

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dn64vlf5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK10 and MK10.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K10
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	130	μs	
	• VLLS1 \rightarrow RUN	_	130	μs	
	• VLLS2 \rightarrow RUN	—	70	μs	
	• VLLS3 \rightarrow RUN	_	70	μs	
	• LLS → RUN	_	6	μs	
	• VLPS → RUN	_	5.2	μs	
	• STOP → RUN	_	5.2	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V		13.7 13.9	15.1 15.3	mA mA	2
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V	_	16.1	18.2	mA	3, 4
	• @ 3.0V	_	16.3	17.7	mA	
	• @ 25°C • @ 125°C	_	16.7	18.4	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		7.5	8.4	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		5.6	6.4	mA	5

Figure 3. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 64LQFP

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	19	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	21	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	19	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L	—	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported

Symbol	Symbol Description		Тур.	Max.	Unit
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	—	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	—	V

Table 16. 32kHz oscillator DC electrical specifications (continued)

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32kHz oscillator frequency specifications Table 17. 32kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	_	32.768	_	kHz	
t _{start}	Crystal start-up time	—	1000	_	ms	1
f _{ec_extal32}	Externally provided input clock frequency	—	32.768	_	kHz	2
V _{ec_extal32}	B32 Externally provided input clock amplitude		—	V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk32k}	Erase Block high-voltage time for 32 KB	—	52	452	ms	1
t _{hversblk128k}	Ik128k Erase Block high-voltage time for 128 KB		52	452	ms	1

 Table 18.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Word-write to FlexRAM	for EEPRON	A operation			
t _{eewr16bers}	Word-write to erased FlexRAM location execution time		175	260	μs	
	Word-write to FlexRAM execution time:					
t _{eewr16b8k}	8 KB EEPROM backup	_	340	1700	μs	
t _{eewr16b16k}	16 KB EEPROM backup	_	385	1800	μs	
t _{eewr16b32k}	32 KB EEPROM backup	—	475	2000	μs	
	Longword-write to FlexRA	M for EEPR	OM operation	ı		
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs	
	Longword-write to FlexRAM execution time:					
t _{eewr32b8k}	8 KB EEPROM backup	_	545	1950	μs	
t _{eewr32b16k}	16 KB EEPROM backup	—	630	2050	μs	
t _{eewr32b32k}	32 KB EEPROM backup	_	810	2250	μs	

Table 19. Flash command timing specifications (continued)

1. Assumes 25MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors Table 20. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 21. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes			
Program Flash									
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years				
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100		years				
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2			
Data Flash									
t _{nvmretd10k} Data retention after up to 10 K cycles		5	50		years				

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years		
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2	
FlexRAM as EEPROM							
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50		years		
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100		years		
	Write endurance					3	
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	35 K	175 K	—	writes		
n _{nvmwree128}	• EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	—	writes		
n _{nvmwree512}	• EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	—	writes		
n _{nvmwree4k}	• EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	—	writes		
n _{nvmwree8k}	• EEPROM backup to FlexRAM ratio = 8192	20 M	100 M	—	writes		

Table 21. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM =
$$\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write}_\text{efficiency} \times n_{\text{nvmcycd}}$$

where

• Writes_FlexRAM — minimum number of writes to each FlexRAM location

Num	Description	Min.	Max.	Unit
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)		f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to $\overline{\text{EZP}_{CS}}$ input invalid (hold)	5		ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid		17	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16 bit modes No ADC hardware averaging	37.037	_	461.467	Ksps	5
		Continuous conversions enabled, subsequent conversion time					

Table 23. 16-bit ADC operating conditions (continued)

 Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- 2. DC potential difference.
- 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

Figure 10. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
SFDR	Spurious free dynamic range	16 bit differential modeAvg=3216 bit single-ended modeAvg=32	82 78	95 90	_	dB dB	7
EIL	Input leakage error		I _{In} × R _{AS}			mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	-40°C to 105°C	_	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25°C	_	719	_	mV	

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed.

- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.

Peripheral operating requirements and behaviors

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.2 CMP and 6-bit DAC electrical specifications Table 25. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	– 200 μΑ		
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20 µA		
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V	
V _{AIO}	Analog input offset voltage	—	—	20	mV	
V _H	Analog comparator hysteresis ¹					
	• CR0[HYSTCTR] = 00	—	5	—	mV	
	 CR0[HYSTCTR] = 01 	—	- 10 —		mV	
	• CR0[HYSTCTR] = 10	—	— 20 —		mV	
	 CR0[HYSTCTR] = 11 	—	30		mV	
V _{CMPOh}	Output high	V _{DD} – 0.5	—	—	V	
V _{CMPOI}	Output low	_	_	0.5	V	
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	50 200		
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns	
	Analog comparator initialization delay ²	_		40	μs	
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA	
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³	
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB	

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 Voltage reference electrical specifications

Table 26. VI	REF full-range	operating	requirements
--------------	----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	perature -40 105		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	

Table 27. VREF full-range operating behaviors

Table continues on the next page...

6.8.1 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	0	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	14		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 30.
 Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 15. DSPI classic SPI timing — master mode

Table 31. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz

Table continues on the next page ...

Num	Description	Min.	Max.	Unit	Notes
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{BUS} x 2) – 4	—	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-1.2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	19.1	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 32. Master mode DSPI timing (full voltage range) (continued)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 17. DSPI classic SPI timing — master mode

Table 33. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation		6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	24	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	3.2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		19	ns

Num.	Characteristic	Min.	Max.	Unit	
	Operating voltage	1.71	3.6	V	
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns	
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period	
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	_	ns	
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns	
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	29	ns	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns	
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns	
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns	
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	21	ns	

Table 35. I2S/SAI slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 20. I2S/SAI timing — slave modes

6.8.5.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 36.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	45	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 21. I2S/SAI timing — master modes

Table 37. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns

Table continues on the next page...

K10 Sub-Family Data Sheet, Rev. 4 5/2012.

Revision History

Figure 23. K10 48 LQFP/QFN Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

Table 39. Revision History

Rev. No.	Date	Substantial Changes
2	2/2012	Initial public release