Function
MISCtI0.7	PWRDN	This bit places the 73S1210F into a power down state.
MISCtI0.6	-	
MISCtI0.5	_	
MISCtI0.4	-	
MISCtI0.3	-	
MISCtI0.2	_	
MISCtI0.1	SLPBK	1 = UART loop back testing mode. The pins TXD and RXD are to be connected together externally (with SLPBK =1) and therefore:SLPBKSSEL000101100111t1
MISCtI0.0	SSEL	Selects either Serial_1 if set =1 or Serial_0 if set = 0 to be connected to RXD and TXD pins.

1.7.6.1 Serial Interface 0

The Serial Interface 0 can operate in 4 modes:

• Mode 0

Pin RX serves as input and output. TX outputs the shift clock. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the crystal frequency. Reception is initialized in Mode 0 by setting the flags in SOCON as follows: RI0 = 0 and REN0 = 1. In other modes, a start bit when REN0 = 1 starts receiving serial data.

• Mode 1

Pin RX serves as input, and TX serves as serial output. No external shift clock is used, 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading S0BUF, and stop bit sets the flag RB80 in the Special Function Register S0CON. In mode 1 either internal baud rate generator or timer 1 can be use to specify baud rate.

• Mode 2

This mode is similar to Mode 1, with two differences. The baud rate is fixed at 1/32 or 1/64 of oscillator frequency and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the serial interface: at transmission, bit TB80 in SOCON is output as the 9th bit, and at receive, the 9th bit affects RB80 in Special Function Register SOCON.

1.7.10 Analog Voltage Comparator

The 73S1210F includes a programmable comparator that is connected to the ANA_IN pin. The comparator can be configured to trigger an interrupt if the input voltage rises above or falls below a selectable threshold voltage. The comparator control register should not be modified when the analog interrupt (ANAIEN bit in the INT6Ctl register) is enabled to guard against any false interrupt that might be generated when modifying the threshold. The comparator has a built-in hysteresis to prevent the comparator from repeatedly responding to low-amplitude noise. This hysteresis is approximately 20mV. Interrupt control is handled in the INT6Ctl register.

Analog Compare Control Register (ACOMP): 0xFFD0 ← 0x00

Table 54: The ACOMP Register

MSB							LSB	
ANALVL	-	ONCHG	CPOL	CMPEN	TSEL.2	TSEL.1	TSEL.0	

Bit	Symbol			Function					
ACOMP.7	ANALVL	When read, indicates whether the input level is above or below the threshold. This is a real time value and is not latched, so it may change from the time of the interrupt trigger until read.							
ACOMP.6	-								
ACOMP.5	ONCHG	If set, the Ana_ir threshold, bit 4 is	If set, the Ana_interrupt is invoked on any change above or below the threshold, bit 4 is ignored.						
ACOMP.4	CPOL	If set = 1, Ana_interrupt is invoked when signal rises above selected threshold. If set = 0, Ana_interrupt is invoked when signal goes below selected threshold (default).							
ACOMP.3	CMPEN	Enables power to (default).	Enables power to the analog comparator. $1 =$ Enabled. $0 =$ Disabled (default).						
ACOMP.2	TSEL.2	Sets the voltage Thresholds are a	threshold for con as follows:	mparison to the voltage on pin ANA_IN.					
ACOMP.1	TSEL.1	TSEL.2 TSE 0 0 0 0 0 1	EL.1 TSEL.0 0 1 0	Voltage Threshold 1.00V 1.24V 1.40V					
ACOMP.0	TSEL.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

1.7.11 LED Driver

The 73S1210F provides a single dedicated output pin for driving an LED. The LED driver pin can be configured as a current source that will pull to ground to drive an LED that is connected to VDD without the need for an external current limiting resistor. This pin may be used as general purpose output with the programmed pull-down current and a strong (CMOS) pull-up, if enabled. The analog block must be enabled when this output is being used to drive the selected output current.

This pin may be used as an input with consideration of the programmed output current and level. The register bit when read, indicates the state of the pin.

LED Control Register (LEDCtl): 0xFFF3 ← 0xFF

MSB							LSB
-	LPUEN	ISET.1	ISET.0	Ι	-	Ι	LEDD0

Bit	Symbol	Function
LEDCtl.7	-	
LEDCtl.6	LPUEN	0 = Pull-ups are enabled for all of the LED pins.
LEDCtl.5	ISET.1	These two bits control the drive current (to ground) for the LED driver pin. Current levels are:
		00 = 0ma(off)
LEDCtl.4	ISET.0	01 = 2ma 10 = 4ma 11 = 10ma
LEDCtl.3	-	
LEDCtl.2	_	
LEDCtl.1	-	
LEDCtl.0	LEDD0	Write data controls output level of pin LED0. Read will report level of pin LED0.

