

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                      |
|----------------------------|----------------------------------------------------------------------|
| Product Status             | Obsolete                                                             |
| Core Processor             | 80515                                                                |
| Core Size                  | 8-Bit                                                                |
| Speed                      | 24MHz                                                                |
| Connectivity               | I <sup>2</sup> C, SmartCard, UART/USART                              |
| Peripherals                | LED, POR, WDT                                                        |
| Number of I/O              | 8                                                                    |
| Program Memory Size        | 32KB (32K x 8)                                                       |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                |                                                                      |
| RAM Size                   | 2K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 6.5V                                                          |
| Data Converters            | ·                                                                    |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 44-VFQFN Exposed Pad                                                 |
| Supplier Device Package    | 44-QFN (7x7)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/analog-devices/73s1210f-44imr-f |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## FEATURES

### 80515 Core:

- 1 clock cycle per instruction (most instructions)
- CPU clocked up to 24MHz
- 32KB Flash memory (lockable)
- 2kB XRAM (User Data Memory)
- 256 byte IRAM
- Hardware watchdog timer

### Oscillators:

- Single low-cost 6MHz to 12MHz crystal
- An Internal PLL provides all the necessary clocks to each block of the system

#### Interrupts:

- Standard 80C515 4-priority level structure
- 9 different sources of interrupt to the core

#### Power Down Modes:

- 2 standard 80C515 Power Down and IDLE modes
- Sub-µA OFF mode
- ON/OFF Main System Power Switch:
- Input for an SPST momentary switch to ground

#### Timers:

- (2) Standard 80C52 timers T0 and T1
- (1) 16-bit timer

#### Built-in ISO-7816 Card Interface:

- Linear regulator produces VCC for the card (1.8V, 3V or 5V)
- Full compliance with EMV 4.1
- Activation/Deactivation sequencers
- Auxiliary I/O lines (C4 and C8 signals)
- 7kV ESD protection on all interface pins

#### **Communication with Smart Cards:**

- ISO 7816 UART 9600 to 115kbps for T=0, T=1
- (2) 2-Byte FIFOs for transmit and receive
- Configured to drive multiple external Teridian 73S8010x interfaces (for multi-SAM architectures)

#### **Voltage Detection:**

• Analog Input (detection range: 1.0V to 2.5V)

#### **Communication Interfaces:**

- Full-duplex serial interface (1200 to 115kbps UART)
- I<sup>2</sup>C Master Interface (400kbps)
- Man-Machine Interface and I/Os:
- 6x5 Keyboard (hardware scanning, debouncing and scrambling)
- (8) User I/Os
- Single programmable current output (LED)
- Operating Voltage:
- Single supply 2.7V to 6.5V operation (VPC)
- 5V supply (VBUS 4.4V to 5.5V) with or without battery back up operation (VBAT 4.0V to 6.5V)
- Automated detection of voltage presence Priority
  on VBUS over VBAT

#### **DC-DC Converter:**

- Requires a single 10µH Inductor
- 3.3V / 20mA supply available for external circuits

#### **Operating Temperature:**

-40°C to 85°C

#### Package:

• 68-pin QFN, 44 pin QFN

#### **Turnkey Firmware:**

- Compliant with PC/SC, ISO7816 and EMV4.1 specifications
- Features a Power Down mode accessible from the host
- Supports Plug & Play over serial interface
- Windows<sup>®</sup> XP driver available (\*)
- Windows CE / Mobile driver available (\*)
- Linux and other OS: Upon request
- Or for custom developments:
  - A complete set of ISO-7816, EMV4.1 and low-level libraries are available for T=0 / T=1
  - Two-level Application Programming Interface (ANSI C-language libraries)

(\*) Contact Teridian Semiconductor for conditions and availability.

| Table 57: The DAR Register                                                                  | . 57 |
|---------------------------------------------------------------------------------------------|------|
| Table 58: The WDR Register                                                                  | . 57 |
| Table 59: The SWDR Register                                                                 | . 58 |
| Table 60: The RDR Register                                                                  | 58   |
| Table 61: The SRDR Register                                                                 |      |
| Table 62: The CSR Register                                                                  | 59   |
| Table 63: The INT6Ctl Register                                                              |      |
| Table 64: The KCOL Register                                                                 |      |
| Table 65: The KROW Register                                                                 |      |
| Table 66: The KSCAN Register                                                                |      |
| Table 67: The KSTAT Register                                                                | 65   |
| Table 68: The KSIZE Register                                                                |      |
| Table 69: The KORDERL Register                                                              |      |
| Table 70: The KORDERH Register                                                              |      |
| Table 71: The INT5Ctl Register                                                              |      |
| Table 72: The SCSel Register                                                                |      |
| Table 73: The SCInt Register                                                                |      |
| Table 74: The SCIE Register                                                                 |      |
| Table 75: The VccCtl Register                                                               |      |
| Table 76: The VccTmr Register                                                               |      |
| Table 77: The CRDCtl Register                                                               |      |
| Table 78: The STXCtl Register                                                               |      |
| Table 79: The STXData Register                                                              |      |
| Table 80: The SRXCtl Register                                                               |      |
| Table 81: The SRXData Register                                                              |      |
| Table 82: The SCCtl Register                                                                |      |
| Table 83: The SCECtl Register                                                               | 90   |
| Table 84: The SCDIR Register                                                                |      |
| Table 85: The SPrtcol Register                                                              |      |
| Table 86: The SCCLK Register                                                                | . 02 |
| Table 87: The SCECLK Register                                                               |      |
| Table 88: The SParCtl Register                                                              |      |
| Table 89: The SByteCtl Register                                                             |      |
| Table 90: The FDReg Register                                                                |      |
| Table 91: The FDReg Bit Functions                                                           |      |
| Table 92: Divider Ratios Provided by the ETU Counter                                        |      |
| Table 93: Divider Values for the ETU Clock                                                  |      |
| Table 94: The CRCMsB Register                                                               |      |
| Table 95: The BGT Register                                                                  |      |
| Table 96: The EGT Register                                                                  |      |
| Table 97: The BWTB0 Register                                                                | 100  |
| Table 98: The BWTB1 Register                                                                |      |
| Table 99: The BWTB2 Register                                                                |      |
| Table 100: The BWTB3 Register                                                               |      |
| Table 101: The CWTB0 Register                                                               |      |
| Table 102: The CWTB1 Register                                                               |      |
| Table 103: The ATRLsB Register                                                              |      |
| Table 103: The ATRLSD Register                                                              |      |
| Table 105: The STSTO Register                                                               |      |
| Table 106: The RLength Register                                                             |      |
| Table 107: Smart Card SFR Table                                                             |      |
| Table 108: The VDDFCtl Register                                                             |      |
| Table 109: Order Numbers and Packaging Marks                                                | 124  |
| radio roor oraci radinooro ana radinaging mano initiati initiati initiati initiati initiati |      |

### Program Status Word (PSW):

. . . . .

