

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6012a-20e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description			
PGD PGC	I/O I	ST ST	In-Circuit Serial Programming™ data input/output pin. In-Circuit Serial Programming clock input pin.			
RA6-RA7	I/O	ST	PORTA is a bidirectional I/O port.			
RA9-RA10	I/O	ST				
RA12-RA15	I/O	ST				
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.			
RC1-RC4 RC13-RC15	1/O 1/O	ST ST	PORTC is a bidirectional I/O port.			
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.			
RF0-RF8	I/O	ST	PORTF is a bidirectional I/O port.			
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.			
RG6-RG9	I/O	ST				
RG12-RG15	I/O	ST				
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.			
SDI1		ST	SPI1 Data In.			
SDO1	0		SPI1 Data Out.			
551		SI	SPIT Slave Synchronization.			
	1/0	ST ST	Spicifionous senai clock inputoulput for SF12.			
SD02		51	SPI2 Data III. SPI2 Data Out			
SS2	I	ST	SPI2 Slave Synchronization.			
SCL	I/O	ST	Synchronous serial clock input/output for I ² C™.			
SDA	I/O	ST	Synchronous serial data input/output for I ² C.			
SOSCO	0	—	32 kHz low-power oscillator crystal output.			
SOSCI	I	ST/CMOS	32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.			
T1CK	I	ST	Timer1 external clock input.			
T2CK	I.	ST	Timer2 external clock input.			
T3CK	I	ST	Timer3 external clock input.			
T4CK	I	ST	Timer4 external clock input.			
T5CK	I	ST	Timer5 external clock input. UART1 Receive.			
U1RX	I	ST	UART1 Receive. UART1 Transmit.			
U1TX	0		UART1 Receive. UART1 Transmit. UART1 Alternate Receive			
U1ARX		ST	UART1 Transmit. UART1 Alternate Receive.			
	0	 0 T	UART1 Alternate Receive. UART1 Alternate Transmit.			
		51	UART1 Alternate Transmit. UART2 Receive. LIART2 Transmit			
VDD	P		Positive supply for logic and I/O pins			
Vss	P		Ground reference for logic and I/O pins.			
VRFF+	-	Analog	Analog Voltage Reference (High) input			
VREF-		Analog	Analog Voltage Reference (Low) input			
Legend: C	MOS =		$\Delta nalog = \Delta nalog input$			
S	T =	Schmitt T	rigger input with CMOS levels 0 = Output			
I		Input	P = Power			

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

2.4.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space may also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly, For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.4.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators, or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value will shift the operand right. A negative value will shift the operand left. A value of '0' will not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 16 for left shifts.

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

3.1 Program Address Space

The program address space is 4M instruction words. It is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space as defined by Table 3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which use TBLPAG<7> to determine user or configuration space access. In Table 3-1, Program Space Address Construction, bit 23 allows access to the Device ID, the Unit ID and the configuration bits. Otherwise, bit 23 is always clear.

Note: The address map shown in Figure 3-1 and Figure 3-2 is conceptual, and the actual memory configuration may vary across individual devices depending on available memory.

TABLE 3-3: CORE REGISTER MAP⁽¹⁾ (CONTINUED)

SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
SR	0042	AO	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPLO	RA	z	٥ ٥	Z	υ	000 0000 0000 0000	0
CORCON	0044		I		SN	EDT	DL2	DL1	DLO	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	≝	0000 0000 0010 000	0
MODCON	0046	XMODEN	YMODEN	Ι	Ι		BWM	<3:0>			ΛWY	<3:0>			™ M	<3:0>		000 0000 0000 0000	0
XMODSRT	0048							ΧS	<15:1>								0	nnn nnnn nnnn nnnn	0
XMODEND	004A							ХĘ	<15:1>								Ч	nnn nnnn nnnn nnnn	
YMODSRT	004C							ΥS	<15:1>								0	nnn nnnn nnnn nnnn	0
YMODEND	004E							ΥĘ	<15:1>								1	nnn nnnn nnnn nnnn	
XBREV	00200	BREN							IX	3<14:0>								nnn nnnn nnnn nnnn	Þ
DISICNT	0052	I	I							DISICN	T<13:0>							000 0000 0000 0000	0
BSRAM	0750		Ι								1	1			IW_BSR	IR_BSR	RL_BSR	000 0000 0000 0000	0
SSRAM	0752		Ι		Ι			I	I	Ι	I	Ι			IW_SSR	IR_SSR	RL_SSR	0000 0000 0000 0000	0
Legend:	u = uniniti	ialized bit; —	- = unimplem	ented bit,	read as '0	•													1

