

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6014at-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-883-2

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

2.4.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space may also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly, For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.4.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators, or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value will shift the operand right. A negative value will shift the operand left. A value of '0' will not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 16 for left shifts.

FIGURE 3-6: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION

Note 1: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address (i.e., it defines the page in program space to which the upper half of data space is being mapped).

4.2.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than the upper (for incrementing buffers), and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, modulo address correction is performed but the contents of the register remain unchanged.

4.3 Bit-Reversed Addressing

Bit-Reversed Addressing is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.3.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing is enabled when:

- 1. BWM (W register selection) in the MODCON register is any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing) **and**
- 2. the BREN bit is set in the XBREV register and
- 3. the Addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, then the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the bit-reversed address modifier or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing will only be executed for register indirect with pre-increment or post-increment addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data, and normal addresses will be generated instead. When Bit-Reversed Addressing is active, the W address pointer will always be added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode will be ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. In the event that the user
	attempts to do this, Bit-Reversed Address-
	ing will assume priority when active for the
	X WAGU, and X WAGU Modulo Address-
	ing will be disabled. However, Modulo
	Addressing will continue to function in the X
	RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

NOTES:

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

The Data EEPROM Memory is readable and writable during normal operation over the entire VDD range. The data EEPROM memory is directly mapped in the program memory address space.

The four SFRs used to read and write the program Flash memory are used to access data EEPROM memory, as well. As described in **Section 6.5 "Control Registers**", these registers are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

The EEPROM data memory allows read and write of single words and 16-word blocks. When interfacing to data memory, NVMADR in conjunction with the NVMADRU register are used to address the EEPROM location being accessed. TBLRDL and TBLWTL instructions are used to read and write data EEPROM. The dsPIC30F devices have up to 8 Kbytes (4K words) of data EEPROM with an address range from 0x7FF000 to 0x7FFFE.

A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete but the write time will vary with voltage and temperature. A program or erase operation on the data EEPROM does not stop the instruction flow. The user is responsible for waiting for the appropriate duration of time before initiating another data EEPROM write/erase operation. Attempting to read the data EEPROM while a programming or erase operation is in progress results in unspecified data.

Control bit WR initiates write operations similar to program Flash writes. This bit cannot be cleared, only set, in software. They are cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ Reset or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address register NVMADR remains unchanged.

Note: Interrupt flag bit NVMIF in the IFS0 register is set when write is complete. It must be cleared in software.

7.1 Reading the Data EEPROM

A TBLRD instruction reads a word at the current program word address. This example uses W0 as a pointer to data EEPROM. The result is placed in register W4 as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

MOV	#LOW_ADDR_WORD,W0	;	Init	Point	ter
MOV	#HIGH_ADDR_WORD,W1				
MOV	W1,TBLPAG				
TBLRDL	[WO], W4	;	read	data	EEPROM

7.2 Erasing Data EEPROM

7.2.1 ERASING A BLOCK OF DATA EEPROM

In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM, and set the ERASE and WREN bits in the NVMCON register. Setting the WR bit initiates the erase as shown in Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

```
; Select data EEPROM block, ERASE, WREN bits
   MOV
          #0x4045,W0
                                     ; Initialize NVMCON SFR
   MOV
           W0 NVMCON
; Start erase cycle by setting WR after writing key sequence
                                    ; Block all interrupts with priority <7 for
   DISI #5
                                    ; next 5 instructions
   MOV
          #0x55,W0
                                    :
   MOV
          W0,NVMKEY
                                    ; Write the 0x55 key
   MOV
          #0xAA,W1
   MOV
          W1 NVMKEY
                                    ; Write the OxAA key
   BSET
          NVMCON, #WR
                                    ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

7.2.2 ERASING A WORD OF DATA EEPROM

The TBLPAG and NVMADR registers must point to the block. Select erase a block of data Flash, and set the ERASE and WREN bits in the NVMCON register. Setting the WR bit initiates the erase as shown in Example 7-3.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

```
; Select data EEPROM word, ERASE, WREN bits
          #0x4044,W0
   MOV
   MOV
          W0_NVMCON
; Start erase cycle by setting WR after writing key sequence
   DISI #5
                                       ; Block all interrupts with priority <7 for
                                        ; next 5 instructions
          #0x55,W0
   MOV
                                        ;
          W0 NVMKEY
   MOV
                                        ; Write the 0x55 key
          #0xAA,W1
   MOV
                                        ;
                                        ; Write the OxAA key
   MOV
          W1 NVMKEY
   BSET
          NVMCON, #WR
                                        ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

