

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN-EP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk10dx64vft5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = - 9 mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3 \text{ mA}$	V _{DD} – 0.5	—	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{ mA}$	$V_{DD} - 0.5$	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — high drive strength			V V V (V ν (V) V V V V V (V) V (V) V (V) (V) (V) (
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9 mA	_	0.5		
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3 \text{ mA}$	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin)				
	@ full temperature range	_	1.0	μA	1
	• @ 25 °C	—	0.1	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	
I _{OZ}	Total Hi-Z (off-state) leakage current (all input pins)	—	4	μΑ	
R _{PU}	Internal pullup resistors	22	50	kΩ	2
R _{PD}	Internal pulldown resistors	22	50	kΩ	3

1. Tested by ganged leakage method

2. Measured at Vinput = V_{SS}

3. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	● @40 to 25°C	—	0.176	0.859	μA	
	• @ 70°C	—	2.2	13.1	μA	
	• @ 105°C	_	13	23.9	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	 @ -40 to 25°C 		0.19	0.22	μA	
	• @ 70°C		0.49	0.64	μA	
	• @ 105°C	_	2.2	3.2	μA	
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					9
	• @ 1.8V					
	• @ -40 to 25°C		0.57	0.67	μA	
	• @ 70°C	_	0.90	1.2	μA	
	• @ 105°C		2.4	3.5	μA	
	• @ 3.0V			0.0	P/ 1	
	 @ -40 to 25°C 	_	0.67	0.94	μA	
	• @ 70°C	_	1.0	1.4	μA	
	• @ 105°C	_	2.7	3.9	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation.
- 4. Max values are measured with CPU executing DSP instructions
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

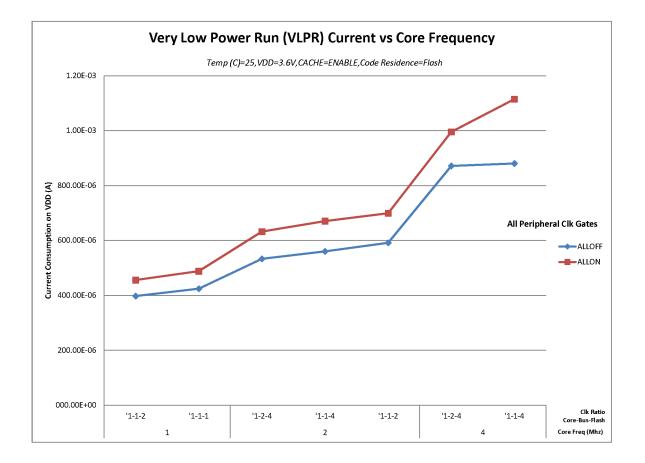


Figure 3. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 64LQFP

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	19	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	21	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	19	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path		50	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	_	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	13	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—		ns	
	Slew enabled		7		
	• 1.71 ≤ V _{DD} ≤ 2.7V	—		ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	36 24	ns	

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	36	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	—	24	ns	

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75pF load
- 5. 15pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	48 LQFP	48 QFN	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	70	81	°C/W	1, 2
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	47	28	°C/W	1, 3

Board type	Symbol	Description	48 LQFP	48 QFN	Unit	Notes
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	58	66	°C/W	1,3
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	40	23	°C/W	3
_	R _{0JB}	Thermal resistance, junction to board	24	11	°C/W	5
_	R _{θJC}	Thermal resistance, junction to case	18	1.4	°C/W	6
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	4	°C/W	7

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.

3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions – Forced Convection (Moving Air)* with the board horizontal.

5. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.

- 6. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 7. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 JTAG electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	TCLK frequency of operation			MHz
	• JTAG		10	
	• CJTAG	—	5	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	• JTAG	100	_	ns
	• CJTAG	200	—	ns
				ns
J4	TCLK rise and fall times	—	1	ns
J5	TMS input data setup time to TCLK rise JTAG 	53	_	ns
	• CJTAG	112	—	
J6	TDI input data setup time to TCLK rise	8	—	ns
J7	TMS input data hold time after TCLK rise • JTAG	3.4	_	ns
	• CJTAG	3.4	—	
J8	TDI input data hold time after TCLK rise	3.4	_	ns
J9	TCLK low to TMS data valid • JTAG	_	48	ns
	• CJTAG	—	85	
J10	TCLK low to TDO data valid	—	48	ns
J11	Output data hold/invalid time after clock edge ¹		3	ns