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F6011A/6012A/6013A/6014A

TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addre	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER

Buffer Size (Words)	XB<14:0> Bit-Reversed Address Modifier Value
4096	0x0800
2048	0x0400
1024	0x0200
512	0x0100
256	0x0080
128	0x0040
64	0x0020
32	0x0010
16	0x0008
8	0x0004
4	0x0002
2	0x0001

8.0 I/O PORTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.

All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

8.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the port pins, write the latch (LATx). Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

The format of the registers for PORTA are shown in Table 8-1.

The TRISA (Data Direction Control) register controls the direction of the RA<7:0> pins, as well as the INTx pins and the VREF pins. The LATA register supplies data to the outputs and is readable/writable. Reading the PORTA register yields the state of the input pins, while writing the PORTA register modifies the contents of the LATA register.

A parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 8-2 shows how ports are shared with other peripherals and the associated I/O cell (pad) to which they are connected. Table 8-2 through Table 8-9 show the formats of the registers for the shared ports, PORTB through PORTG.

Note: The actual bits in use vary between devices.

FIGURE 8-1: BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE

8.3 Input Change Notification Module

The input change notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor, in response to a change of state on selected input pins. This module is capable of detecting input change of states even in Sleep mode, when the clocks are disabled. There are up to 24 external signals (CN0 through CN23) that may be selected (enabled) for generating an interrupt request on a change of state.

TABLE 8-10:INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011A/6012A
(BITS 15-8)⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset State
CNEN1	00C0	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	_	_	_	0000 0000 0000 0000
CNPU1	00C4	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	0000 0000 0000 0000
CNPU2	00C6	—	_	-	_	_	-	-		0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-11:INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011A/6012A
(BITS 7-0)⁽¹⁾

SFR Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	CN18IE	CN17IE	CN16IE	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	—	—	_	—	—	CN18PUE	CN17PUE	CN16PUE	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-12:INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013A/6014A
(BITS 15-8)⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset State
CNEN1	00C0	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	0000 0000 0000 0000
CNEN2	00C2	—			-	—	-			0000 0000 0000 0000
CNPU1	00C4	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	0000 0000 0000 0000
CNPU2	00C6	-				-	_			0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-13:INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013A/6014A
(BITS 7-0)⁽¹⁾

SFR Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

13.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 13-1.

EQUATION 13-1:

$$PWM \ period = [(PRx) + 1] \cdot 4 \cdot TOSC \cdot (TMRx \ prescale \ value)$$

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared
- The OCx pin is set
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin will remain low
 - Exception 2: If duty cycle is greater than PRx, the pin will remain high
- The PWM duty cycle is latched from OCxRS into OCxR
- The corresponding timer interrupt flag is set

See Figure 13-2 for key PWM period comparisons. Timer3 is referred to in Figure 13-2 for clarity.

14.2 Framed SPI Support

The module supports a basic framed SPI protocol in Master or Slave mode. The control bit FRMEN enables framed SPI support and causes the SSx pin to perform the frame synchronization pulse (FSYNC) function. The control bit SPIFSD determines whether the SSx pin is an input or an output (i.e., whether the module receives or generates the frame synchronization pulse). The frame pulse is an active-high pulse for a single SPI clock cycle. When frame synchronization is enabled, the data transmission starts only on the subsequent transmit edge of the SPI clock.

FIGURE 14-1: SPI BLOCK DIAGRAM

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Re	set Stat	e	_
U1MODE	020C	UARTEN	I	USIDL	I					WAKE	LPBACK	ABAUD	I	I	PDSEL1	PDSEL0	STSEL	00 00 00	000 00	0000 0	
U1STA	020E	UTXISEL	1	I		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	00 0000	01 000	1 0000	1
U1TXREG	0210		1	I		1	I	1	UTX8			Tra	ansmit Re	gister				00 0000	nnn nc	nnn n	1
U1RXREG	0212	Ι		Ι		I	Ι	Ι	URX8			Re	sceive Re	gister				00 0000	000 00	0000 0	-
U1BRG	0214							Bau	d Rate Ge	inerator Pres	caler							00 0000	000 00	0000 0	-
			:	. .																	1

