

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 014110	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f675rbpmc1-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Built-in On Chip Debugger (OCD)

□ One-wire debug tool interface

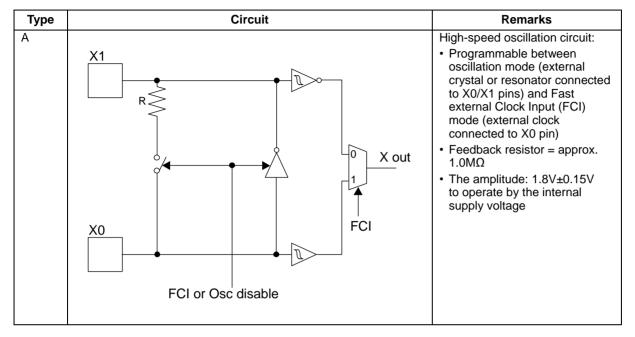
Break function:

- Hardware break: 6 points (shared with code event)
- Software break: 4096 points

□ Event function

- Code event: 6 points (shared with hardware break)
- Data event: 6 points
- Event sequencer: 2 levels + reset
- Execution time measurement function
- □ Trace function: 42 branches
- □ Security function

- Flash Memory
 - □ Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
 - Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
 - □ Supports automatic programming, Embedded Algorithm
 - UVrite/Erase/Erase-Suspend/Resume commands
 - □ A flag indicating completion of the automatic algorithm
- □ Erase can be performed on each sector individually □ Sector protection
- □ Flash Security feature to protect the content of the Flash
- □ Low voltage detection during Flash erase or write


14.4.8 USART Timing
14.4.9 External Input Timing
14.4.10 I ² C Timing
14.5 A/D Converter
14.5.1 Electrical Characteristics for the A/D Converter
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time
14.5.3 Definition of A/D Converter Terms
14.6 High Current Output Slew Rate
14.7 Low Voltage Detection Function Characteristics
14.8 Flash Memory Write/Erase Characteristics
15. Example Characteristics
16. Ordering Information
17. Package Dimension
18. Major Changes
Document History

Pin name	Feature	Description	
Vn	LCD	LCD voltage reference pin	
Vcc	Supply	Power supply pin	
Vss	Supply	Power supply pin	
WOT_R	RTC	Relocated Real Time clock output pin	
X0	Clock	Oscillator input pin	
X0A	Clock	Subclock Oscillator input pin	
X1	Clock	Oscillator output pin	
X1A	Clock	Subclock Oscillator output pin	

6. I/O Circuit Type

Туре	Circuit	Remarks
F	P-ch N-ch	Power supply input protection circuit
G	P-ch N-ch	 A/D converter ref+ (AVRH) power supply input pin with protection circuit Without protection circuit against V_{CC} for pins AVRH
H	P-ch P-ch Pout P-ch Pout P-ch Nout Standby control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
J	Pull-up control P-ch P-ch P-ch P-ch P-ch Pout Nout Automotive input for input shutdown SEG or COM output	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor SEG or COM output

Туре	Circuit	Remarks
К	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
	P-ch P-ch P-ch Pout	Analog input
	Standby control	
	Analog input	
L	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function
	P-ch P-ch Pout	 Programmable pull-up resistor Vn input or SEG output
	Standby control	
	······································	
M	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout	
	Standby control for input shutdown	

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35C _Н	PPG2	Yes	40	Programmable Pulse Generator 2
41	358 _н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _Н	-	-	42	Reserved
43	350 _Н	-	-	43	Reserved
44	34C _H	-	-	44	Reserved
45	348 _H	-	-	45	Reserved
46	344 _H	-	-	46	Reserved
47	340 _н	-	-	47	Reserved
48	33C _H	-	-	48	Reserved
49	338 _Н	-	-	49	Reserved
50	334 _н	-	-	50	Reserved
51	330 _н	-	-	51	Reserved
52	32C _H	-	-	52	Reserved
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _Н	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310 _Н	RLT1	Yes	59	Reload Timer 1
60	30C _H	RLT2	Yes	60	Reload Timer 2
61	308 _Н	-	-	61	Reserved
62	304 _н	-	-	62	Reserved
63	300 _Н	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	-	-	71	Reserved
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	-	-	74	Reserved
75	2D0 _H	-	-	75	Reserved
76	2CC _H	-	-	76	Reserved
77	2C8 _H	-	-	77	Reserved
78	2C4 _H	-	-	78	Reserved
79	2C0 _H	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