Table 12. JTAG voltage range electricals

1. They are common for JTAG and CJTAG. Input transition = 1 ns and Output load = 50pf

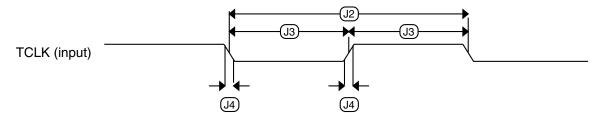


Figure 4. Test clock input timing

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{fll_ref}	FLL reference free	luency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	-
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	-
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS=00) $732 \times f_{fll_ref}$		23.99	-	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	-	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll_ref}		71.99	-	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}		95.98	-	MHz	-
J _{cyc_fll}	FLL period jitter			180		ps	
	 f_{VCO} = 48 M f_{VCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target frequer	ncy acquisition time		—	1	ms	6
		PI	L				
f _{vco}	VCO operating fre	quency	48.0	_	100	MHz	
I _{pli}		rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μΑ	7
I _{pll}	 PLL operating current PLL @ 48 MHz (f_{osc_hi_1} = 8 MHz, f_{pll_ref} = 2 MHz, VDIV multiplier = 24) 		_	600	-	μΑ	7
f _{pll_ref}	PLL reference free	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	lz	—	120	—	ps	
	• f _{vco} = 100 M	Hz	—	50	—	ps	

Table 13. MCG specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					8
	• f _{vco} = 48 MHz	—	1350	—	ps	
	• f _{vco} = 100 MHz	_	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector detection time			150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

Table 13. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.

 The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.

4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.

5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.

6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

7. Excludes any oscillator currents that are also consuming power while PLL is in operation.

8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.

 This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	—	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	

6.4.1.2 Flash timing specifications — commands Table 19. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	• 32 KB data flash	—	—	0.5	ms	
t _{rd1blk128k}	128 KB program flash	—		1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—		60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	• 32 KB data flash	_	55	465	ms	
t _{ersblk128k}	 128 KB program flash 	_	61	495	ms	
t _{ersscr}	Erase Flash Sector execution time		14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	• 512 B flash	—	4.7	_	ms	
t _{pgmsec1k}	• 1 KB flash	—	9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time	_		1.8	ms	
t _{rdonce}	Read Once execution time			25	μs	1
t _{pgmonce}	Program Once execution time	_	65		μs	
t _{ersall}	Erase All Blocks execution time	—	115	1000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	• 32 KB FlexNVM	—	70		ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	50	_	μs	
t _{setram8k}	8 KB EEPROM backup	_	0.3	0.5	ms	
t _{setram32k}	32 KB EEPROM backup	_	0.7	1.0	ms	
	Byte-write to FlexRAM	for EEPROM	l operation			
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time		175	260	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b8k}	8 KB EEPROM backup	_	340	1700	μs	
t _{eewr8b16k}	16 KB EEPROM backup	_	385	1800	μs	
t _{eewr8b32k}	32 KB EEPROM backup	_	475	2000	μs	

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM as	s EEPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
	Write endurance					3
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	35 K	175 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	315 K	1.6 M	—	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	1.27 M	6.4 M	—	writes	
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	—	writes	
n _{nvmwree8k}	EEPROM backup to FlexRAM ratio = 8192	20 M	100 M	—	writes	

Table 21. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM =
$$\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write}_\text{efficiency} \times n_{\text{nvmcycd}}$$

where

• Writes_FlexRAM — minimum number of writes to each FlexRAM location

- EEPROM allocated FlexNVM based on DEPART; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

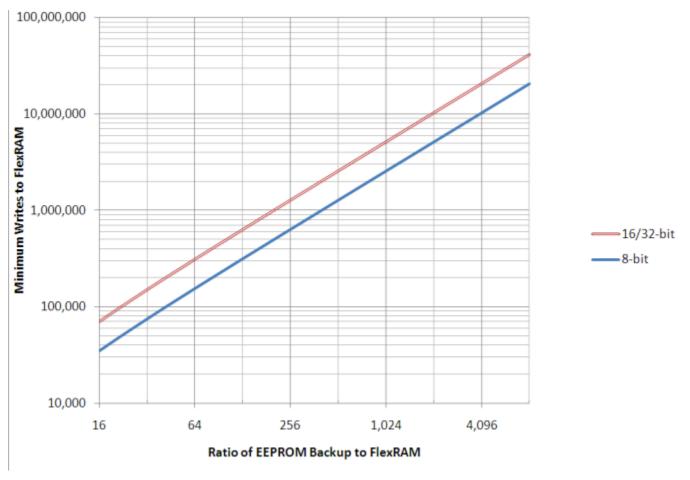


Figure 8. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications

Table 22. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page ...