Legend: Note 1:

u = uninitialized bit; — = unimplemented bit, read as '0' Refer to the "dsP/C30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

UART2 REGISTER MAP⁽¹⁾ **TABLE 16-2**:

	i •																		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
U2MODE	0216	UARTEN		NSIDL	Ι	I	Ι			WAKE	LPBACK	ABAUD		Ι	PDSEL1	PDSEL0	STSEL	0000 0000 0000 0000	
U2STA	0218	UTXISEL				UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000 0001 0001 0000	r
U2TXREG	021A	Ι				I	I	I	UTX8			Tn	ansmit Re	gister				nnnn nnnn n000 0000	r
U2RXREG	021C	Ι				I	I	I	URX8			Å	sceive Re	gister				0000 0000 0000 0000	-
U2BRG	021E							В	aud Rate (Generator Pre	escaler							0000 0000 0000 0000	-
- huene		ninitializad	hit:	melamini	iantad hi	, ac pear ti													

u = uninitialized bit; — = unimplemented bit, read as '0' Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Legend: Note 1:

dsPIC30F6011A/6012A/6013A/6014A

FIGURE 17-1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

17.5.6 TRANSMIT INTERRUPTS

Transmit interrupts can be divided into 2 major groups, each including various conditions that generate interrupts:

• Transmit Interrupt:

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message for transmission. Reading the TXnIF flags will indicate which transmit buffer is available and caused the interrupt.

Transmit Error Interrupts:

A transmission error interrupt will be indicated by the ERRIF flag. This flag shows that an error condition occurred. The source of the error can be determined by checking the error flags in the CAN Interrupt status register, CiINTF. The flags in this register are related to receive and transmit errors.

- Transmitter Warning Interrupt:

The TXWAR bit indicates that the transmit error counter has reached the CPU warning limit of 96.

- Transmitter Error Passive:

The TXEP bit (CiINTF<12>) indicates that the transmit error counter has exceeded the error passive limit of 127 and the module has gone to error passive state.

- Bus Off:

The TXBO bit (CiINTF<13>) indicates that the transmit error counter has exceeded 255 and the module has gone to the bus off state.

17.6 Baud Rate Setting

All nodes on any particular CAN bus must have the same nominal bit rate. In order to set the baud rate, the following parameters have to be initialized:

- Synchronization Jump Width
- Baud Rate Prescaler
- Phase Segments
- Length determination of Phase Segment 2
- Sample Point
- · Propagation Segment bits

17.6.1 BIT TIMING

All controllers on the CAN bus must have the same baud rate and bit length. However, different controllers are not required to have the same master oscillator clock. At different clock frequencies of the individual controllers, the baud rate has to be adjusted by adjusting the number of time quanta in each segment.

The nominal bit time can be thought of as being divided into separate non-overlapping time segments. These segments are shown in Figure 17-2.

- Synchronization Segment (Sync Seg)
- Propagation Time Segment (Prop Seg)
- Phase Segment 1 (Phase1 Seg)
- Phase Segment 2 (Phase2 Seg)

The time segments and also the nominal bit time are made up of integer units of time called time quanta or Tq. By definition, the nominal bit time has a minimum of 8 Tq and a maximum of 25 Tq. Also, by definition, the minimum nominal bit time is 1 μ sec corresponding to a maximum bit rate of 1 MHz.

FIGURE 17-2: CAN BIT TIMING

18.3.18 SLOT STATUS BITS

The SLOT<3:0> status bits in the DCISTAT SFR indicate the current active time slot. These bits will correspond to the value of the frame sync generator counter. The user may poll these status bits in software when a DCI interrupt occurs to determine what time slot data was last received and which time slot data should be loaded into the TXBUF registers.

18.3.19 CSDO MODE BIT

The CSDOM control bit controls the behavior of the CSDO pin during unused transmit slots. A given transmit time slot is unused if it's corresponding TSEx bit in the TSCON SFR is cleared.

If the CSDOM bit is cleared (default), the CSDO pin will be low during unused time slot periods. This mode will be used when there are only two devices attached to the serial bus.