Table 56: The LEDCtl Register

Figure 11 shows the timing of the I^2C read mode:

Figure 11: I²C Read Operation

I2C Secondary Read Data Register (SRDR): 0XFF84 ← 0x00

Table 61: The SRDR Register

MSB							LSB	
SRDR.7	SRDR.6	SRDR.5	SRDR.4	SRDR.3	SRDR.2	SRDR.1	SRDR.0]
Bit				Functio	on			
SRDR.7								
SRDR.6								
SRDR.5	-							
SRDR.4	Second Da	ata byte to b	e read from	the I ² C slav	ve device if b	oit 0 (I2CLEI	N) of the Co	ntrol
SRDR.3	and Status	s register (C	SR) is set =	1.				
SRDR.2	-							
SRDR.1]							
SRDR.0								

I2C Control and Status Register (CSR): 0xFF85 ← 0x00

Table 62: The CSR Register

MSB							LSB	
_	-	-	-	_	AKERR	I2CST	I2CLEN	

Bit	Symbol	Function
CSR.7	-	
CSR.6	-	
CSR.5	-	
CSR.4	-	
CSR.3	-	
CSR.2	AKERR	Set to 1 if acknowledge bit from Slave Device is not 0. Automatically reset when the new bus transaction is started.
CSR.1	I2CST	Write a 1 to start I^2C transaction. Automatically reset to 0 when the bus transaction is done. This bit should be treated as a "busy" indicator on reading. If it is high, the serial read/write operations are not completed and no new address or data should be written.
CSR.0	I2CLEN	Set to 1 for 2 byte read or write operations. Set to 0 for 1-byte operations.

on a card insertion / removal to allow power saving modes. Card insertion / removal is generated from the respective card switch detection inputs (whose polarity is programmable).

The built-in ICC Interface has a linear regulator (V_{CC} generator) capable of driving 1.8, 3.0 and 5.0V smart cards in accordance with the ISO 7816-3 and EMV4.1 standards. This converter uses the V_P (5.5V nominal) input supply source. See the power supply management section above for more detail. Auxiliary I/O lines C4 and C8 are only provided for the built-in interface. If support for the auxiliary lines is necessary for the external smart card interface, they need to be handled manually through the USR GPIO pins. The external 73S8010x devices directly connect the I/O (SIO) and clock (SCLK) signals and control is handled via the I²C interface.

Figure 15 shows how multiple 8010 devices can be connected to the 73S1210F.

Figure 15: External Smart Card Interface Block Diagram

Special Notes Regarding Synchronous Mode Operation

When the SCISYN or SCESNC bits (SPrtcol, bit 7, bit 5, respectively) are set, the selected smart card interface operates in synchronous mode and there are changes in the definition and behavior of pertinent register bits and associated circuitry. The following requirements are to be noted:

- 1. The source for the smart card clock (CLK or SCLK) is the ETU counter. Only the actively selected interface can have a running synchronous clock. In contrast, an unselected interface may have a running clock in the asynchronous mode of operation.
- 2. The control bits CLKLVL, SCLKLVL, CLKOFF, and SCLKOFF are functional in synchronous mode. When the CLKOFF bit is set, it will not truncate either the logic low or logic high period when the (stop at) level is of opposite polarity. The CLK/SCLK signal will complete a correct logic low or logic high duty cycle before stopping at the selected level. The CLK "start" is a result of the falling edge of the CLKOFF bit. Setting clock to run when it is stopped low will result in a half period of low before going high. Setting clock to run when it is stopped high will result in the clock going low immediately and then running at the selected rate with 50% duty cycle (within the limitations of the ETU divisor value).
- 3. The Rlen(7:0) is configured to count the falling edges of the ETU clock (CLK or SCLK) after it has been loaded with a value from 1 to 255. A value of 0 disables the counting function and RLen functions such as I/O source selection (I/O signal bypasses the FIFOs and is controlled by the SCCLK/SCECLK SFRs). When the RLen counter reaches the "max" (loaded) value, it sets the WAITTO interrupt (SCInt, bit 7), which is maskable via WTOIEN (SCIE, bit 7). It must be reloaded in order to start the counting/clocking process again. This allows the processor to select the number of CLK cycles and hence, the number of bits to be read or written to/from the card.
- 4. The FIFO is not clocked by the first CLK (falling) edge resulting from a CLKOFF de-assertion (a clock start event) when the CLK was stopped in the high state and RLen has been loaded but not yet clocked.
- 5. The state of the pin IO or SIO is sampled on the rising edge of CLK/SCLK and stored in bit 5 of the SCCtl/SCECtl register.
- When Rlen = max or 0 and I2CMODE= 1 (STXCtl, b7), the IO or SIO signal is directly controlled by the data and direction bits in the respective SCCtl and SCECtl register. The state of the data in the TX FIFO is bypassed.
- In the SPrtcol register, bit 6 (MODE9/8B) becomes active. When set, the RXData FIFO will read nine-bit words with the state of the ninth bit being readable in SRXCtl, bit 7 (B9DAT). The RXDAV interrupt will occur when the ninth bit has been clocked in (rising edge of CLK or SCLK).
- 8. Care must be taken to clear the RX and TX FIFOs at the start of any transaction. The user shall read the RX FIFO until it indicates empty status. Reading the TX FIFO twice will reset the input byte pointer and the next write to the TX FIFO will load the byte to the "first out" position. Note that the bit pointer (serializer/deserializer) is reset to bit 0 on any change of the TX/RXD bit.