(1)	
0144	
013A/6	
IC30F6	
OR dsP	
MAP F	
SISTER	
TA REC	
POR	
8-1:	
TABLE {	

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12		TRISA10	TRISA9	I	TRISA7	TRISA6		1	1			Ι	1111 0110 1100 0000	
PORTA ⁽²⁾	02C2	RA15	RA14	RA13	RA12	Ι	RA10	RA9		RA7	RA6	Ι	Ι			Ι	I	0000 0000 0000 0000	
LATA	02C4	LATA15	LATA14	LATA13	LATA12		LATA10	LATA9	Ι	LATA7	LATA6						Ι	0000 0000 0000 0000	
Legend:		= unimplem	ented bit, r	ead as '0'															

Refer to the "*dsPIC30F Family Reference Manual*" (DS70046) for descriptions of register bit fields. PORTA is not implemented in the dsPIC30F6011A/6012A devices. ÷ ä Note

PORTB REGISTER MAP FOR dsPIC30F6011A/6012A/6013A/6014A⁽¹⁾ TABLE 8-2:

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISBO	1111 1111 1111 1111	
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000 0000 0000 0000	
LATB	02CB	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000 0000 0000 0000	
l enend:		= unimpler	nented hit	,∪, se peau															

Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Legena: Note 1:

PORTC REGISTER MAP FOR dsPIC30F6011A/6012A⁽¹⁾ **TABLE 8-3**:

Reset State	1110 0000 0000 0110	0000 0000 0000 0000	0000 0000 0000 0000	
Bit 0	I	Ι	Ι	
Bit 1	TRISC1	RC1	LATC1	
Bit 2	TRISC2	RC2	LATC2	
Bit 3	Ι	Ι		
Bit 4	Ι			
Bit 5			Ι	
Bit 6	Ι		Ι	
Bit 7	Ι	Ι	Ι	
Bit 8			Ι	
Bit 9	Ι		Ι	
Bit 10	Ι	Ι	Ι	
Bit 11	Ι		Ι	
Bit 12	Ι	—	Ι	
Bit 13	TRISC13	RC13	LATC13	
Bit 14	TRISC14	RC14	LATC14	
Bit 15	TRISC15	RC15	LATC15	
Addr.	02CC	02CE	02D0	
SFR Name	TRISC	PORTC	LATC	

— = unimplemented bit, read as '0' Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Legend: Note 1:

PORTC REGISTER MAP FOR dsPIC30F6013A/6014A⁽¹⁾ TABLE 8-4:

Reset State	1110 0000 0001 1110	0000 0000 0000 0000	0000 0000 0000 0000	
Bit 0	I	Ι	Ι	
Bit 1	TRISC1	RC1	LATC1	
Bit 2	TRISC2	RC2	LATC2	
Bit 3	TRISC3	EC3	LATC3	
Bit 4	TRISC4	RC4	LATC4	
Bit 5		-	-	
Bit 6	Ι			
Bit 7	Ι			
Bit 8	Ι	Ι	Ι	
Bit 9	Ι	-	-	
Bit 10	Ι			
Bit 11	Ι	Ι	Ι	
Bit 12	I	Ι	Ι	
Bit 13	TRISC13	RC13	LATC13	
Bit 14	TRISC14	RC14	LATC14	
Bit 15	TRISC15	RC15	LATC15	
Addr.	02CC	02CE	02D0	
SFR Name	TRISC	PORTC	LATC	

Legend: Note 1:

— = unimplemented bit, read as '0'
 Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

14.0 SPI™ MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

The Serial Peripheral Interface (SPI[™]) module is a synchronous serial interface. It is useful for communicating with other peripheral devices, such as EEPROMs, shift registers, display drivers and A/D converters, or other microcontrollers. It is compatible with Motorola's SPI and SIOP interfaces.

14.1 Operating Function Description

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

A series of eight (8) or sixteen (16) clock pulses shift out bits from the SPIxSR to SDOx pin and simultaneously shift in data from SDIx pin. An interrupt is generated when the transfer is complete and the corresponding interrupt flag bit (SPI1IF or SPI2IF) is set. This interrupt can be disabled through an interrupt enable bit (SPI1IE or SPI2IE).