#### Table 9: PSW Register

| MSB |    |    |     |    |    |   | LSB |  |
|-----|----|----|-----|----|----|---|-----|--|
| CV  | AC | F0 | RS1 | RS | OV | - | Р   |  |

| Bit     | Symbol |           |                                                                                                  | Function                                  |                              |      |  |  |
|---------|--------|-----------|--------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|------|--|--|
| PSW.7   | CV     | Carry fla | ag.                                                                                              |                                           |                              |      |  |  |
| PSW.6   | AC     | Auxiliar  | y Carry flag fo                                                                                  | or BCD operations.                        |                              |      |  |  |
| PSW.5   | F0     | Genera    | l purpose Fla                                                                                    | g 0 available for user.                   |                              |      |  |  |
| PSW.4   | RS1    | •         | Register bank select control bits. The contents of RS1 and RS0 select the vorking register bank: |                                           |                              |      |  |  |
|         |        |           | RS1/RS0                                                                                          | Bank Selected                             | Location                     |      |  |  |
| PSW.3   | RS0    | _         | 00                                                                                               | Bank 0                                    | (0x00 – 0x07)                |      |  |  |
| 1 011.0 | 1100   |           | 01                                                                                               | Bank 1                                    | (0x08 – 0x0F)                |      |  |  |
|         |        |           | 10                                                                                               | Bank 2                                    | (0x10 – 0x17)                |      |  |  |
|         |        |           | 11                                                                                               | Bank 3                                    | (0x18-0x1F)                  |      |  |  |
| PSW.2   | OV     | Overflov  | Overflow flag.                                                                                   |                                           |                              |      |  |  |
| PSW.1   | F1     | Genera    | General purpose Flag 1 available for user.                                                       |                                           |                              |      |  |  |
| PSW.0   | Р      |           |                                                                                                  | y hardware to indicate<br>e. even parity. | e odd / even number of "one" | bits |  |  |

**Stack Pointer:** The stack pointer (SP) is a 1-byte register initialized to 0x07 after reset. This register is incremented before PUSH and CALL instructions, causing the stack to begin at location 0x08.

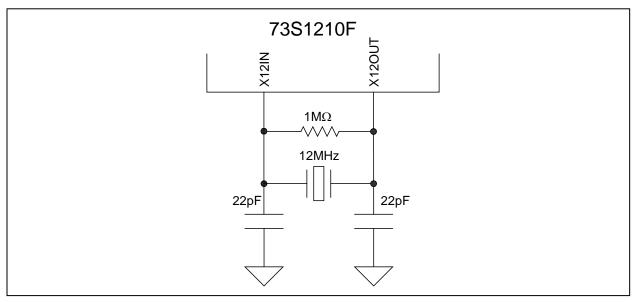
**Data Pointer:** The data pointer (DPTR) is 2 bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as a 2-byte register (MOV DPTR,#data16) or as two registers (e.g. MOV DPL,#data8). It is generally used to access external code or data space (e.g. MOVC A,@A+DPTR or MOVX A,@DPTR respectively).

**Program Counter:** The program counter (PC) is 2 bytes wide initialized to 0x0000 after reset. This register is incremented during the fetching operation code or when operating on data from program memory. Note: The program counter is not mapped to the SFR area.

**Port Registers:** The I/O ports are controlled by Special Function Register USR70. The contents of the SFR can be observed on corresponding pins on the chip. Writing a 1 to any of the ports (see Table 10) causes the corresponding pin to be at high level (3.3V), and writing a 0 causes the corresponding pin to be held at low level (GND). The data direction register UDIR70 define individual pins as input or output pins (see the User (USR) Ports section for details).

| Register | SFR<br>Address | R/W | Description                                                                                                       |
|----------|----------------|-----|-------------------------------------------------------------------------------------------------------------------|
| USR70    | 0x90           | R/W | Register for User port bit 7:0 read and write operations (pins USR0<br>USR7).                                     |
| UDIR70   | 0x91           | R/W | Data direction register for User port bits 0:7. Setting a bit to 0 means that the corresponding pin is an output. |

#### **Table 10: Port Registers**


### MPU Clock Control Register (MPUCKCtl): 0xFFA1 ← 0x0C

#### Table 13: The TCON Register

| MSB |   |        |        |        |        |        | LSB    |
|-----|---|--------|--------|--------|--------|--------|--------|
| _   | - | MDIV.5 | MDIV.4 | MDIV.3 | MDIV.2 | MDIV.1 | MDIV.0 |

| Bit        | Symbol | Function                                                                                                |
|------------|--------|---------------------------------------------------------------------------------------------------------|
| MPUCKCtl.7 | _      |                                                                                                         |
| MPUCKCtl.6 | -      |                                                                                                         |
| MPUCKCtl.5 | MDIV.5 |                                                                                                         |
| MPUCKCtl.4 | MDIV.4 | This value determines the ratio of the MPU master clock frequency to the VCO frequency (MCLK) such that |
| MPUCKCtl.3 | MDIV.3 | MPUClk = MCLK/(2 * (MPUCKDiv(5:0) + 1)).                                                                |
| MPUCKCtl.2 | MDIV.2 | Do not use values of 0 or 1 for MPUCKDiv(n).                                                            |
| MPUCKCtl.1 | MDIV.1 | Default is 0Ch to set CPCLK = $3.6923$ MHz.                                                             |
| MPUCKCtl.0 | MDIV.0 |                                                                                                         |

The oscillator circuits are designed to connect directly to standard parallel resonant crystal in a Pierce oscillator configuration. Each side of the crystal should include a 22pF capacitor to ground for both oscillator circuits and a  $1M\Omega$  resistor is required across the 12MHz crystal.