Special bits that are only active for sync mode include: SRXCtl, b7 "BIT9DAT", SPrtcol, b6 "MODE9/8B", STXCtl, b7 "I2CMODE", and the definition of SCInt, b7, which was "WAITTO", becomes RLenINT interrupt, and SCIE, b7, which was "WTOIEN", becomes RLenIEN.

C4/C8 Data Direction Register (SCDIR): 0xFE0C ← 0x00

This register determines the direction of the internal interface C4/C8 lines. After reset, all signals are tri-stated.

MSB LSB _ _ _ _ C8D C4D _ _ Bit Function Symbol SCDIR.7 _ SCDIR.6 _ SCDIR.5 _ SCDIR.4 _ SCDIR.3 1 = input, 0 = output. Smart Card C8 direction. C8D SCDIR.2 C4D 1 = input, 0 = output. Smart Card C4 direction. SCDIR.1 _ SCDIR.0 _

Table 84: The SCDIR Register

FD Control Register (FDReg): 0xFE13 ← 0x11

This register uses the transmission factors F and D to set the ETU (baud) rate. The values in this register are mapped to the ISO 7816 conversion factors as described below. The CLK signal for each interface is created by dividing a high-frequency, intermediate signal (MSCLK) by 2. The ETU baud rate is created by dividing MSCLK by 2 times the Fi/Di ratio specified by the codes below. For example, if FI = 0001 and DI = 0001, the ratio of Fi/Di is 372/1. Thus the ETU divider is configured to divide by 2 * 372 = 744. The maximum supported F/D ratio is 4096.

Table 90: The FDReg Register

MSB							LSB
FVAL.3	FVAL.2	FVAL.1	FVAL.0	DVAL.3	DVAL.2	DVAL.1	DVAL.0

Table 91: The FDReg Bit Functions

Bit	Symbol	Function
FDReg.7	FVAL.3	Refer to the Table 03 above. This value is converted per the table to
FDReg.6	FVAL.2	set the divide ratio used to generate the baud rate (ETU). Default,
FDReg.5	FVAL.1	also used for ATR, is 0001 (Fi = 372). This value is used by the
FDReg.4	FVAL.0	selected interface.
FDReg.3	DVAL.3	
FDReg.2	DVAL.2	Refer to Table 93 above. This value is used to set the divide ratio
FDReg.1	DVAL.1	0001 (Di = 1).
FDReg.0	DVAL.0	

Table 92: Divider Ratios Provided by the ETU Counter

FI (code)	0000	0001	0010	0011	0100	0101	0110	0111
Fi (ratio)	372	372	558	744	1116	1488	1860	1860⊕
FCLK max	4	5	6	8	12	16	20	20⊕
FI(code)	1000	1001	1010	1011	1100	1101	1110	1111
Fi(ratio)	512⊕	512	768	1024	1536	2048	2048⊕	2048⊕
FCLK max	5⊕	5	7.5	10	15	20	20⊕	20⊕
DI(code)	0000	0001	0010	0011	0100	0101	0110	0111
Di(ratio)	1⊕	1	2	4	8	16	32	32⊕
DI(code)	1000	1001	1010	1011	1100	1101	1110	1111
Di(ratio)	12	20	16⊕	16⊕	16⊕	16⊕	16⊕	16⊕

Note: values marked with \oplus are not included in the ISO definition and arbitrary values have been assigned.

