

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f673abpmc1-gse1

Email: info@E-XFL.COM

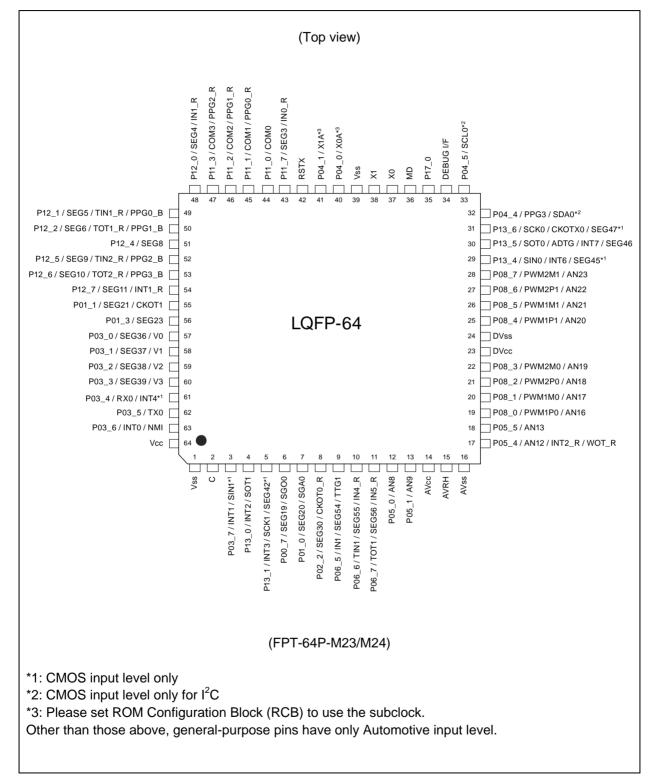
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Built-in On Chip Debugger (OCD)

□ One-wire debug tool interface

Break function:

- Hardware break: 6 points (shared with code event)
- Software break: 4096 points


□ Event function

- Code event: 6 points (shared with hardware break)
- Data event: 6 points
- Event sequencer: 2 levels + reset
- Execution time measurement function
- □ Trace function: 42 branches
- □ Security function

- Flash Memory
 - □ Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
 - Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
 - □ Supports automatic programming, Embedded Algorithm
 - UVrite/Erase/Erase-Suspend/Resume commands
 - □ A flag indicating completion of the automatic algorithm
- □ Erase can be performed on each sector individually □ Sector protection
- □ Flash Security feature to protect the content of the Flash
- □ Low voltage detection during Flash erase or write

3. Pin Assignment

Pin name	Feature	Description		
Vn	LCD	LCD voltage reference pin		
Vcc	Supply	Power supply pin		
Vss	Supply	Power supply pin		
WOT_R	RTC	Relocated Real Time clock output pin		
X0	Clock	Oscillator input pin		
X0A	Clock	Subclock Oscillator input pin		
X1	Clock	Oscillator output pin		
X1A	Clock	Subclock Oscillator output pin		

Pin no.	I/O circuit type*	Pin name
33	N	P04_5 / SCL0
34	0	DEBUG I/F
35	н	P17_0
36	С	MD
37	A	X0
38	A	X1
39	Supply	Vss
40	В	P04_0 / X0A
41	В	P04_1 / X1A
42	С	RSTX
43	J	P11_7 / SEG3 / IN0_R
44	J	P11_0 / COM0
45	J	P11_1 / COM1 / PPG0_R
46	J	P11_2 / COM2 / PPG1_R
47	J	P11_3 / COM3 / PPG2_R
48	J	P12_0 / SEG4 / IN1_R
49	J	P12_1 / SEG5 / TIN1_R / PPG0_B
50	J	P12_2 / SEG6 / TOT1_R / PPG1_B
51	J	P12_4 / SEG8
52	J	P12_5 / SEG9 / TIN2_R / PPG2_B
53	J	P12_6 / SEG10 / TOT2_R / PPG3_B
54	J	P12_7 / SEG11 / INT1_R
55	J	P01_1 / SEG21 / CKOT1
56	J	P01_3 / SEG23
57	L	P03_0 / SEG36 / V0
58	L	P03_1 / SEG37 / V1
59	L	P03_2 / SEG38 / V2
60	L	P03_3 / SEG39 / V3
61	М	P03_4 / RX0 / INT4
62	н	P03_5 / TX0
63	н	P03_6 / INT0 / NMI
64	Supply	Vcc

*: See "I/O CIRCUIT TYPE" for details on the I/O circuit types.