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	Reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	
C _{ADIN}	Input	16 bit modes	_	8	10	pF	
	capacitance	 8/10/12 bit modes 	_	4	5		
R _{ADIN}	Input resistance			2	5	kΩ	
R _{AS}	Analog source resistance	13/12 bit modes f _{ADCK} < 4MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13 bit modes	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16 bit modes	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13 bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					

6.6.1.1 16-bit ADC operating conditions Table 23. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	16 bit modes					5
	rate	No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Table 23. 16-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

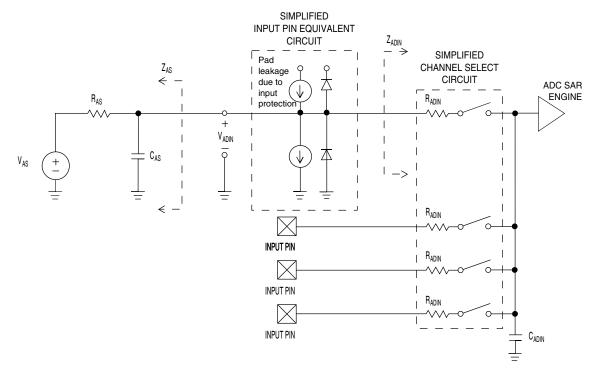
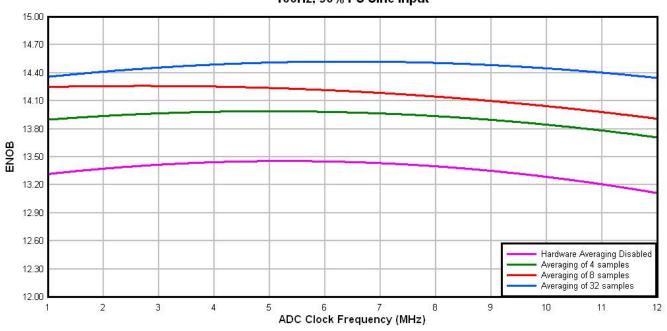


Figure 10. ADC input impedance equivalency diagram

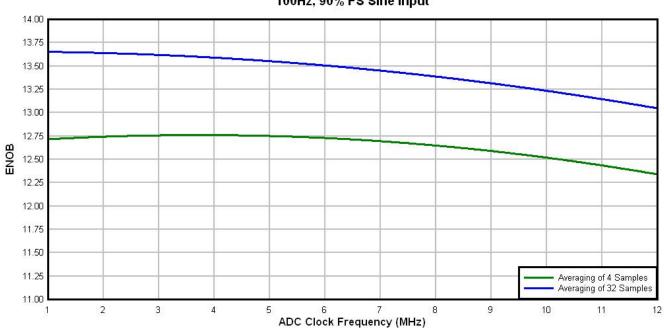
6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3


Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	ADLPC=1, ADHSC=1	3.0	4.0	7.3	MHz	f _{ADACK}
f _{ADACK}		ADLPC=0, ADHSC=0	2.4	5.2	6.1	MHz	
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapte	r for sample	times	1		
TUE	Total unadjusted	12 bit modes	_	±4	±6.8	LSB ⁴	5
	error	• <12 bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12 bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12 bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12 bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12 bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12 bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		• <12 bit modes	-	-1.4	-1.8		V _{DDA}
							5
EQ	Quantization error	16 bit modes	-	-1 to 0		LSB ⁴	
	enor	 ≤13 bit modes 	_	_	±0.5		
ENOB	Effective number	16 bit differential mode					6
	of bits	• Avg=32	12.8	14.5		bits	
		• Avg=4	11.9	13.8	_	bits	
		16 bit single-ended mode					
		• Avg=32	12.2	13.9		bits	
		• Avg=4	11.4	13.1	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16 bit differential mode					7
	distortion	• Avg=32	_	-94	-	dB	
		16 bit single-ended mode • Avg=32	_	-85	_	dB	

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)


Table continues on the next page...

