

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6012at-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 CPU ARCHITECTURE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

2.1 Core Overview

This section contains a brief overview of the CPU architecture of the dsPIC30F. For additional hardware and programming information, please refer to the "*dsPIC30F Family Reference Manual*" (DS70046) and the "*16-bit MCU and DSC Programmer*'s *Reference Manual*" (DS70157), respectively.

The core has a 24-bit instruction word. The Program Counter (PC) is 23-bits wide with the Least Significant bit (LSb) always clear (refer to **Section 3.1 "Program Address Space"**), and the Most Significant bit (MSb) is ignored during normal program execution, except for certain specialized instructions. Thus, the PC can address up to 4M instruction words of user program space. An instruction prefetch mechanism is used to help maintain throughput. Program loop constructs, free from loop count management overhead, are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The working register array consists of 16 x 16-bit registers, each of which can act as data, address or offset registers. One working register (W15) operates as a software Stack Pointer for interrupts and calls.

The data space is 64 Kbytes (32K words) and is split into two blocks, referred to as X and Y data memory. Each block has its own independent Address Generation Unit (AGU). Most instructions operate solely through the X memory, AGU, which provides the appearance of a single unified data space. The Multiply-Accumulate (MAC) class of dual source DSP instructions operate through both the X and Y AGUs, splitting the data address space into two parts (see **Section 3.2 "Data Address Space"**). The X and Y data space boundary is device specific and cannot be altered by the user. Each data word consists of 2 bytes, and most instructions can address data either as words or bytes. There are two methods of accessing data stored in program memory:

- The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of program space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page (PSVPAG) register. This lets any instruction access program space as if it were data space, with a limitation that the access requires an additional cycle. Moreover, only the lower 16 bits of each instruction word can be accessed using this method.
- Linear indirect access of 32K word pages within program space is also possible using any working register, via table read and write instructions.
 Table read and write instructions can be used to access all 24 bits of an instruction word.

Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. This is primarily intended to remove the loop overhead for DSP algorithms.

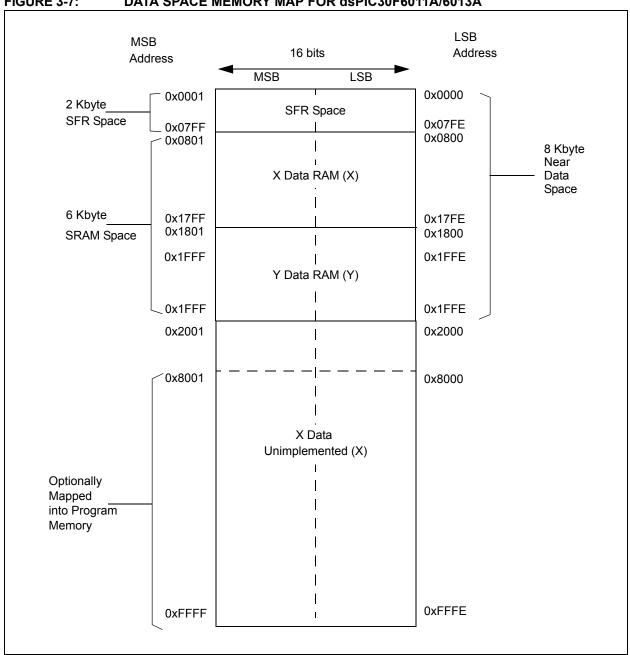
The X AGU also supports Bit-Reversed Addressing on destination effective addresses to greatly simplify input or output data reordering for radix-2 FFT algorithms. Refer to **Section 4.0 "Address Generator Units"** for details on modulo and Bit-Reversed Addressing.

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct, Register Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with predefined addressing modes, depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, 3-operand instructions are supported, allowing C = A + B operations to be executed in a single cycle.

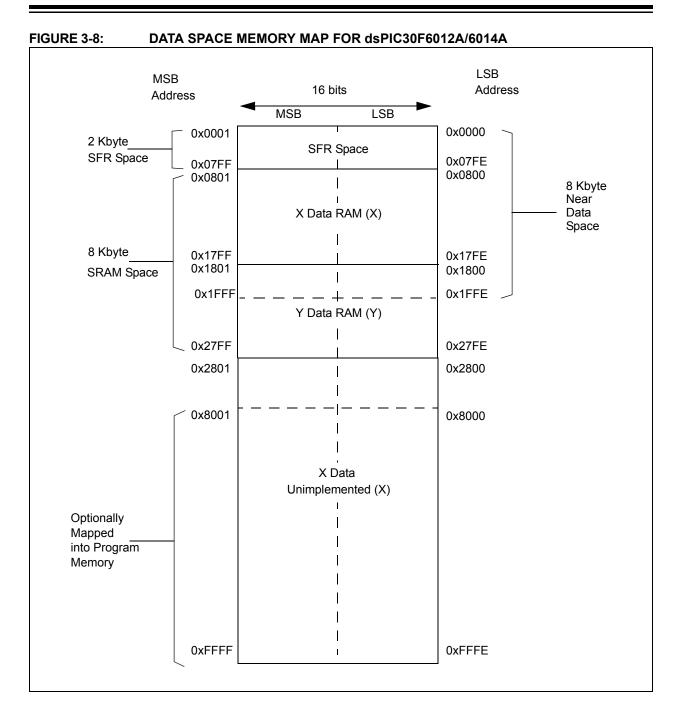
A DSP engine has been included to significantly enhance the core arithmetic capability and throughput. It features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. Data in the accumulator or any working register can be shifted up to 16 bits right, or 16 bits left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear for all others. This has been achieved in a transparent and flexible manner, by dedicating certain working registers to each address space for the MAC class of instructions.