If the CSDOM bit is set, the CSDO pin will be tri-stated during unused time slot periods. This mode allows multiple devices to share the same CSDO line in a multichannel application. Each device on the CSDO line is configured so that it will only transmit data during specific time slots. No two devices will transmit data during the same time slot.

18.3.20 DIGITAL LOOPBACK MODE

Digital Loopback mode is enabled by setting the DLOOP control bit in the DCICON1 SFR. When the DLOOP bit is set, the module internally connects the CSDO signal to CSDI. The actual data input on the CSDI I/O pin will be ignored in Digital Loopback mode.

18.3.21 UNDERFLOW MODE CONTROL BIT

When an underflow occurs, one of two actions may occur depending on the state of the Underflow mode (UNFM) control bit in the DCICON1 SFR. If the UNFM bit is cleared (default), the module will transmit '0's on the CSDO pin during the active time slot for the buffer location. In this Operating mode, the Codec device attached to the DCI module will simply be fed digital 'silence'. If the UNFM control bit is set, the module will transmit the last data written to the buffer location. This Operating mode permits the user to send continuous data to the Codec device without consuming CPU overhead.

18.4 DCI Module Interrupts

The frequency of DCI module interrupts is dependent on the BLEN<1:0> control bits in the DCICON2 SFR. An interrupt to the CPU is generated each time the set buffer length has been reached and a shadow register transfer takes place. A shadow register transfer is defined as the time when the previously written TXBUF values are transferred to the transmit shadow registers and new received values in the receive shadow registers are transferred into the RXBUF registers.

18.5 DCI Module Operation During CPU Sleep and Idle Modes

18.5.1 DCI MODULE OPERATION DURING CPU SLEEP MODE

The DCI module has the ability to operate while in Sleep mode and wake the CPU when the CSCK signal is supplied by an external device (CSCKD = 1). The DCI module will generate an asynchronous interrupt when a DCI buffer transfer has completed and the CPU is in Sleep mode.

18.5.2 DCI MODULE OPERATION DURING CPU IDLE MODE

If the DCISIDL control bit is cleared (default), the module will continue to operate normally even in Idle mode. If the DCISIDL bit is set, the module will halt when Idle mode is asserted.

18.6 AC-Link Mode Operation

The AC-Link protocol is a 256-bit frame with one 16-bit data slot, followed by twelve 20-bit data slots. The DCI module has two Operating modes for the AC-Link protocol. These Operating modes are selected by the COFSM<1:0> control bits in the DCICON1 SFR. The first AC-Link mode is called '16-bit AC-Link mode' and is selected by setting COFSM<1:0> = 10. The second AC-Link mode is called '20-bit AC-Link mode' and is selected by setting COFSM<1:0> = 11.

18.6.1 16-BIT AC-LINK MODE

In the 16-bit AC-Link mode, data word lengths are restricted to 16 bits. Note that this restriction only affects the 20-bit data time slots of the AC-Link protocol. For received time slots, the incoming data is simply truncated to 16 bits. For outgoing time slots, the 4 LSbs of the data word are set to '0' by the module. This truncation of the time slots limits the ADC and DAC data to 16 bits, but permits proper data alignment in the TXBUF and RXBUF registers. Each RXBUF and TXBUF register will contain one data time slot value.

18.6.2 20-BIT AC-LINK MODE

The 20-bit AC-Link mode allows all bits in the data time slots to be transmitted and received but does not maintain data alignment in the TXBUF and RXBUF registers.

The 20-bit AC-Link mode functions similar to the Multi-Channel mode of the DCI module, except for the duty cycle of the frame synchronization signal. The AC-Link frame synchronization signal should remain high for 16 CSCK cycles and should be low for the following 240 cycles. The following figure depicts the recommended circuit for the conversion rates above 100 ksps. The dsPIC30F6014A is shown as an example.

The configuration procedures below give the required setup values for the conversion speeds above 100 ksps.

19.7.1 200 KSPS CONFIGURATION GUIDELINE

The following configuration items are required to achieve a 200 ksps conversion rate.

- · Comply with conditions provided in Table 19-2.
- Connect external VREF+ and VREF- pins following the recommended circuit as shown in Figure 19-2.
- Set SSRC<2.0> = 111 in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Write the SMPI<3.0> control bits in the ADCON2 register for the desired number of conversions between interrupts.

Configure the ADC clock period to be:
1

by writing to the ADCS<5:0> control bits in the ADCON3 register.