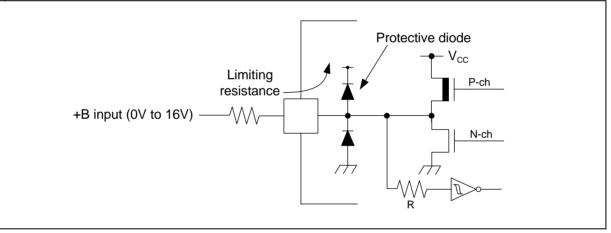
■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards


Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

- ^{*1}: This parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0V$.
- ^{*2}: AV_{CC} and V_{CC} and DV_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC}, DV_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.
- *³: V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of high current ports depend on DV_{CC}. Input/Output voltages of standard ports depend on V_{CC}.
- ^{*4}: Applicable to all general purpose I/O pins (Pnn_m).
 - · Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
 - The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
 - · Sample recommended circuits:

^{*5}: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows: $P_D = P_{IO} + P_{INT}$

 P_{IO} = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_A is the analog current consumption into AV_{CC}.

^{*6}: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

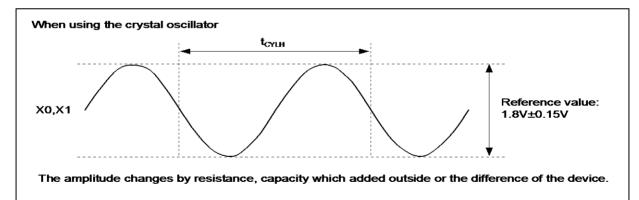
WARNING

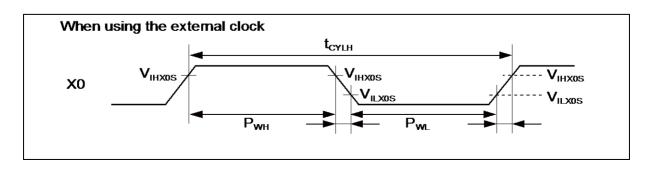
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.3 DC Characteristics

14.3.1 Current Rating

_		Pin			Value	00 -		,													
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks													
			PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz Flash 0 wait	-	25	-	mA	T _A = +25°C													
			(CLKRC and CLKSC stopped)	-	-	34	mA	T _A = +105°C													
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz Flash 0 wait	-	3.5	-	mA	T _A = +25°C													
			(CLKPLL, CLKSC and CLKRC stopped)	-	-	7.5	mA	T _A = +105°C													
Power supply current in Run	I _{CCRCH}	Vcc	RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz Flash 0 wait	-	1.7	-	mA	T _A = +25°C													
modes ^{*1}			(CLKMC, CLKPLL and CLKSC stopped)	-	-	5.5	mA	T _A = +105°C													
	ICCRCL															RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz Flash 0 wait	-	0.15	-	mA	T _A = +25°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	3.2	mA	T _A = +105°C													
	Іссѕив		Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz Flash 0 wait	-	0.1	-	mA	T _A = +25°C													
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	3	mA	T _A = +105°C													




14.4 AC Characteristics

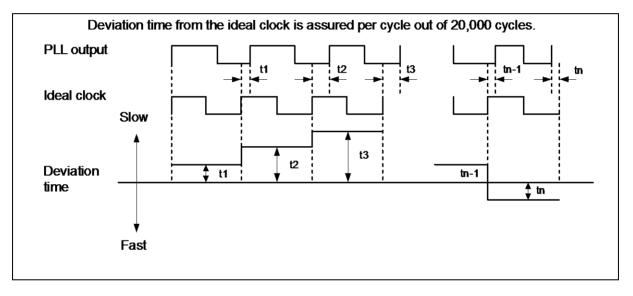
14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