The values given below are used by the ETU divider to create the ETU clock. The entries that are not shaded will result in precise CLK/ETU per ISO requirements. Shaded areas are not precise but are within 1% of the target value.

ATR Timeout Registers (ATRLsB): 0xFE20 ← 0x00, (ATRMsB): 0xFE1F ← 0x00

These registers form the ATR timeout (ATRTO [15:0]) parameter. Time in ETU between the leading edge of the first character and leading edge of the last character of the ATR response. Timer is enabled when the RCVATR is set and starts when leading edge of the first start bit is received and disabled when the RCVATR is cleared. An ATR timeout is generated if this time is exceeded.

Table 103: The ATRLsB Register

MSB							LSB
ATRTO.7	ATRTO.6	ATRTO.5	ATRTO.4	ATRTO.3	ATRTO.1	ATRTO.2	ATRTO.0

Table 104: The ATRMsB Register

MSB							LSB
ATRTO.15	ATRTO.14	ATRTO.13	ATRTO.12	ATRTO.11	ATRTO.10	ATRTO.9	ATRTO.8

TS Timeout Register (STSTO): 0xFE21 ← 0x00

The TS timeout is the time in ETU between the de-assertion of smart card reset and the leading edge of the TS character in the ATR (when DETTS is set). The timer is started when smart card reset is de-asserted. An ATR timeout is generated if this time is exceeded (MUTE card).

Table 105: The STSTO Register

MSB							LSB
TST0.7	TST0.6	TST0.5	TST0.4	TST0.3	TST0.1	TST0.2	TST0.0

Reset Time Register (RLength): 0xFE22 ← 0x70

Time in ETUs that the hardware delays the de-assertion of RST. If set to 0 and RSTCRD = 0, the hardware adds no extra delay and the hardware will release RST after VCCOK is asserted during power-up. If set to 1, it will delay the release of RST by the time in this register. When the firmware sets the RSTCRD bit, the hardware will assert reset (RST = 0 on pin). When firmware clears the bit, the hardware will release RST after the delay specified in Rlen. If firmware sets the RSTCRD bit prior to instructing the power to be applied to the smart card, the hardware will not release RST after power-up until RLen after the firmware clears the RSTCRD bit. This provides a means to power up the smart card and hold it in reset until the firmware wants to release the RST to the selected smart card. Works with the selected smart card interface.

Table 106: The RLength Register

MSB							LSB
RLen.7	RLen.6	RLen.5	RLen.4	RLen.3	RLen.1	RLen.2	RLen.0

Shaded locations indicate functions that are not provided in the synchronous mode.

Name	Address	b7	b6	b5	b4	b3	b2	b1	b0
SCSel	FE00					SelS	C(1:0)	BYPASS	
SCInt	FE01	WAITTO/ RLIEN	CRDEVT	VCCTMR	RXDAVI	TXEVNT	TXSENT	TXERR	RXERR
SCIE	FE02	WTOI/ RLIEN	CDEVNT	VTMREN	RXDAEN	TXEVEN	TXSNTEN	TXERR	RXERR
VccCtl	FE03	VCCSEL.1	VCCSEL.0	VDDFLT	RDYST	VCCOK			SCPWRDN
VCCTmr	FE04		OFFT	MR(3:0)			VCCTI	MR(3:0)	
CRDCtl	FE05	DEBOUN	CDETEN			DETPOL	PUENB	PDEN	CARDIN
STXCtl	FE06	I2CMODE		TXFULL	TXEMTY	TXUNDR	LASTTX	TX/RXB	BREAKD
STXData	FE07				TXDAT	FA(7:0)			
SRXCtl	FE08	BIT9DAT		LASTRX	CRCERR	RXFULL	RXEMTY	RXOVRR	PARITYE
SRXData	FE09				RXDA	ΓA(7:0)			
SCCtl	FE0A	RSTCRD		Ю	IOD	C8	C4	CLKLVL	CLKOFF
SCECtl	FE0B			SIO	SIOD			SCLKLVL	SCLKOFF
SCDIR	FE0C					C8D	C4D		
SPrtcol	FE0D	SCISYN	MOD9/8B	SCESYN	0	TMODE	CRCEN	CRCMS	RCVATR
SCCLK	FE0F					ICLKF	⁻ S(5:0)		
SCECLK	FE10					ECLKI	FS(5:0)		
SParCtl	FE11		DISPAR	BRKGEN	BRKDET	RTRAN	DISCRX	INSPE	FORCPE
SByteCtl	FE12		DETTS	DIRTS	BRKDL	JR (1:0)			
FDReg	FE13		FVA	L(3:0)			DVA	L (3:0)	
CRCMsB	FE14				CRC((15:8)			
CRCLsB	FE15				CRC	(7:0)			
BGT	FE16	EGT8					BG1	(4:0)	
EGT	FE17				EGT	(7:0)			
BWTB3	FE18						BWT((27:24)	
BWTB2	FE19				BWT(23:16)			
BWTB1	FE1A				BWT	(15:8)			
BWTB0	FE1B				BWT	(7:0)			
CWTB1	FE1C		CWT(15:8)						
CWTB0	FE1D				CWT	(7:0)			
ATRMsB	FE1F				ATRTO	D(15:8)			
ATRLsB	FE20				ATRT	O(7:0)			
STSTO	FE21				TSTO	D(7:0)			
RLength	FE22				RLer	n(7:0)			