7. Memory Map

FF:FFF _H USER ROM*1 DD:FFFF _H	
10:0000 _H	
0F:C000 _H Boot-ROM	
0E:9000 _H Peripheral	
Reserved	
01:0000 _H	
00:8000 _H ROM/RAM	
RAMSTART0*2 Internal RAM bank0	
Reserved	
00:0C00 _H 00:0380 _H Регipheral	
00:0180 _H GPR* ³	
00:0100 _H DMA	
00:00F0 _H Reserved	
00:0000 _H Peripheral	

*1: For details about USER ROM area, see "User ROM Memory Map For Flash Devices" on the following pages.

*2: For RAMSTART addresses, see the table on the next page.

*3: Unused GPR banks can be used as RAM area.

GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM area depends on the device.

9. User ROM Memory Map For Flash Devices

CPU mode address	Flash memory mode address	MB96F673 Flash size 64.5KB + 32KB	MB96F675 Flash size 128.5KB + 32KB	
FF:FFFFH FF:0000H	3F:FFFFн 3F:0000н	SA39 - 64KB	SA39 - 64KB	Donk A of Floob A
FE:FFFFH FE:0000H	3E:FFFFн 3E:0000н		SA38 - 64KB	Bank A of Flash A
DF:A000H		Reserved	Reserved	
DF:9FFFH DF:8000H	1F:9FFFн 1F:8000н	SA4 - 8KB	SA4 - 8KB	
DF:7FFFH DF:6000H	1F:7FFFн 1F:6000н	SA3 - 8KB	SA3 - 8KB	Bank B of Flash /
DF:5FFFH DF:4000H	1F:5FFFн 1F:4000н	SA2 - 8KB	SA2 - 8KB	
DF:3FFFH DF:2000H	1F:3FFFн 1F:2000н	SA1 - 8KB	SA1 - 8KB	
DF:2000н DF:1FFFн DF:0000н	1F:2000н 1F:1FFFн 1F:0000н	SAS - 512B*	SAS - 512B*	Bank A of Flash
		Reserved	Reserved	

Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000H -DF:01FFH. SAS can not be used for E^2 PROM emulation.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB96670							
Pin Number	USART Number	Normal Function					
29		SIN0					
30	USART0	SOT0					
31		SCK0					
3		SIN1					
4	USART1	SOT1					
5		SCK1					

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _Н	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _Н	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _Н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _Н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _Н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	EXTINT6	Yes	23	External Interrupt 6
24	39C _H	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	-	-	25	Reserved
26	394 _Н	-	-	26	Reserved
27	390 _Н	-	-	27	Reserved
28	38C _H	-	-	28	Reserved
29	388 _H	-	-	29	Reserved
30	384 _H	-	-	30	Reserved
31	380 _Н	-	-	31	Reserved
32	37C _H	-	-	32	Reserved
33	378 _H	CAN0	No	33	CAN Controller 0
34	374 _H	-	-	34	Reserved
35	370 _H	-	-	35	Reserved
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
81	2В8 _Н	-	-	81	Reserved
82	2B4 _H	-	-	82	Reserved
83	2B0 _Н	-	-	83	Reserved
84	2AC _H	-	-	84	Reserved
85	2А8 _Н	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	-	-	91	Reserved
92	28C _H	-	-	92	Reserved
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	SG0	No	95	Sound Generator 0
96	27C _H	IIC0	Yes	96	I ² C interface 0
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINT0	Yes	102	LIN USART 0 TX
103	260 _H	LINR1	Yes	103	LIN USART 1 RX
104	25C _H	LINT1	Yes	104	LIN USART 1 TX
105	258 _H	-	-	105	Reserved
106	254 _H	-	-	106	Reserved
107	250 _H	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23C _H	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	-	-	115	Reserved
116	22C _H	-	-	116	Reserved
117	228 _H	-	-	117	Reserved
118	224 _H	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- · Unused pins handling
- · External clock usage
- · Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- · Notes on Power-on
- Stabilization of power supply voltage
- SMC power supply pins
- Serial communication
- Mode Pin (MD)

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with

either input disabled or external pull-up/pull-down resistor as described above.

13.6 Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} . Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11SMC power supply pins

All DVcc /DVss pins must be set to the same level as the Vcc /Vss pins.

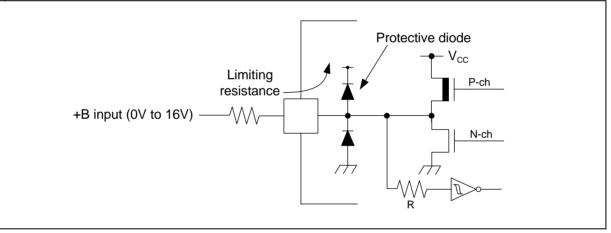
Note that the SMC I/O pin state is undefined if DV_{CC} is powered on and V_{CC} is below 3V. To avoid this, V_{CC} must always be powered on before DV_{CC} .