3.0 MEMORY ORGANIZATION


Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

3.1 Program Address Space

The program address space is 4M instruction words. It is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space as defined by Table 3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which use TBLPAG<7> to determine user or configuration space access. In Table 3-1, Program Space Address Construction, bit 23 allows access to the Device ID, the Unit ID and the configuration bits. Otherwise, bit 23 is always clear.


Note: The address map shown in Figure 3-1 and Figure 3-2 is conceptual, and the actual memory configuration may vary across individual devices depending on available memory.

dsPIC30F6011A/6012A/6013A/6014A

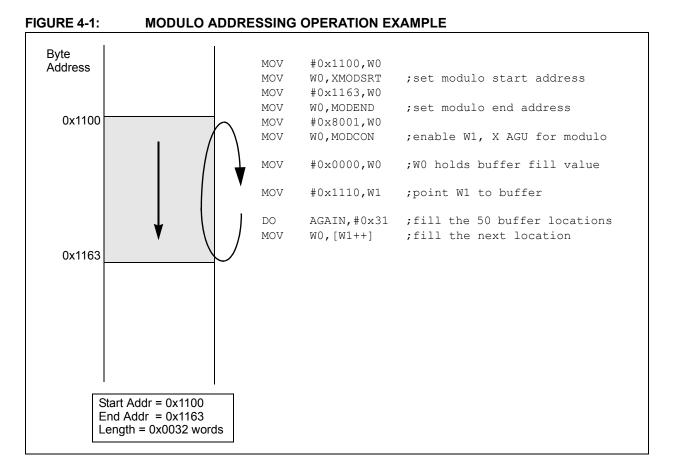
FIGURE 3-7: DATA SPACE MEMORY MAP FOR dsPIC30F6011A/6013A

dsPIC30F6011A/6012A/6013A/6014A

4.2.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and an ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT, YMODEND (see Table 3-3).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word sized data (LSb of
	every EA is always clear).


The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.2.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register MODCON<15:0> contains enable flags as well as a W register field to specify the W address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3-3). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

4.2.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than the upper (for incrementing buffers), and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, modulo address correction is performed but the contents of the register remain unchanged.

4.3 Bit-Reversed Addressing

Bit-Reversed Addressing is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.3.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing is enabled when:

- 1. BWM (W register selection) in the MODCON register is any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing) **and**
- 2. the BREN bit is set in the XBREV register and
- 3. the Addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, then the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the bit-reversed address modifier or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing will only be executed for register indirect with pre-increment or post-increment addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data, and normal addresses will be generated instead. When Bit-Reversed Addressing is active, the W address pointer will always be added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode will be ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. In the event that the user
	attempts to do this, Bit-Reversed Address-
	ing will assume priority when active for the
	X WAGU, and X WAGU Modulo Address-
	ing will be disabled. However, Modulo
	Addressing will continue to function in the X
	RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

NVM REGISTER MAP⁽¹⁾ **TABLE 6-1**:

File Name Addr.	Addr.	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 Bi	Bit 12	Bit 11	sit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 9	Bit 8	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII RESETS
NVMCON	0260	WR	WREN	WRERR	Ι	I	1	- TWRI	TWRI	I			PR(PROGOP<6:0>	6			0000 0000 0000 0000
NVMADR	0762							z	VMADF	NVMADR<15:0>								nnnn nnnn nnnn nnnn
NVMADRU 0764	0764	-	-	Ι		Ι		I					VMADF	NVMADR<23:16>				0000 0000 nnnn nnnn
NVMKEY	0766	-	-	Ι		Ι		I					KEY<7:0>	<7:0>				0000 0000 0000 0000
Legend: Note 1:	u = uninitis Refer to the	alized bit; — s "dsPIC30F	= unimpler Family Ret	u = uninitialized bit; — = unimplemented bit, read as '0' Refer to the " <i>dsPIC30F Family Reference Manual</i> " (DS70046) for descriptions of register bit fields.	ead as 'c ual" (DS	, 70046) f(or descri	ptions o	of registe	er bit field	s.							

SFR Name Addr. Bit 15																	
0010		Bit 14 B	Bit 13 E	Bit 12 E	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0180							Output	Compare	1 Secon	Output Compare 1 Secondary Register	ster						0000 0000 0000 0000
0182							Out	out Comp	are 1 Ma	Output Compare 1 Main Register	_						0000 0000 0000 0000
0184 —		0	OCSIDL			1	1		Ι	I	I	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
0186							Output	Compare	2 Secon	Output Compare 2 Secondary Register	ster						0000 0000 0000 0000
0188							Out	out Comp	are 2 Ma	Output Compare 2 Main Register	_						0000 0000 0000 0000
018A —		0	OCSIDL			1	1		Ι	I	I	OCFLT	OCTSE		OCM<2:0>		0000 0000 0000 0000
018C							Output	Compare	3 Secon	Output Compare 3 Secondary Register	ster						0000 0000 0000 0000
018E							Out	out Comp	are 3 Mai	Output Compare 3 Main Register	L						0000 0000 0000 0000
0190 —			OCSIDL			1		I	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
0192							Output	Compare	4 Secon	Output Compare 4 Secondary Register	ster						0000 0000 0000 0000
0194							Out	out Comp	are 4 Ma	Output Compare 4 Main Register							0000 0000 0000 0000
0196 —		00	OCSIDL			1	1		Ι	I	I	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
0198							Output	Compare	5 Secon	Output Compare 5 Secondary Register	ster						0000 0000 0000 0000
019A							Out	out Comp	are 5 Mai	Output Compare 5 Main Register							0000 0000 0000 0000
019C —		00	OCSIDL			1			Ι		-	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
019E							Output	Compare	6 Secon	Output Compare 6 Secondary Register	ster						0000 0000 0000 0000
01A0							Out	out Comp	are 6 Mai	Output Compare 6 Main Register	_						0000 0000 0000 0000
01A2 —			OCSIDL						Ι		Ι	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
01A4							Output	Compare	7 Secon	Output Compare 7 Secondary Register	ster						0000 0000 0000 0000
01A6							Out	out Comp	are 7 Mai	Output Compare 7 Main Register							0000 0000 0000 0000
01A8 —		00	OCSIDL			1			Ι		-	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000
01AA							Output	Compare	8 Secon	Output Compare 8 Secondary Register	ster						0000 0000 0000 0000
01AC							Out	out Comp	are 8 Ma	Output Compare 8 Main Register	- -						0000 0000 0000 0000
01AE	I	00	OCSIDL					I	Ι	Ι	-	OCFLT	OCTSEL		OCM<2:0>		0000 0000 0000 0000