• Configure the sampling time to be 1 TAD by writing: SAMC<4:0> = 00001.

The following figure shows the timing diagram of the ADC running at 200 ksps. The TAD selection in conjunction with the guidelines described above allows a conversion speed of 200 ksps. See Example 19-1 for code example.

20.2.2 OSCILLATOR START-UP TIMER (OST)

In order to ensure that a crystal oscillator (or ceramic resonator) has started and stabilized, an Oscillator Start-up Timer is included. It is a simple 10-bit counter that counts 1024 Tosc cycles before releasing the oscillator clock to the rest of the system. The time-out period is designated as TOST. The TOST time is involved every time the oscillator has to restart (i.e., on POR, BOR and wake-up from Sleep). The Oscillator Start-up Timer is applied to the LP, XT, XTL and HS Oscillator modes (upon wake-up from Sleep, POR and BOR) for the primary oscillator.

20.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

- The current oscillator group bits COSC<2:0>
- The LPOSCEN bit (OSCCON register)

The LP oscillator is ON (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if:

- COSC<2:0> = 000 (LP selected as main oscillator) and
- LPOSCEN = 1

Keeping the LP oscillator ON at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator will still require a start-up time.

20.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator. The PLL is selectable to have either gains of x4, x8 and x16. Input and output frequency ranges are summarized in Table 20-3.

TABLE 20-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout
4 MHz-10 MHz	x4	16 MHz-40 MHz
4 MHz-10 MHz	x8	32 MHz-80 MHz
4 MHz-7.5 MHz	x16	64 MHz-120 MHz

The PLL features a lock output, which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal will be rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

20.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz $\pm 2\%$ nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator or RC network. The FRC oscillator can be used with the PLL to obtain higher clock frequencies.

The dsPIC30F operates from the FRC oscillator whenever the current oscillator selection control bits in the OSCCON register (OSCCON<14:12>) are set to '001'.

The 6-bit field specified by TUN<3:0> (OSCTUN<3:0>) allows the user to tune the internal fast RC oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of $\pm 6\%$ in steps of 0.75% around the factory-calibrated setting (see Table 20-4).

Note:	OSCTUN functionality has been provided
	to help customers compensate for
	temperature effects on the FRC frequency
	over a wide range of temperatures. The
	tuning step size is an approximation and is
	neither characterized nor tested.

If OSCCON<14:12> are set to '111' and FPR<4:0> are set to '00101', '00110' or '00111', then a PLL multiplier of 4, 8 or 16 (respectively) is applied.

Note:	When a 16x PLL is used, the FRC oscilla-
	tor must not be tuned to a frequency
	greater than 7.5 MHz.

TABLE 20-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	+5.25%
0110	+4.50%
0101	+3.75%
0100	+3.00%
0011	+2.25%
0010	+1.50%
0001	+0.75%
0000	Center Frequency (oscillator is
	running at calibrated frequency)
1111	-0.75%
1110	-1.50%
1101	-2.25%
1100	-3.00%
1011	-3.75%
1010	-4.50%
1001	-5.25%
1000	-6.00%

TABLE 23-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2			μs	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period	2 8 32	4 16 64	6 24 96	ms	-40°C to +85°C, VDD = 5V User programmable
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		0.8	1.0	μs	
SY20	Twdt1 Twdt2 Twdt3	Watchdog Timer Time-out Period (No Prescaler)	0.6 0.8 1.0	2.0 2.0 2.0	3.4 3.2 3.0	ms ms ms	VDD = 2.5V VDD = 3.3V, ±10% VDD = 5V, ±10%
SY25	TBOR	Brown-out Reset Pulse Width ⁽⁴⁾	100	_		μs	Vdd ⊴Vbor (D034)
SY30	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

3: Characterized by design but not tested

4: Refer to Figure 23-2 and Table 23-11 for BOR.