The receive operation is double-buffered. When a complete byte is received, it is transferred from SPIxSR to SPIxBUF.

If the receive buffer is full when new data is being transferred from SPIxSR to SPIxBUF, the module will set the SPIROV bit indicating an overflow condition. The transfer of the data from SPIxSR to SPIxBUF will not be completed and the new data will be lost. The module will not respond to SCL transitions while SPIROV is '1', effectively disabling the module until SPIxBUF is read by user software. Transmit writes are also double-buffered. The user writes to SPIxBUF. When the master or slave transfer is completed, the contents of the shift register (SPIxSR) are moved to the receive buffer. If any transmit data has been written to the buffer register, the contents of the transmit buffer are moved to SPIxSR. The received data is thus placed in SPIxBUF and the transmit data in SPIxSR is ready for the next transfer.

Note:	Both the transmit buffer (SPIxTXB) and
	the receive buffer (SPIxRXB) are mapped
	to the same register address, SPIxBUF.

In Master mode, the clock is generated by prescaling the system clock. Data is transmitted as soon as a value is written to SPIxBUF. The interrupt is generated at the middle of the transfer of the last bit.

In Slave mode, data is transmitted and received as external clock pulses appear on SCK. Again, the interrupt is generated when the last bit is latched. If \overline{SSx} control is enabled, then transmission and reception are enabled only when $\overline{SSx} = low$. The SDOx output will be disabled in \overline{SSx} mode with \overline{SSx} high.

The clock provided to the module is (Fosc/4). This clock is then prescaled by the primary (PPRE<1:0>) and the secondary (SPRE<2:0>) prescale factors. The CKE bit determines whether transmit occurs on transition from active clock state to Idle clock state, or vice versa. The CKP bit selects the Idle state (high or low) for the clock.

14.1.1 WORD AND BYTE COMMUNICATION

A control bit, MODE16 (SPIxCON<10>), allows the module to communicate in either 16-bit or 8-bit mode. 16-bit operation is identical to 8-bit operation except that the number of bits transmitted is 16 instead of 8.

The user software must disable the module prior to changing the MODE16 bit. The SPI module is reset when the MODE16 bit is changed by the user.

A basic difference between 8-bit and 16-bit operation is that the data is transmitted out of bit 7 of the SPIxSR for 8-bit operation, and data is transmitted out of bit15 of the SPIxSR for 16-bit operation. In both modes, data is shifted into bit 0 of the SPIxSR.

14.1.2 SDOx DISABLE

A control bit, DISSDO, is provided to the SPIxCON register to allow the SDOx output to be disabled. This will allow the SPI module to be connected in an input only configuration. SDO can also be used for general purpose I/O.

I²C[™] REGISTER MAP⁽¹⁾ **TABLE 15-2**:

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
12CRCV	0200	I	Ι	Ι	1	1	I	1	I				Receive R	egister				0000 0000 0000 0000
I2CTRN	0202	Ι			Ι	I		Ι	Ι			-	Fransmit R	egister				0000 0000 1111 1111
12CBRG	0204	Ι		Ι	Ι	I						Baud R	ate Genera	ator				0000 0000 0000 0000
12CCON	0206	IZCEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0001 0000 0000 0000
12CSTAT	0208	ACKSTAT	TRSTAT	Ι	Ι	I	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	٩	S	R_W	RBF	TBF	0000 0000 0000 0000
12CADD	020A	Ι		Ι	Ι	Ι	I				1	Address R	egister					0000 0000 0000 0000
- huana l		nimnlemente	d hit read	,∪, se														

— – unimperimented but, read as ∪ Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. ÷ Note

17.6.2 PRESCALER SETTING

There is a programmable prescaler with integral values ranging from 1 to 64, in addition to a fixed divide-by-2 for clock generation. The time quantum (Tq) is a fixed unit of time derived from the oscillator period, and is given by Equation 17-1.

Note:	FCAN	must	not	exceed	30	MHz.	lf
	CANC	KS = 0	, the	n Fcy mu	ist no	ot exce	ed
	7.5 Mł	Ηz.					