14.3 Slave Select Synchronization

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode with \overline{SSx} pin control enabled (SSEN = 1). When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven. When \overline{SSx} pin goes high, the SDOx pin is no longer driven. Also, the SPI module is resynchronized, and all counters/control circuitry are reset. Therefore, when the \overline{SSx} pin is asserted low again, transmission/reception will begin at the MSb even if \overline{SSx} had been deasserted in the middle of a transmit/receive.

14.4 SPI Operation During CPU Sleep Mode

During Sleep mode, the SPI module is shutdown. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted.

The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode.

14.5 SPI Operation During CPU Idle Mode

When the device enters Idle mode, all clock sources remain functional. The SPISIDL bit (SPIxSTAT<13>) selects if the SPI module will stop or continue on Idle. If SPISIDL = 0, the module will continue to operate when the CPU enters Idle mode. If SPISIDL = 1, the module will stop when the CPU enters Idle mode.

	Ś	
	<u></u>	
	Ψ	
	ij	
	-	
	ä	
	Bi	
	ē	
	Ĕ	
	ŝ	
	Ë	
	Ë	
	Ë	
	SCI	
	g	
	ĩ	
	9	
	ତ	
	2	
	õ	
	ŝ	
	9	
	<u> </u>	
	пa	
	Ĩ	
	Ň	
	Ð	
	2	
	ē	
	£,	
	å	
•	ž	
	Ē	
	an	
	Ľ,	
	C30F	
	IsPIC30	
	Š	
	ŝ	
	ġ,	
	ē	
	the	
	9	
	Ъ	
	efe	
	Ŕ	
	÷	
	~	

Note

© 2011 Microchip Technology Inc.