FIGURE 23-17: SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

I/O Ports 61
Parallel (PIO) 61
I^2 C 10-bit Slave Mode Operation 97
Reception
Transmission
I ² C 7-bit Slave Mode Operation
Reception
Transmission97
I ² C Master Mode Operation
Baud Rate Generator100
Clock Arbitration100
Multi-Master Communication, Bus Collision and Bus Ar-
bitration100
Reception99
Transmission
I ² C Master Mode Support
1 ² C Module
Addresses
Bus Data Timing Characteristics
Master Mode
Bus Data Timing Requirements
Master Mode 204
Slave Mode 206
Bus Start/Stop Bits Timing Characteristics
Master Mode
Slave Mode
General Call Address Support
Interrupts
IPMI Support
Operating Function Description
Operation During CPU Sleep and Idle Modes 100
Pin Configuration95
Programmer's Model95
Register Map 101
Registers
Slope Control
Software Controlled Clock Stretching (STREN = 1) 98
Various Modes
Pote luctification
Frame and Data Word Length Selection 131
Idle Current (IDLE) 177
In-Circuit Debugger (ICD 2)
In-Circuit Serial Programming (ICSP) 51 143
Initialization Condition for RCON Register Case 1
Initialization Condition for RCON Register Case 2
Input Capture (CAPX) Timing Characteristics
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Change Notification Module 66
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Capture Timing Requirements 193 Input Change Notification Module 66 Register Map for dsPIC30F6011A/6012 A (Bits 7-0)66 Desister Map for dsPIC30F6011A/6012A (Dits 45.2)
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Change Notification Module 66 Register Map for dsPIC30F6011A/6012 A (Bits 7-0)66 Register Map for dsPIC30F6011A/6012A (Bits 15-8)66
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Change Notification Module 66 Register Map for dsPIC30F6011A/6012 A (Bits 7-0)66 Register Map for dsPIC30F6013A/6014A (Bits 15-8)66 Register Map for dsPIC30F6013A/6014A (Bits 15-8)66 Register Map for dsPIC30F6013A/6014A (Bits 15-8)66 Register Map for dsPIC30F6013A/6014A (Bits 7-0)66
Input Capture (CAPX) Timing Characteristics
Input Capture (CAPX) Timing Characteristics
Input Capture (CAPX) Timing Characteristics
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Capture Timing Requirements 193 Input Change Notification Module 66 Register Map for dsPIC30F6011A/6012 A (Bits 7-0) 66 Register Map for dsPIC30F6013A/6014A (Bits 15-8) 66 Register Map for dsPIC30F6013A/6014A (Bits 15-8) 66 Register Map for dsPIC30F6013A/6014A (Bits 7-0) 66 Instruction Addressing Modes 39 File Register Instructions 39 Fundamental Modes Supported 39 MAC Instructions 40
Input Capture (CAPX) Timing Characteristics 193 Input Capture Module 81 Interrupts 82 Register Map 83 Input Capture Operation During Sleep and Idle Modes 82 CPU Idle Mode 82 CPU Sleep Mode 82 Input Capture Timing Requirements 193 Input Capture Timing Requirements 193 Input Change Notification Module 66 Register Map for dsPIC30F6011A/6012 A (Bits 7-0)66 Register Map for dsPIC30F6013A/6014A (Bits 15-8).66 Register Map for dsPIC30F6013A/6014A (Bits 7-0)66 Instruction Addressing Modes 39 File Register Instructions 39 Fundamental Modes Supported 39 MAC Instructions 39

Move and Accumulator Instructions 4	0
Other Instructions 4	0
Instruction Set	
Overview 164	4
Summary 16	1
Internet Address	' 7
Internet Address	1
	_
Register Map 50	0
Interrupt Priority 40	6
Interrupt Sequence 48	8
Interrupt Stack Frame 49	9
Interrupts	5
L	
Load Conditions	3
Low Voltage Detect (LVD) 15	7
Low-Voltage Detect Characteristics	∩
LVDL Characteristics	1
	'
Μ	
Memory Organization	5
Core Register Map 3	7
Microchin Internet Web Site	7
	'

Ν

NVM	
Register Map	. 55

0

•	
OC/PWM Module Timing Characteristics	194
Operating Current (IDD)	176
Oscillator	
Control Registers	149
Operating Modes (Table)	144
System Overview	143
Oscillator Configurations	146
Fail-Safe Clock Monitor	148
Fast RC (FRC)	147
Initial Clock Source Selection	146
Low-Power RC (LPRC)	148
LP Oscillator Control	147
Phase Locked Loop (PLL)	147
Start-up Timer (OST)	147
Oscillator Selection	143
Oscillator Start-up Timer	
Timing Characteristics	188
Timing Requirements	189
Output Compare Interrupts	. 88