Table 107: Smart Card SFR Table

3.3 Digital IO Characteristics

These requirements pertain to digital I/O pin types with consideration of the specific pin function and configuration. The LED(1:0) pins have pull-ups that may be enabled. The Row pins have $100k\Omega$ pull-ups.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Voh	Output level, high	loh = -2mA	0.8 * V _{DD}		V _{DD}	V
		OFF_REQ pin - I _{OH} = -1mA	V _{DD} - 0.45			V
Vol	Output level, low	lol = 2mA	0		0.3	V
		OFF_REQ pin - Iol = 2mA			0.45	V
Vih	Input voltage, high	2.7v < VDD <3.6v	1.8		V _{DD} +0.3	V
Vil	Input voltage, low	2.7v < VDD <3.6v	-0.3		0.6	V
		RESET, ON_OFF, PRES pins	-0.3		0.8	V
lleak	Leakage current	0 < Vin < VDD	-5		5	μΑ
		All output modes disabled, pull-up/downs disabled				
lpu	Pull-up current	If provided and enabled,	-5			μA
		Vout < 0.1v				
lpd	Pull-down current	If provided and enabled,			5	μA
		Vout > VDD - 0.1v				

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
lled	LED drive current	Vout = 1.3V,		2		mA
		2.7V < VDD < 3.6V		4 10		
lolkrow	Keypad row output low current	0.0v < Voh < 0.1v when pull-up R is enabled		40	100	μA
lolkcol	Keypad column output high current	0.0v < Voh < 0.1v when col. is pulled low		1.5	3	mA

I _{DD_IN}	Supply Current – pins 28 + 40	CPU clock @ 24MHz		29	33.5	mA
	(internal consumption – digital	CPU clock @ 12MHz		21	24	mA
	core)	CPU clock @ 6MHz		15.5	18	mA
		CPU clock @ 3.69MHz		13.5	15.5	mA
		Power down (-40° to 85°C)		8	50	μΑ
		Power down (25°C)		6	15	μΑ
I _{DD_OUT}	Supply Current – pin 68 (available to external circuitry)	Circuit ON			20	mA
I _{VBUS}	Supply Current from V_{BUS}	V _{CC} off, I _{DDINTERNAL} < 20μΑ		0.2	0.4	mA
I _{VBAT} I _{VPC}	Supply Current from V_{BAT} or V_{PC}	Circuit OFF		0.01	1	μΑ
VBUS _{ON}	V_{BUS} detection threshold			3.5		V
$VBUS_{IDIS}$	V _{BUS} discharge current			50		μA
External	Capacitor Values					
C_{VPC}	External filter capacitor for V_{PC}		8.0	10.0	12.0	μF
C _{VP}	External filter capacitor for V_{P}		2.0	4.7	10.0	μF
C_{VDD}^{*}	External filter capacitors for V_{DD}		0.2		1.0	μF
C _{VCC}	External filter capacitor for V_{CC}	C_{VCC} should be ceramic with low ESR (<100M Ω).	0.2	0.47	1.0	μF

*Note: Recommend on $0.1 \mu F$ for each V_{DD} pin.

3.8 Current Fault Detection Circuits

Symbol	Parameter	Condition	Min	Тур.	Max	Unit
IV _{Pmax}	V _P over current fault				150	mA
I _{DDmax}	VDD over-current limit		40		100	mA
I _{CCF}	Card overcurrent fault		80		150	mA
I _{CCF1P8}	Card overcurrent fault	$V_{CC} = 1.8V$	60		130	mA

6 Packaging Information

6.1 68-Pin QFN Package Outline

Figure 46: 73S1210F 68 QFN Mechanical Drawing