Note: The crystal should be placed as close as possible to the IC, and vias should be avoided.

### Figure 4: Oscillator Circuit

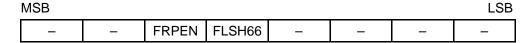
## External Interrupt Control Register (INT5CtI): 0xFF94 ← 0x00

## Table 14: The INT5Ctl Register

| MSB   |   |   |   |   | LSB |       |       |  |
|-------|---|---|---|---|-----|-------|-------|--|
| PDMUX | - | - | - | - | -   | KPIEN | KPINT |  |

| Bit       | Symbol | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INT5Ctl.7 | PDMUX  | When set = 1, enables interrupts from Keypad (normally going to int5),<br>Smart Card interrupts (normally going to int4), or USR(7:0) pins (int0) to<br>cause interrupt on int0. The assertion of the interrupt to int0 is delayed by<br>512 MPU clocks to allow the analog circuits, including the clock system, to<br>stabilize. This bit must be set prior to asserting the PWRDN bit in order to<br>properly configure the interrupts that will wake up the circuit. This bit is<br>reset = 0 when this register is read. |
| INT5Ctl.6 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT5Ctl.5 | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT5Ctl.4 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT5Ctl.3 | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT5Ctl.2 | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT5Ctl.1 | KPIEN  | Keypad interrupt enable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INT5Ctl.0 | KPINT  | Keypad interrupt flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Miscellaneous Control Register 0 (MISCtI0): 0xFFF1 ← 0x00


### Table 15: The MISCtI0 Register



| Bit       | Symbol | Function                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MISCtI0.7 | PWRDN  | This bit sets the circuit into a low-power condition. All analog (high-speed oscillator and VCO/PLL) functions are disabled 32 MPU clock cycles after this bit is set = 1. This allows time for the next instruction to set the STOP bit in the PCON register to stop the CPU core. The MPU is not operative in this mode. When set, this bit overrides the individual control bits that otherwise control power consumption. |
| MISCtI0.6 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MISCtI0.5 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MISCtI0.4 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MISCtI0.3 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MISCtI0.2 | _      |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MISCtI0.1 | SLPBK  | UART loop back testing mode.                                                                                                                                                                                                                                                                                                                                                                                                  |
| MISCtI0.0 | SSEL   | Serial port pins select.                                                                                                                                                                                                                                                                                                                                                                                                      |

### Miscellaneous Control Register 1 (MISCtI1): 0xFFF2 ← 0x10

Table 16: The MISCtl1 Register



| Bit       | Symbol | Function                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MISCtl1.7 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MISCtl1.6 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MISCtl1.5 | FRPEN  | Flash Read Pulse enable (low). If FRPEN = 1, the Flash Read signal is passed through with no change. When FRPEN = 0 a one-shot circuit that shortens the Flash Read signal is enabled to save power. The Flash Read pulse will shorten to 40 or 66ns (approximate based on the setting of the FLSH66 bit) in duration, regardless of the MPU clock rate. For MPU clock frequencies greater than 10MHz, this bit should be set high. |
| MISCtl1.4 | FLSH66 | When high, creates a 66ns Flash read pulse, otherwise creates a 40ns read pulse when FRPEN is set.                                                                                                                                                                                                                                                                                                                                  |
| MISCtl1.3 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MISCtl1.2 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MISCtl1.1 | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MISCtl1.0 | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Master Clock Control Register (MCLKCtl): 0x8F ← 0x0A

#### Table 17: The MCLKCtl Register

| MSB   |      |      |   |   |       |       | LSB   |
|-------|------|------|---|---|-------|-------|-------|
| HSOEN | KBEN | SCEN | _ | - | MCT.2 | MCT.1 | MCT.0 |

| Bit            | Symbol | Function                                                                                                                                                                                                     |  |  |
|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MCLKCtl.7      | HSOEN* | High-speed oscillator enable. When set = 1, disables the high-speed crystal oscillator and VCO/PLL system. This bit is not changed when the PWRDN bit is set but the oscillator/VCO/PLL is disabled.         |  |  |
| MCLKCtl.6      | KBEN   | 1 = Disable the keypad logic clock. This bit is not changed in PWRDN mode but the function is disabled.                                                                                                      |  |  |
| MCLKCtl.5 SCEN |        | 1 = Disable the smart card logic clock. This bit is not changed in PWRDN mode but the function is disabled. Interrupt logic for card insertion/removal remains operable even with smart card clock disabled. |  |  |
| MCLKCtl.4      | _      |                                                                                                                                                                                                              |  |  |
| MCLKCtl.3      | _      |                                                                                                                                                                                                              |  |  |
| MCLKCtl.2      | MCT.2  | This value determines the ratio of the VCO frequency (MCLK) to the                                                                                                                                           |  |  |
| MCLKCtl.1      | MCT.1  | high-speed crystal oscillator frequency such that:                                                                                                                                                           |  |  |
| MCLKCtl.0      | MCT.0  | MCLK = $(MCount^2 + 4)^*$ Fxtal. The default value is MCount = 2h such that MCLK = $(2^2 + 4)^*$ 12.00MHz = 96MHz.                                                                                           |  |  |

\*Note: The HSOEN bit should never be set under normal circumstances. Power down control should only be initiated via use of the PWRDN bit in MISCtl0.