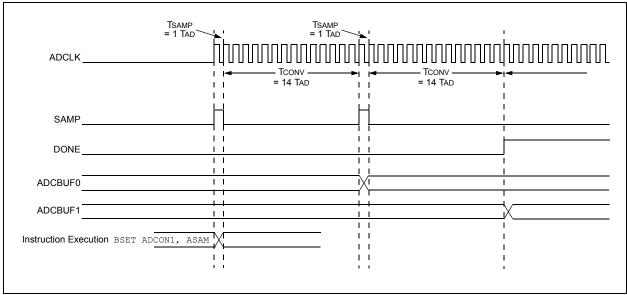
TABLE 17-1:		SAN1 R	CAN1 REGISTER MAP ⁽¹⁾ (CON	R MAP	(1) (CC		ED)											
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12		Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 B	Bit 1 Bit 0	0	Reset State
C1TX1B1	0356			Trar	Transmit Buffer 1	er 1 Byte 1						Tran	Transmit Buffer 1 Byte 0	r 1 Byte 0			uuuu	uuuu uuuu
C1TX1B2	0358			Trar	Transmit Buffer 1	er 1 Byte 3						Tran;	Transmit Buffer 1 Byte 2	r 1 Byte 2			nnnn	nnnn nnnn nnnn
C1TX1B3	035A			Trar	Transmit Buffer 1	er 1 Byte 5						Tran;	Transmit Buffer 1 Byte 4	r 1 Byte 4			nnnn	nnnn nnnn nnnn
C1TX1B4	035C			Trar	Transmit Buffer 1	er 1 Byte 7						Tran	Transmit Buffer 1 Byte 6	r 1 Byte 6			nnnn	nnnn nnnn nnnn
C1TX1CON	035E	I	Ι	I	Ι	I			I	Ι	TXABT	TXABT TXLARB TXERR TXREQ	TXERR	TXREQ		TXPRI<1:0>		0000 0000 0000 0000
C1TX0SID	0360	Transr	Transmit Buffer 0 Standard Identifier <10:6>	Standard Ic	dentifier <	10:6>	I			Tre	Transmit Buffer 0 Standard Identifier <5:0>	fer 0 Stan	dard Ident	ifier <5:0>	5	SRR TXIDE		nnnn nnnn 000n nnnn
C1TX0EID	0362 Tr ₈	ansmit But	0362 Transmit Buffer 0 Extended Identifier <17:14>	and Identifi	er <17:14:		Ι	Ι			Trans	smit Buffe	r 0 Extend	Transmit Buffer 0 Extended Identifier <13:6>	r <13:6>		nnnn	nnnn nnnn 0000 nnnn
C1TX0DLC	0364	F	Transmit Buffer 0 Extended Identifier	fer 0 Exter	Ided Ident	ifier <5:0>		TXRTR	TXRB1	TXRB0		DLC	DLC<3:0>		I		nnnn	000n nnnn nnnn nnnn
C1TX0B1	0366			Trar	Transmit Buffer 0	er 0 Byte 1						Tran	Transmit Buffer 0 Byte 0	r 0 Byte 0			nnnn	nnnn nnnn nnnn nnnn
C1TX0B2	0368			Trar	Transmit Buffer 0	er 0 Byte 3						Tran	Transmit Buffer 0 Byte 2	r 0 Byte 2			nnnn	nnnn nnnn nnnn nnnn
C1TX0B3	036A			Trar	Transmit Buffer 0	er 0 Byte 5						Tran	Transmit Buffer 0 Byte 4	r 0 Byte 4			nnnn	nnnn nnnn nnnn nnnn
C1TX0B4	036C			Trar	Transmit Buffer 0	er 0 Byte 7						Tran	Transmit Buffer 0 Byte 6	r 0 Byte 6			nnnn	nnnn nnnn nnnn nnnn
C1TX0CON	036E		Ι		Ι	I		Ι		Ι	TXABT	TXLARB TXERR	TXERR	TXREQ	1	TXPRI<1:0>		0000 0000 0000 0000
C1RX1SID	0370	I	Ι	Ι				Rece	ive Buffer	Receive Buffer 1 Standard Identifier <10:0>	lentifier <1	<0:0			0	SRR RXIDE		nnnn nnnn nnnn n000
C1RX1EID	0372		Ι		Ι				Ŗ	Receive Buffer 1 Extended Identifier <17:6>	· 1 Extend∈	∋d Identifi∈	sr <17:6>				0000	nnnn nnnn nnnn 0000
C1RX1DLC	0374		Receive Buffer 1 Extended Identifier	fer 1 Exten	ided Identi	ifier <5:0>		RXRTR	RXRB1	I	I	I	RXRB0		DLC<3:0>		nnnn	nnnn n000 nnnn nnnn
C1RX1B1	0376			Rec	Receive Buffer 1	er 1 Byte 1						Rect	Receive Buffer 1 Byte	r 1 Byte 0			nnnn	nnnn nnnn nnnn
C1RX1B2	0378			Rec	Receive Buffer 1	er 1 Byte 3						Rect	Receive Buffer 1 Byte 2	r 1 Byte 2			nnnn	nnnn nnnn nnnn
C1RX1B3	037A			Rec	Receive Buffer 1	er 1 Byte 5						Rect	Receive Buffer 1 Byte 4	r 1 Byte 4			nnnn	nnnn nnnn nnnn
C1RX1B4	037C			Rec	Receive Buffer 1	er 1 Byte 7						Rect	Receive Buffer 1 Byte 6	r 1 Byte 6			nnnn	nnnn nnnn nnnn nnnn
C1RX1CON	037E		Ι		Ι	Ι		Ι		RXFUL		Ι		RXRTRRO	FILF	FILHIT<2:0>	0000	0000 0000 0000 0000
C1RX0SID	0380		Ι	Ι				Rece	ive Buffer (Receive Buffer 0 Standard Identifier <10:0>	lentifier <1	<0:0			0	SRR RXIDE		nnnn nnnn nnnn n000
C1RX0EID	0382		Ι	Ι	Ι				Rŧ	Receive Buffer 0 Extended Identifier <17:6>	. 0 Extend€	∋d Identifi€	sr <17:6>				0000	nnnn nnnn nnnn 0000
C1RX0DLC	0384	-	Receive Buffer 0 Extended Identifier	fer 0 Exten	ided Identi	ifier <5:0>		RXRTR	RXRTR RXRB1	Ι	I	I	RXRB0		DLC<3:0>	•	nnnn	nnnn n000 nnnn nnnn
C1RX0B1	0386			Rec	Receive Buffer 0	er 0 Byte 1						Rect	Receive Buffer 0 Byte 0	r 0 Byte 0			nnnn	nnnn nnnn nnnn nnnn
C1RX0B2	0388			Rec	Receive Buffer 0	er 0 Byte 3						Rect	Receive Buffer 0 Byte 2	r 0 Byte 2			nnnn	nnnn nnnn nnnn nnnn
C1RX0B3	038A			Rec	Receive Buffer 0	er 0 Byte 5						Rect	Receive Buffer 0 Byte 4	r 0 Byte 4			nnnn	nnnn nnnn nnnn nnnn
C1RX0B4	038C			Rec	Receive Buffer 0	er 0 Byte 7						Rect	Receive Buffer 0 Byte 6	r 0 Byte 6			nnnn	nnnn nnnn nnnn nnnn
C1RX0CON	038E		Ι	Ι	Ι	I		Ι	Ι	RXFUL	I	Ι		RXRTRRO DBEN JTOFF FILHITO	DBEN JI	OFF FILHI	ΤΟ 0000	0000 0000 0000
C1CTRL	0390 C	CANCAP	Ι	CSIDL	ABAT	CANCKS		REQOP<2:0>	<0:	ΛOD	OPMODE<2:0>	^	1	ICOI	ICODE<2:0>		0000	0100 1000 0000
C1CFG1	0392		Ι		I			Ι		SJW<1:0>	1:0>			BRP<5:0>	<0		0000	0000 0000 0000
C1CFG2	0394		WAKFIL	I	I		•	SEG2PH<2:0>	-05	SEG2PHTS	SAM	St	SEG1PH<2:0>	<0:	PRS	PRSEG<2:0>	0000	Оиии ииии ииии
C1INTF	0396 R	RX00VR	RX10VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	RXWAR EWARN	IVRIF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF R	RX1IF RX0IF	IF 0000	0000 0000 0000
C1INTE	0398	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	IVRIE	WAKIE	ERRIE	TX2IE	TX1IE	TX0IE R	RX1E RX0IE		0000 0000 0000 0000
C1EC	039A			Transn	hit Error C	Transmit Error Count Register	er					Receive	e Error Co	Receive Error Count Register	ir		0000	0000 0000 0000
Legend:	u = uniniti	u = uninitialized bit;	$\frac{1}{2}$ — = unimplemented bit, read as $\frac{10}{2}$	emented t	bit, read as	,0, \$:								