DVcc/DVss must be applied when using SMC I/O pin as GPIO.

13.12Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.


Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.13Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

- ^{*1}: This parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0V$.
- ^{*2}: AV_{CC} and V_{CC} and DV_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC}, DV_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.
- *³: V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of high current ports depend on DV_{CC}. Input/Output voltages of standard ports depend on V_{CC}.
- ^{*4}: Applicable to all general purpose I/O pins (Pnn_m).
 - · Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
 - The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
 - · Sample recommended circuits:

^{*5}: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows: $P_D = P_{IO} + P_{INT}$

 P_{IO} = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_A is the analog current consumption into AV_{CC}.

^{*6}: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
Farameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Reillaiks
Power supply current in Sleep modes ^{*1}	ICCSPLL		PLL Sleep mode with CLKS1/2 = CLKP1/2 = 32MHz		6.5	-	mA	T _A = +25°C
			(CLKRC and CLKSC stopped)	-	-	13	mA	T _A = +105°C
	Iccsmain		Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0	-	0.9	-	mA	T _A = +25°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	4	mA	T _A = +105°C
	Іссягсн		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0	-	0.5	-	mA	T _A = +25°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	3.5	mA	T _A = +105°C
			RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz	-	0.06	-	mA	T _A = +25°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	2.7	mA	T _A = +105°C
	I _{CCSSUB}	Vcc	Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC stopped)	-	0.04	-	mA	T _A = +25°C
				-	-	2.5	mA	T _A = +105°C
	I _{CCTPLL}		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	1800	2245	μA	T _A = +25°C
				-	-	3140	μA	T _A = +105°C
		-	Main Timer mode with CLKMC = 4MHz, SMCR:LPMSS = 0	-	285	325	μΑ	T _A = +25°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1055	μA	T _A = +105°C
Power supply current in	I _{CCTRCH}		RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0	-	160	210	μΑ	T _A = +25°C
Timer modes ^{*2}			(CLKPLL, CLKMC and CLKSC stopped)	-	-	970	μA	T _A = +105°C
	ICCTRCL		RC Timer mode with CLKRC = 100kHz	-	30	70	μA	T _A = +25°C
			(CLKPLL, CLKMC and CLKSC stopped)	-	-	820	μA	T _A = +105°C
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz	-	25	55	μΑ	T _A = +25°C
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	800	μΑ	T _A = +105°C

14.4.8 USART Timing

Devenuetor	Symbo	Pin	Conditions	4.5V ≤ V ₀	_{cc} < 5.5V	2.7V ≤ V ₀	Uni	
Parameter	1	name Conditions Min		Max	Min	Max	t	
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCKn , SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \to SCK \uparrow delay \text{ time}$	t _{ovsн} ı	SCKn , SOTn	Internal shift clock mode	N×t _{CLKP1} – 20	-	N×t _{CLKP1} – 30	-	ns
$SIN \to SCK \uparrow setup time$	t _{i∨SHI}	SCKn , SINn		t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXI}	SCKn , SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVE}	SCKn , SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn , SINn	shift clock mode	t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXE}	SCKn , SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t⊨	SCKn	ļ	-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, $C_L=50pF$)

Notes:

- AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number.

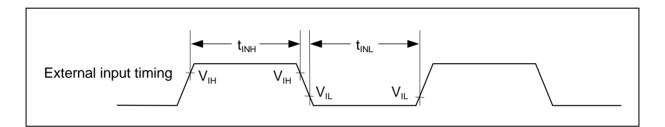
For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on $t_{\mbox{\scriptsize SCYC}}$ and can be calculated as follows:

• If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2

• If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

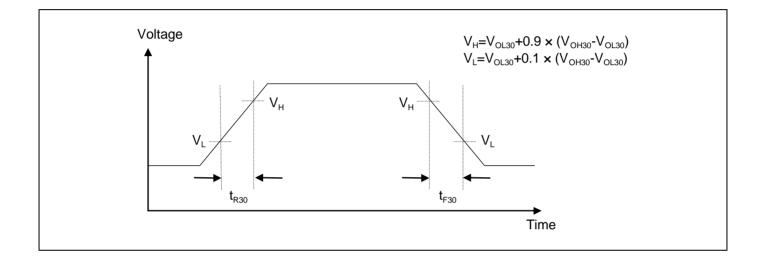
Examples:


tscyc	Ν
$4 imes t_{CLKP1}$	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4