Peripheral operating requirements and behaviors

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

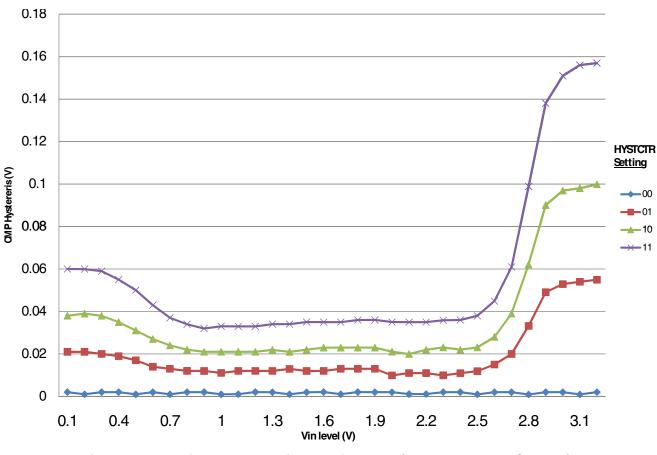


Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	1(00	nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	

Table 27. VREF full-range operating behaviors

Table continues on the next page...

Symbol Description		Min.	Тур.	Max.	Unit	Notes	
V _{out}	Voltage reference output — factory trim		—	1.2376	V		
V _{out}	vut Voltage reference output — user trim		_	1.197	V		
V _{step}	Voltage reference trim step	_	0.5	—	mV		
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	—	80	mV		
I _{bg}	Bandgap only current	_	_	80	μA	1	
I _{lp}	Low-power buffer current	_	_	360	uA	1	
I _{hp}	High-power buffer current	_	—	1	mA	1	
ΔV_{LOAD}	Load regulation				μV	1, 2	
	• current = ± 1.0 mA		200	_			
T _{stup}	Buffer startup time	—		100	μs		
V _{vdrift} Voltage drift (Vmax -Vmin across the full voltage range)		_	2	—	mV	1	

Table 27. VREF full-range operating behaviors (continued)

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 28. VREF limited-range operating requirements

Symbo	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 29. VREF limited-range operating behaviors

	Symbol	Description	Min.	Max.	Unit	Notes
ſ	V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.5.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit	
	Operating voltage	1.71	3.6	V	
S1	I2S_MCLK cycle time	40	_	ns	
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period	
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns	
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period	
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns	
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns	
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns	
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns	
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	25	-	ns	
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns	

Table 34. I2S/SAI master mode timing

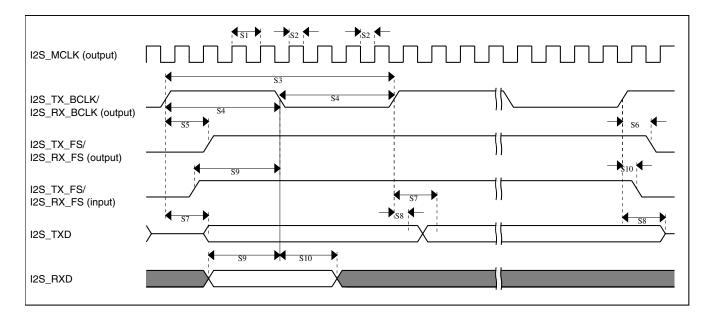


Figure 19. I2S/SAI timing — master modes

K10 Sub-Family Data Sheet, Rev. 4 5/2012.

Revision History

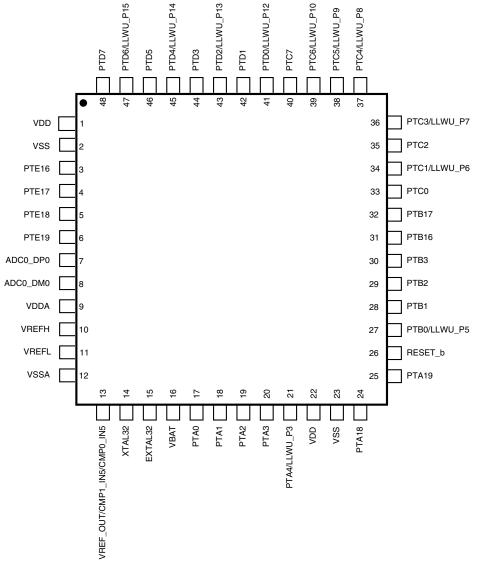


Figure 23. K10 48 LQFP/QFN Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

Table 39. Revision History

Rev. No.	Date	Substantial Changes
2	2/2012	Initial public release