dsPIC30F6011A/6012A/6013A/6014A

DS70143E-page 119

TABLE 17-2 :		CAN2 R	CAN2 REGISTER MAP ⁽¹⁾ (CON	R MAP ⁽⁾	¹⁾ (co	NTINUED	ED)											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12		Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 E	Bit 1 E	Bit 0	Reset State
C2TX1B1	0416			Transı	Transmit Buffer 1	r 1 Byte 1						Trans	Transmit Buffer 1 Byte 0	1 Byte 0			2	uuuu uuuu uuuu
C2TX1B2	0418			Transı	Transmit Buffer 1	r 1 Byte 3						Trans	Transmit Buffer 1 Byte 2	1 Byte 2			r.	uuuu uuuu uuuu
C2TX1B3	041A			Transi	Transmit Buffer 1	r 1 Byte 5						Trans	Transmit Buffer 1 Byte 4	1 Byte 4			n .	uuuu uuuu uuuu
C2TX1B4	041C			Transı	Transmit Buffer 1	r 1 Byte 7						Trans	Transmit Buffer 1 Byte 6	1 Byte 6			2	uuuu uuuu uuuu
C2TX1CON	041E	I	Ι	Ι	Ι	Ι	Ι	Ι	1		TXABT	TXLARB	TXERR	TXREQ	Ι	TXPRI<1:0>		0000 0000 0000 0000
C2TX0SID		Transn	Transmit Buffer 0 Standard Identifier <10:6>	tandard Id∈	sntifier <'	10:6>	1	Ι	Ι	Trai	nsmit Buffe	Transmit Buffer 0 Standard Identifier <5:0>	ard Identi	ier <5:0>		SRR T	TXIDE U	uuuu uuuu 000n uuuu
C2TX0EID	0422 T	Transmit Buf	Transmit Buffer 0 Extended Identifier <17:14>	ed Identifier	<17:14>	Ι			Ι		Trans	mit Buffer	0 Extend	Transmit Buffer 0 Extended Identifier <13:6>	<13:6>		2	uuuu 0000 uuuu
C2TX0DLC	0424	Ē	Transmit Buffer 0 Extended Identifier	er 0 Extend	ed Identi	fier <5:0>		TXRTR	TXRB1	TXRB0		DLC	DLC<3:0>				1	uuuu uuuu u000
C2TX0B1	0426			Transı	Transmit Buffer 0	r 0 Byte 1						Trans	Transmit Buffer 0 Byte 0	0 Byte 0			2	uuuu uuuu uuuu
C2TX0B2	0428			Transı	Transmit Buffer 0	r 0 Byte 3						Trans	Transmit Buffer 0 Byte 2	0 Byte 2			2	uuuu uuuu uuuu
C2TX0B3	042A			Transı	Transmit Buffer 0	r 0 Byte 5						Trans	Transmit Buffer 0 Byte 4	0 Byte 4			2	uuuu uuuu uuuu
C2TX0B4	042C			Transı	mit Buffe	Transmit Buffer 0 Byte 7						Trans	Transmit Buffer 0 Byte 6	0 Byte 6			2	uuuu uuuu uuuu
C2TX0CON	042E	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1	TXABT	TXLARB	TXERR	TXREQ	Ι	TXPRI<1:0>		0000 0000 0000 0000
C2RX1SID	0430	I	Ι	Ι				Rece	ive Buffer	Receive Buffer 1 Standard Identifier <10:0>	dentifier <	10:0>				SRR R	RXIDE	000u uuuu uuuu
C2RX1EID	0432	I	Ι	1	Ι				Ŕ	Receive Buffer 1 Extended Identifier <17:6>	1 Extend∈	sd Identifie	r <17:6>				0	0000 nnnn nnnn 0000
C2RX1DLC	0434	Ľ	Receive Buffer 1 Extended Identifier	sr 1 Extend	ed Identii	fier <5:0>		RXRTR	RXRTR RXRB1	1	Ι		RXRB0		DLC<3:0>	Δ	2	uuuu u000 uuuu uuuu
C2RX1B1	0436			Recei	Receive Buffer 1							Rece	Receive Buffer 1 Byte 0	1 Byte 0			2	uuuu uuuu uuuu
C2RX1B2	0438			Recei	Receive Buffer	r 1 Byte 3						Rece	Receive Buffer 1 Byte 2	1 Byte 2			Ω	uuuu uuuu uuuu
C2RX1B3	043A			Recei	Receive Buffer	r 1 Byte 5						Rece	Receive Buffer 1 Byte 4	1 Byte 4			n l	uuuu uuuu uuuu
C2RX1B4	043C			Recei	Receive Buffer	r 1 Byte 7						Rece	Receive Buffer 1 Byte 6	1 Byte 6			n.	uuuu uuuu uuuu
C2RX1CON	043E	I	Ι	Ι	Ι	Ι	I	Ι	Ι	RXFUL	1	1		RXRTRRO	FILI	FILHIT<2:0>		0000 0000 0000 0000
C2RX0SID	0440	I	Ι	I				Rece	ive Buffer	Receive Buffer 0 Standard Identifier <10:0>	dentifier <	10:0>				SRR R	RXIDE	000u uuuu uuuu
C2RX0EID	0442	I	Ι	Ι	I				Ŕ	Receive Buffer 0 Extended Identifier <17:6>	0 Extende	ed Identifie	r <17:6>				0	0000 uuuu uuuu 0000
C2RX0DLC	0444	œ	Receive Buffer 0 Extended Identifier	sr 0 Extend	ed Identii	fier <5:0>		RXRTR	RXRTR RXRB1		Ι		RXRB0		DLC<3:0>	۸	2	uuuu 0000 uuuu
C2RX0B1	0446			Recei	Receive Buffer 0	r 0 Byte 1						Rece	Receive Buffer 0 Byte 0	0 Byte 0			2	uuuu uuuu uuuu
C2RX0B2	0448			Recei	Receive Buffer 0	r 0 Byte 3						Rece	Receive Buffer 0 Byte	0 Byte 2			n.	uuuu uuuu uuuu
C2RX0B3	044A			Recei	Receive Buffer 0	r 0 Byte 5						Rece	Receive Buffer 0 Byte 4	0 Byte 4			n.	uuuu uuuu uuuu
C2RX0B4	044C			Recei	Receive Buffer 0	r 0 Byte 7						Rece	Receive Buffer 0 Byte 6	0 Byte 6			2	uuuu uuuu uuuu
C2RX0CON	044E	I	Ι	I	I		I		I	RXFUL	I	I	1	RXRTRRO DBEN JTOFF	DBEN J		FILHITO 0	0000 0000 0000 0000
C2CTRL	0450	CANCAP	Ι	CSIDLE	ABAT	CANCKS		REQOP<2:0>	<0	OPM	OPMODE<2:0>		1	ICOD	ICODE<2:0>		1	0000 0100 1000 0000
C2CFG1	0452	I	Ι	Ι		Ι			Ι	SJW<1:0>	ė.			BRP<5:0>	۸		0	0000 0000 0000 0000
C2CFG2	0454	I	WAKFIL				SE	SEG2PH<2:0>	<0:	SEG2PHTS		SE	SEG1PH<2:0>		PRS	PRSEG<2:0>		0000 0uuu uuuu
C2INTF	0456	RX00VR	RX10VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	TXWAR RXWAR EWARN	IVRIF	WAKIF		TX2IF	TX1IF		RX1IF R		0000 0000 0000 0000
C2INTE	0458	Ι	Ι					Ι		IVRIE	WAKIE	ERRIE	TX2IE	TX1IE ⁻	TX0IE	RX1E R	RX0IE	0000 0000 0000 0000
C2EC	045A			Transmit Error Count	Error Cc	ount Register	er					Receive	Error Col	Receive Error Count Register			0	0000 0000 0000 0000
Legend: Note 1: F	u = unin Refer to t	itialized bit; the <i>"dsPIC3</i> ,	u = uninitialized bit; — = unimplemented bit, read as '0' Refer to the <i>"dsPIC30F Family Reference Manual"</i> (DS70046) for descriptions of register bit fields.	emented bit eference M	t, read as 'anual" (D	\$ '0')S70046) f(or descripti	ons of re-	aister bit fi	elds.								
							·		Sicore 212									