### Interrupt Enable 1 Register (IEN1): 0xB8 ← 0x00

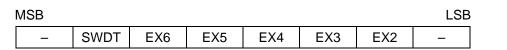
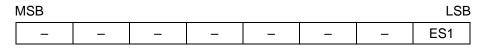




Table 20: The IEN1 Register

| Bit    | Symbol | Function                                |
|--------|--------|-----------------------------------------|
| IEN1.7 | _      |                                         |
| IEN1.6 | SWDT   | Not used for interrupt control.         |
| IEN1.5 | EX6    | EX6 = 0 - disable external interrupt 6. |
| IEN1.4 | EX5    | EX5 = 0 - disable external interrupt 5. |
| IEN1.3 | EX4    | EX4 = 0 - disable external interrupt 4. |
| IEN1.2 | EX3    | EX3 = 0 – disable external interrupt 3. |
| IEN1.1 | EX2    | EX2 = 0 – disable external interrupt 2. |
| IEN1.0 | -      |                                         |

### Interrupt Enable 2 Register (IEN2): 0x9A ← 0x00

## Table 21: The IEN2 Register



| Bit    | Symbol | Function                                    |
|--------|--------|---------------------------------------------|
| IEN2.0 | ES1    | ES1 = 0 – disable serial channel interrupt. |

## 1.7.6 UART

The 80515 core of the 73S1210F includes two separate UARTs that can be programmed to communicate with a host. The 73S1210F can only connect one UART at a time since there is only one set of TX and Rx pins. The MISCtI0 register is used to select which UART is connected to the TX and RX pins. Each UART has a different set of operating modes that the user can select according to their needs. The UART is a dedicated 2-wire serial interface, which can communicate with an external host processor at up to 115,200 bits/s. The TX and RX pins operate at the V<sub>DD</sub> supply voltage levels and should never exceed 3.6V. The operation of each pin is as follows:

**RX**: Serial input data is applied at this pin. Conforming to RS-232 standard, the bytes are input LSB first. The voltage applied at RX must not exceed 3.6V.

**TX**: This pin is used to output the serial data. The bytes are output LSB first.

The 73S1210F has several UART-related read/write registers. All UART transfers are programmable for parity enable, parity select, 2 stop bits/1 stop bit and XON/XOFF options for variable communication baud rates from 300 to 115200 bps. Table 33 shows the selectable UART operation modes and Table 34 shows how the baud rates are calculated.

|        | UART 0                                                                                                        | UART 1                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Mode 0 | N/A                                                                                                           | Start bit, 8 data bits, parity, stop bit, variable baud rate (internal baud rate generator). |
| Mode 1 | Start bit, 8 data bits, stop bit, variable<br>baud rate (internal baud rate generator<br>or timer 1).         | Start bit, 8 data bits, stop bit, variable baud rate (internal baud rate generator).         |
| Mode 2 | Start bit, 8 data bits, parity, stop bit, fixed baud rate 1/32 or 1/64 of f <sub>CKMPU</sub> .                | N/A                                                                                          |
| Mode 3 | Start bit, 8 data bits, parity, stop bit,<br>variable baud rate (internal baud rate<br>generator or timer 1). | N/A                                                                                          |

### Table 33: UART Modes

Note: Parity of serial data is available through the P flag of the accumulator. Seven-bit serial modes with parity, such as those used by the FLAG protocol, can be simulated by setting and reading bit 7 of 8-bit output data. Seven-bit serial modes without parity can be simulated by setting bit 7 to a constant 1. 8-bit serial modes with parity can be simulated by setting the 9th bit, using the control bits S0CON3 and S1CON3 in the S0COn and S1CON SFRs.

#### Table 34: Baud Rate Generation

|                    | Using Timer 1                                              | Using Internal Baud Rate Generator                                      |
|--------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
| Serial Interface 0 | 2 <sup>smod</sup> * f <sub>CKMPU</sub> / (384 * (256-TH1)) | 2 <sup>smod</sup> * f <sub>CKMPU</sub> /(64 * (2 <sup>10</sup> -S0REL)) |
| Serial Interface 1 | N/A                                                        | f <sub>CKMPU</sub> /(32 * (2 <sup>10</sup> -S1REL))                     |

Note: S0REL (9:0) and S1REL (9:0) are 10-bit values derived by combining bits from the respective timer reload registers SxRELH (bits 1:0) and SxRELL (bits 7:0). TH1 is the high byte of timer 1. The SMOD bit is located in the PCON SFR.

### • Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3 either internal baud rate generator or timer 1 can be use to specify baud rate.

The SOBUF register is used to read/write data to/from the serial 0 interface.

#### Serial Interface 0 Control Register (S0CON): 0x9B ← 0x00

Transmit and receive data are transferred via this register.

#### Table 38: The S0CON Register

| MSB |     |      |      |      |      |     |     |  |
|-----|-----|------|------|------|------|-----|-----|--|
| SM0 | SM1 | SM20 | REN0 | TB80 | RB80 | TI0 | RI0 |  |

| Bit     | Symbol |                |                                          | Function      | 1             |                                        |  |  |  |
|---------|--------|----------------|------------------------------------------|---------------|---------------|----------------------------------------|--|--|--|
| S0CON.7 | SM0    | These two bi   | These two bits set the UART0 mode:       |               |               |                                        |  |  |  |
|         |        | Mode           | Description                              | SM0           | SM1           |                                        |  |  |  |
|         |        | 0              | N/A                                      | 0             | 0             |                                        |  |  |  |
| S0CON.6 | SM1    | 1              | 8-bit UART                               | 0             | 1             |                                        |  |  |  |
|         |        | 2              | 9-bit UART                               | 1             | 0             |                                        |  |  |  |
|         |        | 3              | 9-bit UART                               | 1             | 1             |                                        |  |  |  |
| S0CON.5 | SM20   | Enables the    | inter-processor c                        | ommunicatio   | n feature.    |                                        |  |  |  |
| S0CON.4 | REN0   | If set, enable | es serial receptior                      | n. Cleared by | / software to | disable reception.                     |  |  |  |
| S0CON.3 | TB80   |                | n the function it p                      |               |               | leared by the MPU,<br>ltiprocessor     |  |  |  |
| S0CON.2 | RB80   |                | and 3 it is the 9th<br>stop bit. In Mode |               |               | e 1, if SM20 is 0,<br>st be cleared by |  |  |  |
| S0CON.1 | TI0    |                | errupt flag, set by<br>red by software.  | hardware aft  | er completior | n of a serial transfer.                |  |  |  |
| S0CON.0 | RI0    |                | rrupt flag, set by<br>lust be cleared by |               | er completion | of a serial                            |  |  |  |

### Mode 0

Putting either timer/counter into mode 0 configures it as an 8-bit timer/counter with a divide-by-32 prescaler. In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1's to all 0's, it sets the timer overflow flag TF0. The overflow flag TF0 then can be used to request an interrupt. The counted input is enabled to the timer when TRx = 1 and either GATE = 0 or TX = 1 (setting GATE = 1 allows the timer to be controlled by external input TX, to facilitate pulse width measurements). TRx are control bits in the special function register TCON; GATE is in TMOD. The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL0. The upper 3 bits of TL0 are indeterminate and should be ignored. Setting the run flag (TRx) does not clear the registers. Mode 0 operation is the same for timer 0 as for timer 1.