D	Ormalia Dia		Value				D
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	fc	X0,	-	-	8	MHz	When using an opposite phase external clock, PLL off
		X1	4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
laput fraguanay	f _{FCI} X0		-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
Input frequency		×0	4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	125	-	-	ns	
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns	

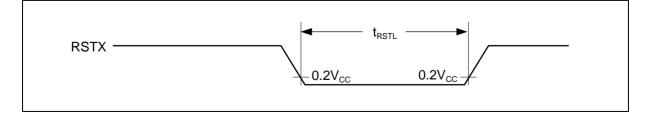
14.4.3 Built-in RC Oscillation Characteristics

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$									
Boromotor	Symbol		Value		Unit	Remarks			
Parameter	Symbol	Min	Тур	Max	Unit	Remarks			
Clock frequency	f	50	100	200	kHz	When using slow frequency of RC oscillator			
	f _{RC}	1	2	4	MHz	When using fast frequency of RC oscillator			
RC clock stabilization time	t	80	160	320	μs	When using slow frequency of RC oscillator (16 RC clock cycles)			
	t RCSTAB	64	128	256	μs	When using fast frequency of RC oscillator (256 RC clock cycles)			

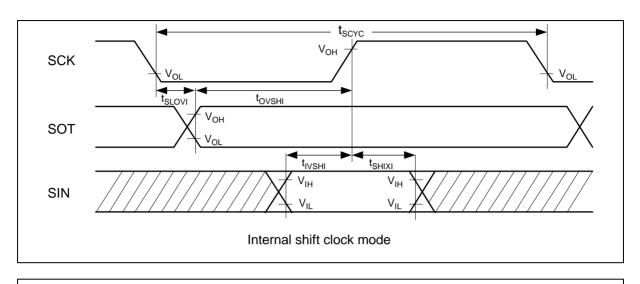

14.4.4 Internal Clock Timing

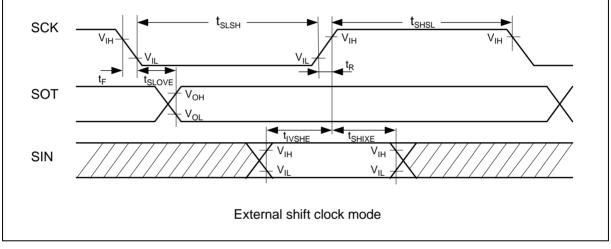
$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$										
Parameter	Symbol	Va	Unit							
Farameter	Symbol	Min	Max	Unit						
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz						
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz						
Internal peripheral clock frequency (CLKP2)	fclkp2	-	32	MHz						

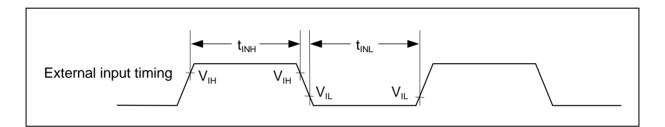
14.4.5 Operating Conditions of PLL


(Vo	$_{\rm CC} = AV_{\rm CC} = D$	V _{CC} = 2.	7V to 5.	5V, V _{SS} =	AV _{SS} = D	$V_{\rm SS} = 0$ V, $T_{\rm A} = -40^{\circ}$ C to + 105°C)	
Parameter	Symbol	Value			Unit	Remarks	
Farameter	Symbol	Min	Тур	Max	Onit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input


 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)


Parameter	Symbol	Pin name	Va	Unit		
i arameter	Cymbol	T III Hame	Min	Max		
Reset input time		RSTX	10	-	μS	
Rejection of reset input time	t _{RSTL}	ROIN	1	-	μS	