ш
=
<u> </u>
F
5
5
Q
C
Ľ
Ξ
Δ
Z
2
2
~
H
S
G
щ
R
2
z
<
Ó
-
Ņ
<u>_</u>
~
~
111

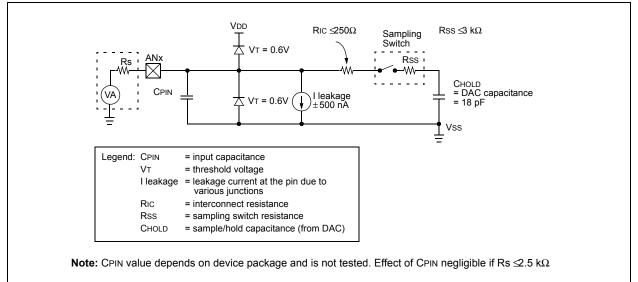

TABLE 18-2 :	18-2:	DCI R	EGISTE	DCI REGISTER MAP ⁽¹⁾	1)													
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0240	DCIEN	I	DCISIDL	I	DLOOP	CSCKD	CSCKE	COFSD	UNFM CSDOM		DJST	I			COFSM1	COFSM0	COFSM0 0000 0000 0000 0000
DCICON2	0242	Ι		Ι	Ι	BLEN1	BLENO	I		COFSG<3:0>	<3:0>				ŝM	WS<3:0>		0000 0000 0000 0000
DCICON3	0244	Ι		Ι	Ι						BCG<11:0>	< <u>0</u>						0000 0000 0000 0000
DCISTAT	0246	I	1	Ι	1	SLOT3	SLOT2	SLOT1	SLOT0		I	I	I	ROV F	RFUL	TUNF	тмртү	0000 0000 0000 0000
TSCON	0248	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000
RSCON	024C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4 F	RSE3 F	RSE2	RSE1	RSE0	0000 0000 0000 0000
RXBUF0	0250							Receive B	Receive Buffer 0 Data Register	ta Regist∈	ЭĽ							0000 0000 0000 0000
RXBUF1	0252							Receive B	Receive Buffer 1 Data Register	ta Regist∈	ЭĽ							0000 0000 0000 0000
RXBUF2	0254							Receive B	Receive Buffer 2 Data Register	ta Regist∈	ЭĽ							0000 0000 0000 0000
RXBUF3	0256							Receive B	Receive Buffer 3 Data Register	ta Regist∈	ЭĽ							0000 0000 0000 0000
TXBUF0	0258							Transmit Buffer 0 Data Register	Suffer 0 Da	Ita Regist	er							0000 0000 0000 0000
TXBUF1	025A							Transmit Buffer 1 Data Register	suffer 1 Da	ita Registi	er							0000 0000 0000 0000
TXBUF2	025C							Transmit Buffer 2 Data Register	3uffer 2 Da	ita Registi	er							0000 0000 0000 0000
TXBUF3	025E							Transmit Buffer 3 Data Register	3uffer 3 Da	ita Registi	er							0000 0000 0000 0000
Legend:	n =		nted bit, rea	— = unimplemented bit, read as '0' Discrete the "طريقال 2010 Branch, Discrete Manual" (Discrete the Balda	"	(910020C)				-								

Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. ÷ Note

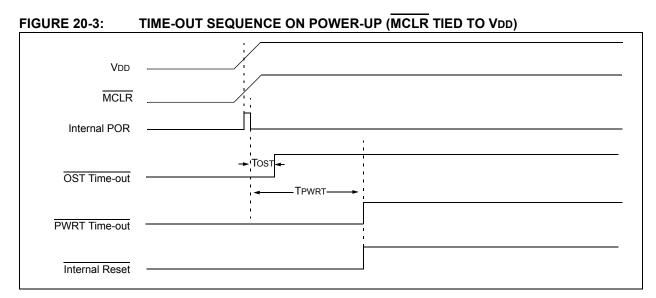
dsPIC30F6011A/6012A/6013A/6014A

dsPIC30F6011A/6012A/6013A/6014A

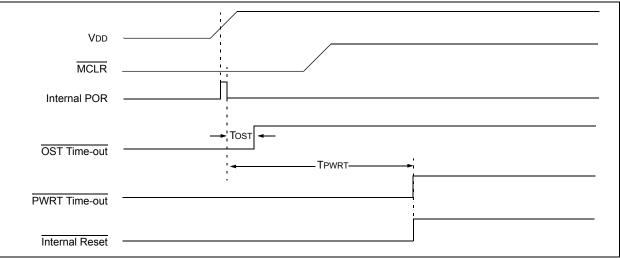
FIGURE 19-3: CONVERTING 1 CHANNEL AT 200 KSPS, AUTO-SAMPLE START, 1 TAD SAMPLING TIME



19.8 ADC Acquisition Requirements


The analog input model of the 12-bit ADC is shown in Figure 19-4. The total sampling time for the ADC is a function of the internal amplifier settling time and the holding capacitor charge time.

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The source impedance (Rs), the interconnect impedance (RIC) and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the ADC, the maximum recommended source impedance, Rs, is 2.5 k Ω After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.


FIGURE 19-4: 12-BIT ADC ANALOG INPUT MODEL

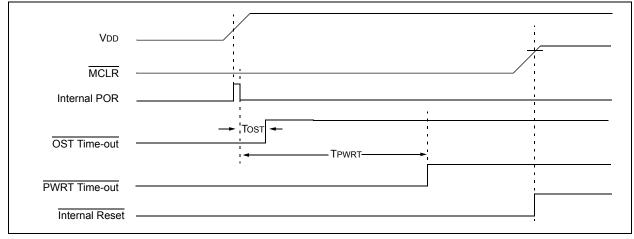

dsPIC30F6011A/6012A/6013A/6014A

FIGURE 20-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 20-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

20.5 Watchdog Timer (WDT)

20.5.1 WATCHDOG TIMER OPERATION

The primary function of the Watchdog Timer (WDT) is to reset the processor in the event of a software malfunction. The WDT is a free running timer, which runs off an on-chip RC oscillator, requiring no external component. Therefore, the WDT timer will continue to operate even if the main processor clock (e.g., the crystal oscillator) fails.

20.5.2 ENABLING AND DISABLING THE WDT

The Watchdog Timer can be "Enabled" or "Disabled" only through a Configuration bit (FWDTEN) in the Configuration register FWDT.

Setting FWDTEN = 1 enables the Watchdog Timer. The enabling is done when programming the device. By default, after chip-erase, FWDTEN bit = 1. Any device programmer capable of programming dsPIC30F devices allows programming of this and other Configuration bits.

If enabled, the WDT will increment until it overflows or "times out". A WDT time-out will force a device Reset (except during Sleep). To prevent a WDT time-out, the user must clear the Watchdog Timer using a CLRWDT instruction.

If a WDT times out during Sleep, the device will wakeup. The WDTO bit in the RCON register will be cleared to indicate a wake-up resulting from a WDT time-out.

Setting FWDTEN = 0 allows user software to enable/ disable the Watchdog Timer via the SWDTEN control bit (RCON<5>).

20.6 Low-Voltage Detect

The Low-Voltage Detect (LVD) module is used to detect when the VDD of the device drops below a threshold value, VLVD, which is determined by the LVDL<3:0> bits (RCON<11:8>) and is thus user programmable. The internal voltage reference circuitry requires a nominal amount of time to stabilize, and the BGST bit (RCON<13>) indicates when the voltage reference has stabilized.

In some devices, the LVD threshold voltage may be applied externally on the LVDIN pin.

The LVD module is enabled by setting the LVDEN bit (RCON<12>).

