

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f675rbpmc1-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.4.8 USART Timing				
14.4.9 External Input Timing				
14.4.10 I ² C Timing				
14.5 A/D Converter				
14.5.1 Electrical Characteristics for the A/D Converter				
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time				
14.5.3 Definition of A/D Converter Terms				
14.6 High Current Output Slew Rate				
14.7 Low Voltage Detection Function Characteristics				
14.8 Flash Memory Write/Erase Characteristics				
15. Example Characteristics				
16. Ordering Information				
17. Package Dimension				
8. Major Changes				
Document History				

1. Product Lineup

Features			MB96670	Remark
Product Type		Flash Memory Product		
Subclock		Subclock can be set by software		
Dual Operat	tion Flash Memory	RAM	-	
64.5KB + 32	54.5KB + 32KB		MB96F673R, MB96F673A	Product Options B: MCU with CAN
128.5KB + 3	128.5KB + 32KB 4KB		MB96F675R, MB96F675A	A: MCU without CAN
Package			LQFP-64 FPT-64P-M23/M24	
DMA			2ch	
USART			2ch	LIN-USART 0/1
	with automatic LIN-Header transmission/reception	[Yes (only 1ch)	LIN-USART 0
	with 16 byte RX- and TX-FIFO		No	
I ² C			1ch	$I^2C 0$
8/10-bit A/E	O Converter		12ch	AN 8/9/12/13/16 to 23
	with Data Buffer		No	
	with Range Comparator		Yes	
	with Scan Disable		Yes	
	with ADC Pulse Detection		Yes	
16-bit Reloa	ad Timer (RLT)		3ch	RLT 1/2/6
16-bit Free-	Running Timer (FRT)		2ch	FRT 0/1
16-bit Input Capture Unit (ICU)			4ch (2 channels for LIN-USART)	ICU 0/1/4/5 ICU 0/1 for LIN-USART
8/16-bit Pro	grammable Pulse Generator (PPG)	4ch (16-bit) / 8ch (8-bit)	PPG 0 to 3
	with Timing point capture	,	Yes	
	with Start delay		No	
	with Ramp		No	
CAN Interfa	ace		1ch	CAN 0 32 Message Buffers
Stepping M	otor Controller (SMC)		2ch	SMC 0/1
External Int	errupts (INT)		7ch	INT 0 to 4/6/7
Non-Maska	ble Interrupt (NMI)		lch	
Sound Gene	erator (SG)		lch	SG 0
LCD Controller		4COM × 24SEG	COM 0 to 3 SEG 3 to 6/8 to 11/ 19 to 21/23/30/36 to 39/42/45 to 47/54 to 56	
Real Time Clock (RTC)		1ch		
I/O Ports		48 (Dual clock mode) 50 (Single clock mode)		
Clock Calibration Unit (CAL)		lch		
Clock Output Function		2ch		
Low Voltage	e Detection Function		Yes	Low voltage detection function can be disabled by software
Hardware W	Vatchdog Timer		Yes	
On-chip RC	-oscillator		Yes	
On-chip Debugger			Yes	

Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.

It is necessary to use the port relocate function of the general I/O port according to your function use.

5. Pin Circuit Type

Pin no.	I/O circuit type*	Pin name		
1	Supply	Vss		
2	F	С		
3	Μ	P03_7 / INT1 / SIN1		
4	н	P13_0 / INT2 / SOT1		
5	Р	P13_1 / INT3 / SCK1 / SEG42		
6	J	P00_7 / SEG19 / SGO0		
7	J	P01_0 / SEG20 / SGA0		
8	J	P02_2 / SEG30 / CKOT0_R		
9	J	P06_5 / IN1 / SEG54 / TTG1		
10	J	P06_6 / TIN1 / SEG55 / IN4_R		
11	J	P06_7 / TOT1 / SEG56 / IN5_R		
12	К	P05_0 / AN8		
13	К	P05_1 / AN9		
14	Supply	AVcc		
15	G	AVRH		
16	Supply	AVss		
17	К	P05_4 / AN12 / INT2_R / WOT_R		
18	К	P05_5 / AN13		
19	R	P08_0 / PWM1P0 / AN16		
20	R	P08_1 / PWM1M0 / AN17		
21	R	P08_2 / PWM2P0 / AN18		
22	R	P08_3 / PWM2M0 / AN19		
23	Supply	DVcc		
24	Supply	DVss		
25	R	P08_4 / PWM1P1 / AN20		
26	R	P08_5 / PWM1M1 / AN21		
27	R	P08_6 / PWM2P1 / AN22		
28	R	P08_7 / PWM2M1 / AN23		
29	Р	P13_4 / SIN0 / INT6 / SEG45		
30	J	P13_5 / SOT0 / ADTG / INT7 / SEG46		
31	Р	P13_6 / SCK0 / CKOTX0 / SEG47		
32	Ν	P04_4 / PPG3 / SDA0		