### Mode 1

Mode 1 is the same as mode 0, except that the timer register is run with all 16 bits.

#### Mode 2

Mode 2 configures the timer register as an 8-bit counter (TLx) with automatic reload. The overflow from TLx not only sets TFx, but also reloads TLx with the contents of THx, which is preset by software. The reload leaves THx unchanged.

#### Mode 3

Mode 3 has different effects on timer 0 and timer 1. Timer 1 in mode 3 simply holds its count. The effect is the same as setting TR1 = 0. Timer 0 in mode 3 establishes TL0 and TH0 as two separate counters. TL0 uses the timer 0 control bits: C/T, GATE, TR0, INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from timer 1. Thus, TH0 now controls the "timer 1" interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When timer 0 is in mode 3, timer 1 can be turned on and off by switching it out of and into its own mode 3, or can still be used by the serial channel as a baud rate generator, or in fact, in any application not requiring an interrupt from timer 1 itself.

## Timer/Counter Control Register (TCON): 0x88 ← 0x00

| MSB |     |     |     |     |     |     |     | LSB |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|     | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 |  |

Table 42: The TCON Register

| Bit        | Symbol | Function                                                                                                                                       |
|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| TCON.7     | TF1    | Timer 1 overflow flag.                                                                                                                         |
| TCON.6     | TR1    | Not used for interrupt control.                                                                                                                |
| TCON.5     | TF0    | Timer 0 overflow flag.                                                                                                                         |
| TCON.4     | TR0    | Not used for interrupt control.                                                                                                                |
| TCON.3     | IE1    | Interrupt 1 edge flag is set by hardware when the falling edge on external interrupt int1 is observed. Cleared when an interrupt is processed. |
| TCON.2     | IT1    | Interrupt 1 type control bit. 1 selects falling edge and 0 selects low level for input pin to cause an interrupt.                              |
| TCON.1     | IE0    | Interrupt 0 edge flag is set by hardware when the falling edge on external interrupt int0 is observed. Cleared when an interrupt is processed. |
| TCON.0 IT0 |        | Interrupt 0 type control bit. 1 selects falling edge and 0 sets low level for input pin to cause interrupt.                                    |

## 1.7.10 Analog Voltage Comparator

The 73S1210F includes a programmable comparator that is connected to the ANA\_IN pin. The comparator can be configured to trigger an interrupt if the input voltage rises above or falls below a selectable threshold voltage. The comparator control register should not be modified when the analog interrupt (ANAIEN bit in the INT6Ctl register) is enabled to guard against any false interrupt that might be generated when modifying the threshold. The comparator has a built-in hysteresis to prevent the comparator from repeatedly responding to low-amplitude noise. This hysteresis is approximately 20mV. Interrupt control is handled in the INT6Ctl register.

### Analog Compare Control Register (ACOMP): 0xFFD0 ← 0x00

#### Table 54: The ACOMP Register

| MSB |        |   |       |      |       |        |        | LSB    |  |
|-----|--------|---|-------|------|-------|--------|--------|--------|--|
|     | ANALVL | - | ONCHG | CPOL | CMPEN | TSEL.2 | TSEL.1 | TSEL.0 |  |

| Bit     | Symbol | Function                                                                                                                                                                                        |  |  |  |  |  |  |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ACOMP.7 | ANALVL | When read, indicates whether the input level is above or below the threshold. This is a real time value and is not latched, so it may change from the time of the interrupt trigger until read. |  |  |  |  |  |  |
| ACOMP.6 | -      |                                                                                                                                                                                                 |  |  |  |  |  |  |
| ACOMP.5 | ONCHG  | If set, the Ana_interrupt is invoked on any change above or below the threshold, bit 4 is ignored.                                                                                              |  |  |  |  |  |  |
| ACOMP.4 | CPOL   | If set = 1, Ana_interrupt is invoked when signal rises above selected threshold. If set = 0, Ana_interrupt is invoked when signal goes below selected threshold (default).                      |  |  |  |  |  |  |
| ACOMP.3 | CMPEN  | Enables power to the analog comparator. $1 =$ Enabled. $0 =$ Disabled (default).                                                                                                                |  |  |  |  |  |  |
| ACOMP.2 | TSEL.2 | Sets the voltage threshold for comparison to the voltage on pin ANA_IN. Thresholds are as follows:                                                                                              |  |  |  |  |  |  |
| ACOMP.1 | TSEL.1 | TSEL.2      TSEL.1      TSEL.0      Voltage Threshold        0      0      0      1.00V        0      0      1      1.24V        0      1      0      1.40V                                     |  |  |  |  |  |  |
| ACOMP.0 | TSEL.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                            |  |  |  |  |  |  |

## I2C Secondary Read Data Register (SRDR): 0XFF84 ← 0x00

# Table 61: The SRDR Register

|        |            |                             |              | -                         |                |               |              |       |  |  |
|--------|------------|-----------------------------|--------------|---------------------------|----------------|---------------|--------------|-------|--|--|
| MSB    |            |                             |              |                           |                |               | LSB          |       |  |  |
| SRDR.7 | SRDR.6     | SRDR.5                      | SRDR.4       | SRDR.3                    | SRDR.2         | SRDR.1        | SRDR.0       |       |  |  |
|        |            |                             |              |                           |                |               |              |       |  |  |
| Bit    | Function   |                             |              |                           |                |               |              |       |  |  |
| SRDR.7 |            |                             |              |                           |                |               |              |       |  |  |
| SRDR.6 |            |                             |              |                           |                |               |              |       |  |  |
| SRDR.5 |            |                             |              |                           |                |               |              |       |  |  |
| SRDR.4 | Second Da  | ata byte to b               | e read from  | the I <sup>2</sup> C slav | ve device if b | oit 0 (I2CLEI | N) of the Co | ntrol |  |  |
| SRDR.3 | and Status | s register ( <mark>C</mark> | SR) is set = | 1.                        |                |               |              |       |  |  |
| SRDR.2 |            |                             |              |                           |                |               |              |       |  |  |
| SRDR.1 |            |                             |              |                           |                |               |              |       |  |  |
| SRDR.0 |            |                             |              |                           |                |               |              |       |  |  |