14.4.9 External Input Timing

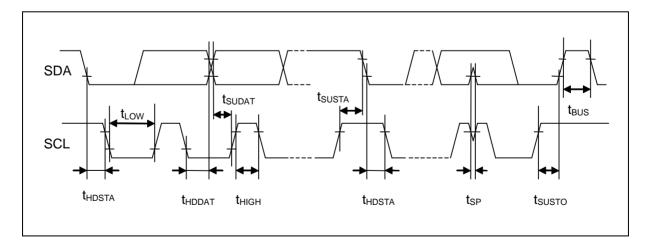
$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 10^{\circ}\text{C}$							
Parameter	Symbol	Pin name	Value		Unit	Remarks	
Falameter	Symbol		Min	Max	Unit	Reindiks	
	t _{INH} , t _{INL}	Pnn_m			ns	General Purpose I/O	
Input pulse width		ADTG	2t _{CLKP1} +200	-		A/D Converter trigger inpu	
		TINn, TINn_R	(t _{CLKP1} =			Reload Timer	
		TTGn	1/f _{CLKP1})*			PPG trigger input	
		INn, INn_R				Input Capture	
		INTn, INTn_R	200		ns	External Interrupt	
		NMI	200	-		Non-Maskable Interrupt	

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.4.10 ²C Timing

Devementer				Typical mode		High-speed mode*4	
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
(Repeated) START condition hold time $SDA \downarrow \rightarrow SCL \downarrow$	t _{HDSTA}		4.0	-	0.6	-	μs
SCL clock "L" width	t _{LOW}		4.7	-	1.3	-	μS
SCL clock "H" width	t _{HIGH}		4.0	-	0.6	-	μS
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SUSTA}		4.7	-	0.6	-	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HDDAT}	$C_L = 50 \text{pF},$ R = (Vp/I _{OL}) ^{*1}	0	3.45* ²	0	0.9* ³	μS
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$ t_{SUDAT}			250	-	100	-	ns
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susto}		4.0	-	0.6	-	μS
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μS
Pulse width of spikes which will be suppressed by input noise filter	t _{SP}	-	0	(1-1.5) × t _{СLКР1} * ⁵	0	(1-1.5) × t _{CLКР1} * ⁵	ns

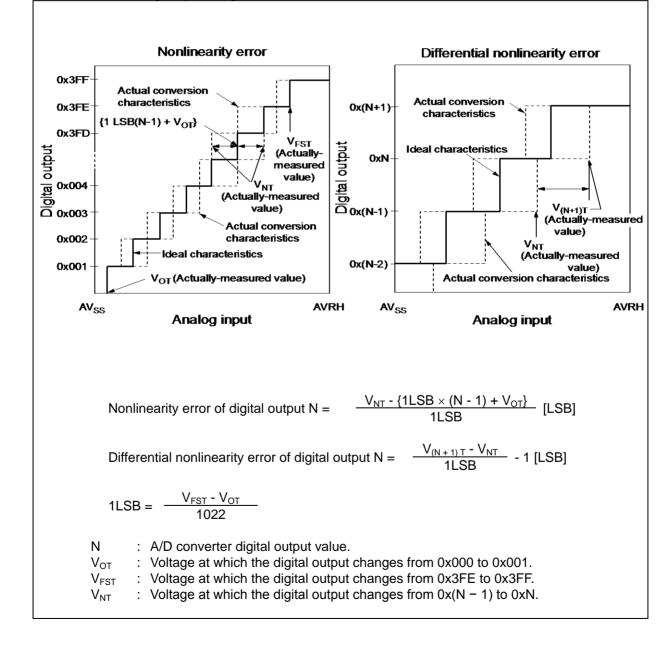
(V_{CC} = AV_{CC} = DV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C to + 105°C)