9. User ROM Memory Map For Flash Devices

CPU mode address	Flash memory mode address	MB96F673 Flash size 64.5KB + 32KB	MB96F675 Flash size 128.5KB + 32KB	
FF:FFFFH FF:0000H	3F:FFFFн 3F:0000н	SA39 - 64KB	SA39 - 64KB	
FE:FFFFH	3E:FFFFH		SA38 - 64KB	Bank A of Flash A
DF:A000H	3L.0000	Reserved	Reserved	
DF:9FFFH DF:8000H	1F:9FFFH 1E:8000H	SA4 - 8KB	SA4 - 8KB	
DF:7FFH	1F:7FFFн 1F:6000н	SA3 - 8KB	SA3 - 8KB	
DF:5FFFH	1F:5FFFH	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3600H	1F:3FFFH 1F:2000H	SA1 - 8KB	SA1 - 8KB	
DF:1FFFH	1F:1FFFH	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DF:0000H DE:FFFFH DE:0000H	1F:0000H	Reserved	Reserved	
*: Physical address Others (from DF:(area of SAS-512B is fron 0200H to DF:1FFFH) is m	n DF:0000H to DF:01I hirror area of SAS-512	FFH. 2B.	

Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000H -DF:01FFH. SAS can not be used for E^2 PROM emulation.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB96670						
Pin Number	n Number USART Number Normal Function					
29		SIN0				
30	USART0	SOT0				
31		SCK0				
3		SIN1				
4	USART1	SOT1				
5		SCK1				

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
81	2В8 _Н	-	-	81	Reserved
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	-	-	83	Reserved
84	2AC _H	-	-	84	Reserved
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	-	-	91	Reserved
92	28C _H	-	-	92	Reserved
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	SG0	No	95	Sound Generator 0
96	27C _H	IIC0	Yes	96	I ² C interface 0
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINT0	Yes	102	LIN USART 0 TX
103	260 _H	LINR1	Yes	103	LIN USART 1 RX
104	25C _H	LINT1	Yes	104	LIN USART 1 TX
105	258 _Н	-	-	105	Reserved
106	254 _H	-	-	106	Reserved
107	250 _H	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23C _H	-	-	112	Reserved
113	238н	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	-	-	115	Reserved
116	22C _H	-	-	116	Reserved
117	228 _H	-	-	117	Reserved
118	224 _H	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

Parameter	Symbol	Pin	Conditions	Conditions Value			Unit	Remarks
		name		win	тур	wax		
	CCSPU		PLL Sleep mode with CLKS1/2 = CLKP1/2 = 32MHz	-	6.5	-	mA	T _A = +25°C
			(CLKRC and CLKSC stopped)	-	-	13	mA	T _A = +105°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0	-	0.9	-	mA	T _A = +25°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	4	mA	T _A = +105°C
Power supply current in Sleep	Iccsrch		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:1 PMSS = 0	-	0.5	-	mA	T _A = +25°C
modes			(CLKMC, CLKPLL and CLKSC stopped)	-	-	3.5	mA	T _A = +105°C
	ICCSRCL	Vcc	RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz	-	0.06	-	mA	T _A = +25°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	2.7	mA	T _A = +105°C
	ICCSSUB		Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC stopped)	-	0.04	-	mA	T _A = +25°C
				-	-	2.5	mA	T _A = +105°C
	I _{CCTPLL}		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	1800	2245	μΑ	T _A = +25°C
				-	-	3140	μA	T _A = +105°C
	Icctmain		Main Timer mode with CLKMC = 4MHz, SMCR:LPMSS = 0	-	285	325	μA	T _A = +25°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1055	μΑ	T _A = +105°C
Power supply current in	Ісствен		RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0	-	160	210	μΑ	T _A = +25°C
Timer modes ^{*2}			(CLKPLL, CLKMC and CLKSC stopped)	-	-	970	μΑ	T _A = +105°C
			RC Timer mode with CLKRC = 100kHz	-	30	70	μA	T _A = +25°C
			(CLKPLL, CLKMC and CLKSC stopped)	-	-	820	μΑ	T _A = +105°C
			Sub Timer mode with CLKSC = 32kHz	-	25	55	μΑ	T _A = +25°C
	CUTSUB		(CLKMC, CLKPLL and CLKRC stopped)	-	-	800	μA	T _A = +105°C