## I2C Control and Status Register (CSR): 0xFF85 ← 0x00

### Table 62: The CSR Register

| MSB |   |   |  |   |       |       | LSB    |
|-----|---|---|--|---|-------|-------|--------|
| _   | _ | _ |  | _ | AKERR | I2CST | I2CLEN |

| Bit   | Symbol | Function                                                                                                                                                                                                                                                                                 |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSR.7 | -      |                                                                                                                                                                                                                                                                                          |
| CSR.6 | -      |                                                                                                                                                                                                                                                                                          |
| CSR.5 | -      |                                                                                                                                                                                                                                                                                          |
| CSR.4 | -      |                                                                                                                                                                                                                                                                                          |
| CSR.3 | _      |                                                                                                                                                                                                                                                                                          |
| CSR.2 | AKERR  | Set to 1 if acknowledge bit from Slave Device is not 0. Automatically reset when the new bus transaction is started.                                                                                                                                                                     |
| CSR.1 | I2CST  | Write a 1 to start I <sup>2</sup> C transaction. Automatically reset to 0 when the bus transaction is done. This bit should be treated as a "busy" indicator on reading. If it is high, the serial read/write operations are not completed and no new address or data should be written. |
| CSR.0 | I2CLEN | Set to 1 for 2 byte read or write operations. Set to 0 for 1-byte operations.                                                                                                                                                                                                            |

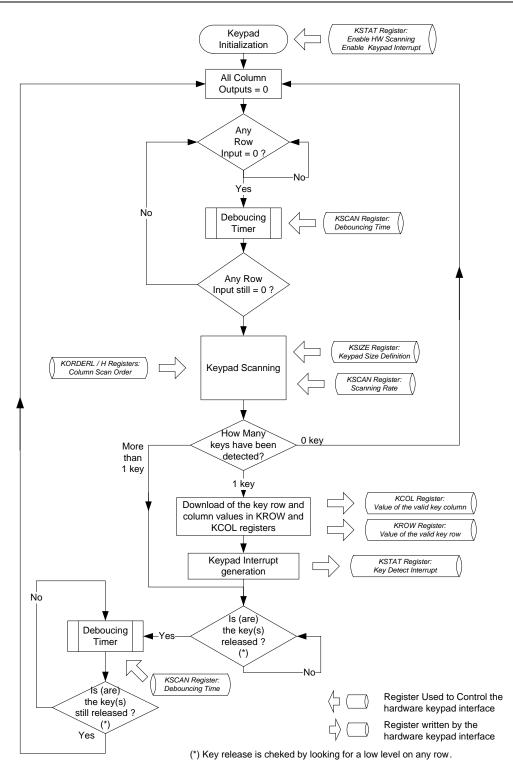



Figure 13: Keypad Interface Flow Chart

LSB

## SRX Data Register (SRXData): 0xFE09 ← 0x00

## Table 81: The SRXData Register

### MSB

SRXDAT.7 SRXDAT.6 SRXDAT.5 SRXDAT.4 SRXDAT.3 SRXDAT.2 SRXDAT.1 SRXDAT.0

| Bit       | Function                                                                    |
|-----------|-----------------------------------------------------------------------------|
| SRXData.7 |                                                                             |
| SRXData.6 |                                                                             |
| SRXData.5 |                                                                             |
| SRXData.4 | (Read only) Data received from the smart card. Data received from the smart |
| SRXData.3 | card gets stored in a FIFO that is read by the firmware.                    |
| SRXData.2 |                                                                             |
| SRXData.1 |                                                                             |
| SRXData.0 |                                                                             |

|      | Fi code | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 |
|------|---------|------|------|------|------|------|------|
| Di   | F→      | 372  | 372  | 558  | 744  | 1116 | 1488 |
| code | D↓      |      |      |      |      |      |      |
| 0001 | 1       | 744  | 744  | 1116 | 1488 | 2232 | 2976 |
| 0010 | 2       | 372  | 372  | 558  | 744  | 1116 | 1488 |
| 0011 | 4       | 186  | 186  | 279  | 372  | 558  | 744  |
| 0100 | 8       | 93   | 93   | 138  | 186  | 279  | 372  |
| 1000 | 12      | 62   | 62   | 93   | 124  | 186  | 248  |
| 0101 | 16      | 47   | 47   | 70   | 93   | 140  | 186  |
| 1001 | 20      | 37   | 37   | 56   | 74   | 112  | 149  |
| 0110 | 32      | 23   | 23   | 35   | 47   | 70   | 93   |

## Table 93: Divider Values for the ETU Clock

|      | Fi code         | 0110 | 1001 | 1010 | 1011 | 1100 | 1101 |
|------|-----------------|------|------|------|------|------|------|
| Di   | $F \rightarrow$ | 1860 | 512  | 768  | 1024 | 1536 | 2048 |
| code | D↓              |      |      |      |      |      |      |
| 0001 | 1               | 3720 | 1024 | 1536 | 2048 | 3072 | 4096 |
| 0010 | 2               | 1860 | 512  | 768  | 1024 | 1536 | 2048 |
| 0011 | 4               | 930  | 256  | 384  | 512  | 768  | 1024 |
| 0100 | 8               | 465  | 128  | 192  | 256  | 384  | 512  |
| 1000 | 12              | 310  | 85   | 128  | 171  | 256  | 341  |
| 0101 | 16              | 233  | 64   | 96   | 128  | 192  | 256  |
| 1001 | 20              | 186  | 51   | 77   | 102  | 154  | 205  |
| 0110 | 32              | 116  | 32   | 48   | 64   | 96   | 128  |

### Block Guard Time Register (BGT): 0xFE16 ← 0x10

This register contains the Extra Guard Time Value (EGT) most-significant bit. The Extra Guard Time indicates the minimum time between the leading edges of the start bit of consecutive characters. The delay is depends on the T=0/T=1 mode. Used in transmit mode. This register also contains the Block Guard Time (BGT) value. Block Guard Time is the minimum time between the leading edge of the start bit of the last character received and the leading edge of the start bit of the first character transmitted. This should not be set less than the character length. The transmission of the first character will be held off until BGT has elapsed regardless of the TX data and TX/RX control bit timing.