20.7 Power-Saving Modes

There are two power-saving states that can be entered through the execution of a special instruction, ${\tt PWRSAV}.$

These are: Sleep and Idle.

The format of the PWRSAV instruction is as follows:

PWRSAV <parameter>,

where:

'parameter' defines Idle or Sleep mode.

20.7.1 SLEEP MODE

In Sleep mode, the clock to the CPU and peripherals is shutdown. If an on-chip oscillator is being used, it is shutdown.

The Fail-Safe Clock Monitor is not functional during Sleep, since there is no clock to monitor. However, LPRC clock remains active if WDT is operational during Sleep.

The Brown-out protection circuit, if enabled, will remain functional during Sleep.

The processor wakes up from Sleep if at least one of the following conditions has occurred:

- On any interrupt that is individually enabled and meets the required priority level
- On any Reset (POR, BOR and MCLR)
- On WDT time-out

On waking up from Sleep mode, the processor will restart the same clock that was active prior to entry into Sleep mode. When clock switching is enabled, bits COSC<2:0> will determine the oscillator source that will be used on wake-up. If clock switch is disabled, then there is only one system clock.

Note: If a POR or BOR occurred, the selection of the oscillator is based on the FOS<2:0> and FPR<4:0> Configuration bits.

If the clock source is an oscillator, the clock to the device is held off until OST times out (indicating a stable oscillator). If PLL is used, the system clock is held off until LOCK = 1 (indicating that the PLL is stable). Either way, TPOR, TLOCK and TPWRT delays are applied.

If EC, FRC, LPRC or EXTRC oscillators are used, then a delay of TPOR (~ 10 μ s) is applied. This is the smallest delay possible on wake-up from Sleep.

Moreover, if LP oscillator was active during Sleep, and LP is the oscillator used on wake-up, then the start-up delay will be equal to TPOR. PWRT delay and OST timer delay are not applied. In order to have the smallest possible start-up delay when waking up from Sleep, one of these faster wake-up options should be selected before entering Sleep.

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

22.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 23-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	(unles	ard Operatin s otherwise ting tempera	stated) ture -4	40°C ≤Ta	2 .5V to 5.5V ≤+85°C for Industrial ≤+125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	_	_	μs	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period	2 8 32	4 16 64	6 24 96	ms	-40°C to +85°C, VDD = 5V User programmable
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	—	0.8	1.0	μs	
SY20	Twdt1 Twdt2 Twdt3	Watchdog Timer Time-out Period (No Prescaler)	0.6 0.8 1.0	2.0 2.0 2.0	3.4 3.2 3.0	ms ms ms	VDD = 2.5V VDD = 3.3V, ±10% VDD = 5V, ±10%
SY25	TBOR	Brown-out Reset Pulse Width ⁽⁴⁾	100		_	μs	Vdd ⊴Vbor (D034)
SY30	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C

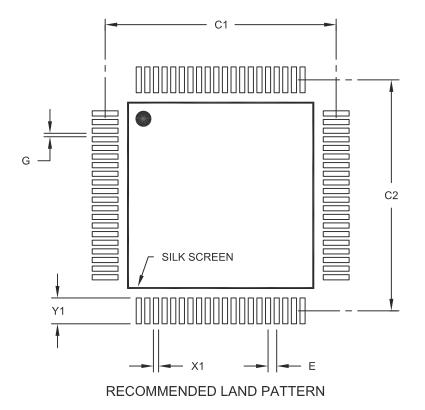
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

3: Characterized by design but not tested

4: Refer to Figure 23-2 and Table 23-11 for BOR.

TABLE 23-39: 12-BIT ADC TIMING REQUIREMENTS


				Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		Cloc	k Parame	ters		•			
AD50	TAD	ADC Clock Period		334		ns	VDD = 3-5.5V (Note 1)		
AD51	tRC	ADC Internal RC Oscillator Period	1.2	1.5	1.8	μs			
		Con	version R	ate					
AD55	t CONV	Conversion Time	—	14 Tad		ns			
AD56	FCNV	Throughput Rate	—	200		ksps	VDD = VREF = 3-5.5V		
AD57	TSAMP	Sample Time	—	1 Tad	—	ns	V _{DD} = 3-5.5V Source resistance Rs = 0-2.5 kΩ		
		Timin	g Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger	—	1 Tad		ns			
AD61	tPSS	Sample Start from Setting Sample (SAMP) Bit	0.5 Tad	_	1.5 Tad	ns			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1)	—	0.5 TAD	_	ns			
AD63	tdpu (2)	Time to Stabilize Analog Stage from ADC Off to ADC On	—	—	20	μs			

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1). During this time the ADC result is indeterminate.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X80)	X1			0.30	
Contact Pad Length (X80)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

Revision E (February 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section 20.0 "System Integration"	Added a shaded note on OSCTUN functionality in Section 20.2.5 "Fast RC Oscillator (FRC) ".
Section 23.0 "Electrical Characteristics"	Updated the maximum MIPS for the Operating MIPS vs. Voltage VDD range of 3.0-3.6V for dsPIC30F601XA-20I and dsPIC30F601XA-30I devices (see Table 23-1).
	Added Operating Current (IDD) parameters DC27a and DC27b (see Table 23-5).
	Added Idle Current (IIDLE) parameters DC47a and DC47b (see Table 23-6).
	Updated the maximum value for parameter DI19 and the minimum value for parameter DI29 in the I/O Pin Input Specifications (see Table 23-8).
	Removed parameter D136 and updated the minimum, typical, maximum, and conditions for parameters D122 and D134 in the Program and EEPROM specifications (see Table 23-12).