14.3.2 Pin Characteristics

				Value				
Parameter	Symbol	Pin name	Conditions	Min		Max	Unit	Remarks
	Port		-	$V_{CC} \times 0.7$	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIH	Pnn_m	-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	AUTOMOTIVE Hysteresis input
	VIHXOS	X0	External clock in "Fast Clock Input mode"	VD × 0.8	-	VD	V	VD=1.8V±0.15V
"H" level input voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} × 0.8	-	V _{CC} + 0.3	V	
	V _{IHR}	RSTX	-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIHM	MD	-	V _{CC} - 0.3	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input
	V	Port	-	V _{SS} - 0.3	-	$V_{CC} \times 0.3$	V	CMOS Hysteresis input
	Pnn_m	-	V _{SS} - 0.3	-	$V_{CC} \times 0.5$	V	AUTOMOTIVE Hysteresis input	
	VILXOS	X0	External clock in "Fast Clock Input mode"	V _{SS}	-	VD × 0.2	V	VD=1.8V±0.15V
"L" level input voltage	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{CC} × 0.2	V	
	V _{ILR}	RSTX	-	V _{SS} - 0.3	-	V _{CC} × 0.2	V	CMOS Hysteresis input
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input
	V _{ILD}	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input

14.4.7 Power-on Reset Timing

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 105^{\circ}\text{C}$						
Paramotor	Symbol	Pin namo		Value		Unit
Farameter	Symbol	Fin hame	Min	Тур	Max	Unit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

14.4.9 External Input Timing

<i>µ</i> -	g	$(V_{CC} = AV_{CC} =$	$DV_{CC} = 2.7V$ to 5.5	, V _{SS} = AV	ss = DVs	$_{\rm S}$ = 0V, T _A = - 40°C to + 105°C)
Barameter	Symbol	Cymhol Din nome	Value		l lmit	Bomorko
Farameter	Symbol	Fin hame	Min	Max	Unit	Remarks
Input pulse width	t _{INH} , t _{INL}	Pnn_m				General Purpose I/O
		ADTG	2t _{CLKP1} +200			A/D Converter trigger input
		TINn, TINn_R	(t _{CLKP1} =		ns	Reload Timer
		TTGn	1/f _{CLKP1})*			PPG trigger input
		INn, INn_R				Input Capture
		INTn, INTn_R	200		200	External Interrupt
		NMI	200	-	ns	Non-Maskable Interrupt

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and ADC are contained)

R_{VIN}: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = 7.62 × (Rext × Cext + (Rext + R_{VIN}) × C_{VIN})

- Do not select a sampling time below the absolute minimum permitted value. ($0.5\mu s$ for $4.5V \le AV_{CC} \le 5.5V$, $1.2\mu s$ for $2.7V \le AV_{CC} < 4.5V$)
- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu F$ to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

■MB96F675

■MB96F675

Page	Section	Change Results
40	ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current Rating	Changed the annotation *2 Power supply for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current. → The current for "On Chip Debugger" part is not included.
		Added the description to annotation *2, *3 When Flash is not in Power-down / reset mode, I _{CCFLASHPD} must be added to the Power supply current.
52	4. AC Characteristics	Added parameter, "Noise filter" and an annotation *5 for it
		Added t _{SP} to the figure
54	5. A/D Converter (2) Accuracy and Setting of the A/D Converter Sampling Time	Sampling time
57	6. High Current Output Slew Rate	Changed the condition (V _{CC} = AV _{CC} = DV _{CC} = 2.7V to 5.5V, VD=1.8V±0.15V, V _{SS} = AV _{SS} = DV _{SS} = 0V, T _A = -40°C to + 105°C) \rightarrow (V _{CC} = AV _{CC} = DV _{CC} = 2.7V to 5.5V, V _{SS} = AV _{SS} = DV _{SS} = 0V, T = 40°C to + 105°C)
60	8. Flash Memory Write/Erase Characteristics	Changed the condition (V _{CC} = AV _{CC} = DV _{CC} = 2.7V to 5.5V, VD=1.8V±0.15V, V _{SS} = AV _{SS} = DV _{SS} = 0V, T _A = - 40°C to + 105°C) → (V _{CC} = AV _{CC} = DV _{CC} = 2.7V to 5.5V, V _{SS} = AV _{SS} = DV _{SS} = 0V, T _A = - 40°C to + 105°C) Changed the Note While the Flash memory is written, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector. → While the Flash memory is written or erased, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
Revision 2	2.1	O and a state of the state of t
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB96670 Series F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04703

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TORS	01/31/2014	Migrated to Cypress and assigned document number 002-04703. No change to document contents or format.
*A	5135634	TORS	02/18/2016	Updated to Cypress format.