#### Table 95: The BGT Register

| EGT.8 – – BGT.4 BGT.3 BGT.1 BGT.2 BGT    |    |
|------------------------------------------|----|
| EG1.8BG1.4   BG1.3   BG1.1   BG1.2   BG1 | .0 |

| Bit   | Symbol | Function                                                                |
|-------|--------|-------------------------------------------------------------------------|
| BGT.7 | EGT.8  | Most-significant bit for 9-bit EGT timer. See the EGT register.         |
| BGT.6 | _      |                                                                         |
| BGT.5 | _      |                                                                         |
| BGT.4 | BGT.4  |                                                                         |
| BGT.3 | BGT.3  | Time in ETUs between the start bit of the last received character to    |
| BGT.2 | BGT.2  | start bit of the first character transmitted to the smart card. Default |
| BGT.1 | BGT.1  | value is 22.                                                            |
| BGT.0 | BGT.0  |                                                                         |

#### Extra Guard Time Register (EGT): 0xFE17 ← 0x0C

This register contains the Extra Guard Time Value (EGT) least-significant byte. The Extra Guard Time indicates the minimum time between the leading edges of the start bit of consecutive characters. The delay depends on the T=0/T=1 mode. Used in transmit mode.

#### Table 96: The EGT Register

| MS | 3        |     |       |                                                                   |               |            |               |             | LSB    |  |
|----|----------|-----|-------|-------------------------------------------------------------------|---------------|------------|---------------|-------------|--------|--|
| E  | EGT.7 EG |     | T.6   | EGT.5                                                             | EGT.4         | EGT.3      | EGT.1         | EGT.2       | EGT.0  |  |
|    |          |     |       |                                                                   |               |            |               |             |        |  |
|    | Bi       | t   |       |                                                                   |               | Functio    | on            |             |        |  |
|    | EGT      | Г.7 |       |                                                                   |               |            |               |             |        |  |
|    | EGT      | Г.6 |       |                                                                   |               |            |               |             |        |  |
|    | EGT      | Г.5 | Time  | Time in ETUs between start bits of consecutive characters. In T=0 |               |            |               |             |        |  |
|    | EGT      | Г.4 |       |                                                                   |               |            | eading edge   |             |        |  |
|    | EGT      | Г.З |       |                                                                   |               |            | ardless of th |             |        |  |
|    | EGT      | Г.2 | minir | num value i                                                       | is 12, and fo | or T=1 mod | e, the minin  | num value i | is 11. |  |
|    | EG       | Г.1 |       |                                                                   |               |            |               |             |        |  |
|    | EG       | Г.О |       |                                                                   |               |            |               |             |        |  |

## 1.7.16 VDD Fault Detect Function

The 73S1210F contains a circuit to detect a low-voltage condition on the supply voltage V<sub>DD</sub>. If enabled, it will deactivate the active internal smart card interface when VDD falls below the VDD Fault threshold. The register configures the  $V_{DD}$  Fault threshold for the nominal default of 2.3V\* or a user selectable threshold. The user's code may load a different value using the FOVRVDDF bit = 1 after the power-up cycle has completed.

### VDDFault Control Register (VDDFCtl): 0xFFD4 ← 0x00

#### Table 108: The VDDFCtl Register

| MS | В |          |          |   |          |          |          | LSB      |
|----|---|----------|----------|---|----------|----------|----------|----------|
|    | - | FOVRVDDF | VDDFLTEN | - | STXDAT.3 | VDDFTH.2 | VDDFTH.1 | VDDFTH.0 |

| Bit       | Symbol   | Function                                                                                                                                                                                                            |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDDFCtl.7 | _        |                                                                                                                                                                                                                     |
| VDDFCtl.6 | FOVRVDDF | Setting this bit high will allow the VDDFLT(2:0) bits set in this register to control the VDDFault threshold. When this bit is set low, the VDDFault threshold will be set to the factory default setting of 2.3V*. |
| VDDFCtl.5 | VDDFLTEN | Set = 1 will disable VDD Fault operation.                                                                                                                                                                           |
| VDDFCtl.4 | -        |                                                                                                                                                                                                                     |
| VDDFCtl.3 | _        |                                                                                                                                                                                                                     |
| VDDFCtl.2 | VDDFTH.2 | VDD Fault Threshold.<br>Bit Value(2:0) VDDFault Voltage                                                                                                                                                             |
| VDDFCtl.1 | VDDFTH.1 | 000    2.3 (nominal default)      001    2.4      010    2.5                                                                                                                                                        |
| VDDFCtl.0 | VDDFTH.0 | 011    2.6      100    2.7      101    2.8      110    2.9      111    3.0                                                                                                                                          |

\* Note: The V<sub>DD</sub> Fault factory default can be set to any threshold as defined by bits VDDFTH(2:0). The 73S1210F has the capability to burn fuses at the factory to set the factory default to any of these voltages. Contact Teridian for further details.