14.4.9 External Input Timing

	out mining	$(V_{CC} = AV_{CC})$	$= DV_{CC} = 2.7V$ to 5.8	5V, V _{SS} = AV	/ _{SS} = DV _S	_S = 0V, T _A = - 40°C to + 105°C
Parameter	Symbol	Pin name	Value	9	Unit	Remarks
Faranielei	Symbol	Finitianie	Min	Max	Unit	Reillarks
		Pnn_m				General Purpose I/O
	vidth t _{INH} , t _{INL}	ADTG	2t _{CLKP1} +200			A/D Converter trigger input
		TINn, TINn_R	(t _{CLKP1} =	-	ns	Reload Timer
Input pulse width		TTGn	1/f _{CLKP1})*	/t _{CLKP1})*		PPG trigger input
		INn, INn_R				Input Capture
		INTn, INTn_R	200		ns	External Interrupt
		NMI	200	-		Non-Maskable Interrupt

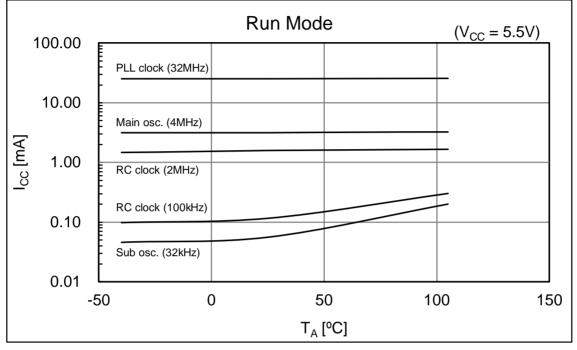
*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

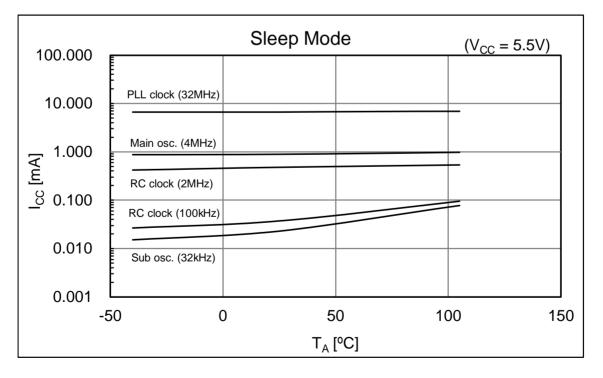


14.6 High Current Output Slew Rate

			(100 11			,	00	00 - , , ,
Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
Farameter				Min	Тур	Max	Unit	Rellidiks
Output rise/fall time	t _{R30} , t _{F30}	P08_m	Outputs driving strength set to "30mA"	15	-	75	ns	C _L =85pF

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)





15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

■MB96F675

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings			
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz			
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz			
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz			
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz			
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz			
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)			
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)			
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			

16. Ordering Information

MCU with CAN controller

Part number	Flash memory	Package*		
MB96F673RBPMC-GSE1		64-pin plastic LQFP		
MB96F673RBPMC-GSE2	Flash A	(FPT-64P-M23)		
MB96F673RBPMC1-GSE1	(96.5KB)	64-pin plastic LQFP		
MB96F673RBPMC1-GSE2		(FPT-64P-M24)		
MB96F675RBPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)		
MB96F675RBPMC-GSE2	Flash A			
MB96F675RBPMC1-GSE1	(160.5KB)	64-pin plastic LQFP		
MB96F675RBPMC1-GSE2		(FPT-64P-M24)		

*: For details about package, see "■PACKAGE DIMENSION".

MCU without CAN controller

Part number	Flash memory	Package*		
MB96F673ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)		
MB96F673ABPMC-GSE2	Flash A			
MB96F673ABPMC1-GSE1	(96.5KB)	64-pin plastic LQFP (FPT-64P-M24)		
MB96F673ABPMC1-GSE2				
MB96F675ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)		
MB96F675ABPMC-GSE2	Flash A			
MB96F675ABPMC1-GSE1	(160.5KB)	64-pin plastic LQFP		
MB96F675ABPMC1-GSE2		(FPT-64P-M24)		

*: For details about package, see "
PACKAGE DIMENSION".

Document History

Document Title: MB96670 Series F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04703

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TORS	01/31/2014	Migrated to Cypress and assigned document number 002-04703. No change to document contents or format.
*A	5135634	TORS	02/18/2016	Updated to Cypress format.