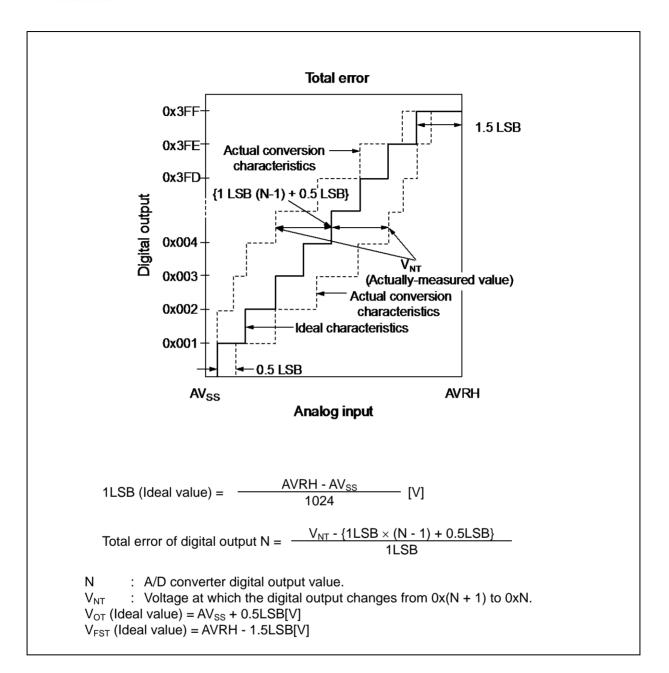

^{*1}: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

 *2 : The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

*3: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250ns".

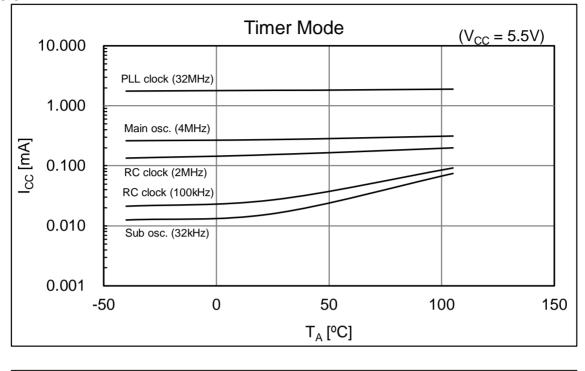
^{*4}: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

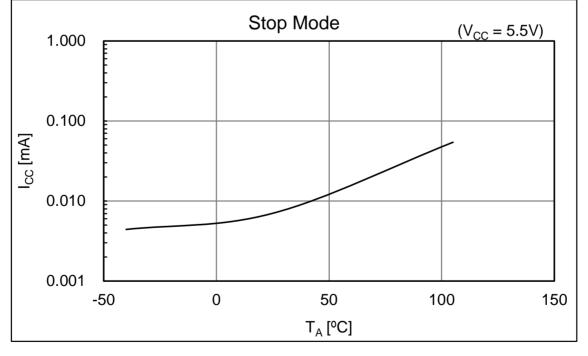

^{*5}: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.



14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error transition point
 Deviation of the actual conversion characteristics from a straight line that connects the zero (0b000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage : Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.





■MB96F675

Page	Section	Change Results
40	ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current Rating	Changed the annotation *2 Power supply for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current. → The current for "On Chip Debugger" part is not included. Added the description to annotation *2, *3 When Flash is not in Power-down / reset mode, I _{CCFLASHPD} must be added to the Power supply current.
52	4. AC Characteristics (10) I ² C timing	Added parameter, "Noise filter" and an annotation $*5$ for it Added t _{SP} to the figure
54	5. A/D Converter (2) Accuracy and Setting of the A/D Converter Sampling Time	Deleted the unit "[Min]" from approximation formula of Sampling time
57	6. High Current Output Slew Rate	Changed the condition $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$ \rightarrow $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$
60	8. Flash Memory Write/Erase Characteristics	Changed the condition $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$ \rightarrow $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$ Changed the Note While the Flash memory is written, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector. \rightarrow While the Flash memory is written or erased, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
Revision		
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.