# 3.3 Digital IO Characteristics

These requirements pertain to digital I/O pin types with consideration of the specific pin function and configuration. The LED(1:0) pins have pull-ups that may be enabled. The Row pins have  $100k\Omega$  pull-ups.

| Symbol | Parameter           | Conditions                                        | Min.                   | Тур. | Max.                 | Unit |
|--------|---------------------|---------------------------------------------------|------------------------|------|----------------------|------|
| Voh    | Output level, high  | loh = -2mA                                        | 0.8 * V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
|        |                     | OFF_REQ pin - I <sub>OH</sub> = -1mA              | V <sub>DD</sub> - 0.45 |      |                      | V    |
| Vol    | Output level, low   | lol = 2mA                                         | 0                      |      | 0.3                  | V    |
|        |                     | OFF_REQ pin - Iol = 2mA                           |                        |      | 0.45                 | V    |
| Vih    | Input voltage, high | 2.7v < VDD <3.6v                                  | 1.8                    |      | V <sub>DD</sub> +0.3 | V    |
| Vil    | Input voltage, low  | 2.7v < VDD <3.6v                                  | -0.3                   |      | 0.6                  | V    |
|        |                     | RESET, ON_OFF, PRES pins                          | -0.3                   |      | 0.8                  | V    |
| lleak  | Leakage current     | 0 < Vin < VDD                                     | -5                     |      | 5                    | μA   |
|        |                     | All output modes disabled, pull-up/downs disabled |                        |      |                      |      |
| lpu    | Pull-up current     | If provided and enabled,                          | -5                     |      |                      | μA   |
|        |                     | Vout < 0.1v                                       |                        |      |                      |      |
| lpd    | Pull-down current   | If provided and enabled,                          |                        |      | 5                    | μA   |
|        |                     | Vout > VDD - 0.1v                                 |                        |      |                      |      |

| Symbol  | Parameter                            | Conditions                                     | Min. | Тур.         | Max. | Unit |
|---------|--------------------------------------|------------------------------------------------|------|--------------|------|------|
| lled    | LED drive current                    | Vout = 1.3V,<br>2.7v < VDD < 3.6v              |      | 2<br>4<br>10 |      | mA   |
| lolkrow | Keypad row output low current        | 0.0v < Voh < 0.1v<br>when pull-up R is enabled |      | 40           | 100  | μΑ   |
| lolkcol | Keypad column<br>output high current | 0.0v < Voh < 0.1v<br>when col. is pulled low   |      | 1.5          | 3    | mA   |

| I <sub>DD_IN</sub>                    | Supply Current – pins 28 + 40<br>(internal consumption – digital<br>core) | CPU clock @ 24MHz                                           |     | 29   | 33.5 | mA |
|---------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|-----|------|------|----|
|                                       |                                                                           | CPU clock @ 12MHz                                           |     | 21   | 24   | mA |
|                                       |                                                                           | CPU clock @ 6MHz                                            |     | 15.5 | 18   | mA |
|                                       |                                                                           | CPU clock @ 3.69MHz                                         |     | 13.5 | 15.5 | mA |
|                                       |                                                                           | Power down<br>(-40° to 85°C)                                |     | 8    | 50   | μA |
|                                       |                                                                           | Power down (25°C)                                           |     | 6    | 15   | μA |
| I <sub>DD_OUT</sub>                   | Supply Current – pin 68<br>(available to external circuitry)              | Circuit ON                                                  |     |      | 20   | mA |
| I <sub>VBUS</sub>                     | Supply Current from $V_{BUS}$                                             | V <sub>CC</sub> off, I <sub>DDINTERNAL</sub> < 20μΑ         |     | 0.2  | 0.4  | mA |
| I <sub>VBAT</sub><br>I <sub>VPC</sub> | Supply Current from $V_{\text{BAT}}$ or $V_{\text{PC}}$                   | Circuit OFF                                                 |     | 0.01 | 1    | μΑ |
| VBUS <sub>ON</sub>                    | V <sub>BUS</sub> detection threshold                                      |                                                             |     | 3.5  |      | V  |
| VBUSIDIS                              | V <sub>BUS</sub> discharge current                                        |                                                             |     | 50   |      | μA |
|                                       |                                                                           |                                                             |     |      |      |    |
| External                              | Capacitor Values                                                          |                                                             |     |      |      |    |
| C <sub>VPC</sub>                      | External filter capacitor for $V_{\text{PC}}$                             |                                                             | 8.0 | 10.0 | 12.0 | μF |
| C <sub>VP</sub>                       | External filter capacitor for $V_P$                                       |                                                             | 2.0 | 4.7  | 10.0 | μF |
| C <sub>VDD</sub> *                    | External filter capacitors for $V_{\text{DD}}$                            |                                                             | 0.2 |      | 1.0  | μF |
| C <sub>VCC</sub>                      | External filter capacitor for $V_{\text{CC}}$                             | $C_{VCC}$ should be ceramic with low ESR (<100M $\Omega$ ). | 0.2 | 0.47 | 1.0  | μF |

\*Note: Recommend on  $0.1 \mu F$  for each  $V_{\text{DD}}$  pin.

# 3.8 Current Fault Detection Circuits

| Symbol              | Parameter                         | Condition       | Min | Тур. | Max | Unit |
|---------------------|-----------------------------------|-----------------|-----|------|-----|------|
| IV <sub>Pmax</sub>  | V <sub>P</sub> over current fault |                 |     |      | 150 | mA   |
| I <sub>DDmax</sub>  | VDD over-current limit            |                 | 40  |      | 100 | mA   |
| I <sub>CCF</sub>    | Card overcurrent fault            |                 | 80  |      | 150 | mA   |
| I <sub>CCF1P8</sub> | Card overcurrent fault            | $V_{CC} = 1.8V$ | 60  |      | 130 | mA   |

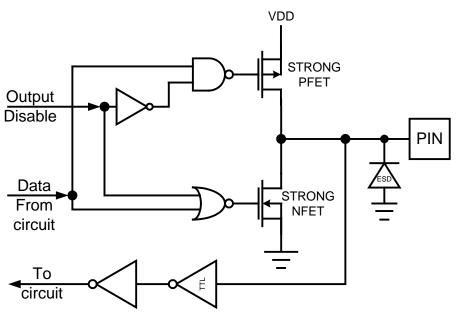



Figure 28: Digital I/O Circuit

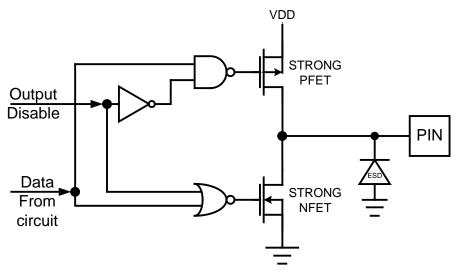



Figure 29: Digital Output Circuit