EQUATION 17-1: TIME QUANTUM FOR CLOCK GENERATION

 $T_Q = 2 (BRP < 5:0 > +1) / FCAN$

17.6.3 PROPAGATION SEGMENT

This part of the bit time is used to compensate physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The Prop Seg can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0> bits (CiCFG2<2:0>).

17.6.4 PHASE SEGMENTS

The phase segments are used to optimally locate the sampling of the received bit within the transmitted bit time. The sampling point is between Phase1 Seg and Phase2 Seg. These segments are lengthened or shortened by resynchronization. The end of the Phase1 Seg determines the sampling point within a bit period. The segment is programmable from 1 TQ to 8 TQ. Phase2 Seg provides delay to the next transmitted data transition. The segment is programmable from 1 TQ to 8 TQ, or it may be defined to be equal to the greater of Phase1 Seg or the information processing time (2 TQ). The Phase1 Seg is initialized by setting bits SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).

The following requirement must be fulfilled while setting the lengths of the phase segments:

Prop Seg + Phase1 Seg > = Phase2 Seg

17.6.5 SAMPLE POINT

The sample point is the point of time at which the bus level is read and interpreted as the value of that respective bit. The location is at the end of Phase1 Seg. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The level determined by the CAN bus then corresponds to the result from the majority decision of three values. The majority samples are taken at the sample point and twice before with a distance of TQ/2. The CAN module allows the user to choose between sampling three times at the same point or once at the same point, by setting or clearing the SAM bit (CiCFG2<6>).

Typically, the sampling of the bit should take place at about 60-70% through the bit time, depending on the system parameters.

17.6.6 SYNCHRONIZATION

To compensate for phase shifts between the oscillator frequencies of the different bus stations, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Synchronous Segment). The circuit will then adjust the values of Phase1 Seg and Phase2 Seg. There are 2 mechanisms used to synchronize.

17.6.6.1 Hard Synchronization

Hard synchronization is only done whenever there is a 'recessive' to 'dominant' edge during bus Idle indicating the start of a message. After hard synchronization, the bit time counters are restarted with the Sync Seg. Hard synchronization forces the edge which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time. If a hard synchronization is done, there will not be a resynchronization within that bit time.

17.6.6.2 Resynchronization

As a result of resynchronization, Phase1 Seg may be lengthened or Phase2 Seg may be shortened. The amount of lengthening or shortening of the phase buffer segment has an upper bound known as the synchronization jump width, and is specified by the SJW<1:0> bits (CiCFG1<7:6>). The value of the synchronization jump width will be added to Phase1 Seg or subtracted from Phase2 Seg. The resynchronization jump width is programmable between 1 To and 4 To.

The following requirement must be fulfilled while setting the SJW<1:0> bits:

Phase2 Seg > Synchronization Jump Width

TABLE 17	÷	CAN1 RE	EGISTE	R MAP	(1)													
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 E	Bit 4 Bi	t3 E	3it 2 B	it 1 Bit	0	Reset State
C1RXF0SID	0300	1	I	Ι			Rŧ	eceive Acc	septance F	Filter 0 Stand	ard Identif.	ier <10:0>				- EXID	DE 00	0u uuuu uuuu uu0u
C1RXF0EIDH	0302		I		I				Receive	Acceptance	Filter 0 Ex	ttended Ider	ntifier <17:6>				00	nnnn nnnn nnnn 00
C1RXF0EIDL	0304	Receive	Acceptanc	ce Filter 0 E	Extended In	dentifier <5	<0;	I	Ι	Ι	Ι						nn -	uu uu00 0000 0000
C1RXF1SID	0308	I	I				R¢	sceive Acc	ceptance F	-ilter 1 Stand.	ard Identif	ier <10:0>				- EXI	DE 00	n0nn nnnn nnnn n0
C1RXF1EIDH	030A	I		I	I				Receive	Acceptance	Filter 1 Ex	tended Ider	ntifier <17:6>			-	00	00 nnnn nnnn
C1RXF1EIDL	030C	Receive	Acceptanc	ce Filter 1 E	Extended Iv	dentifier <5	<0:	I		I	I						nn -	uu uu00 0000 0000
C1RXF2SID	0310	I	I	I			R¢	sceive Acc	ceptance F	Filter 2 Stand	ard Identif	ier <10:0>				- EXIC	DE 00	n0nn nnnn nnnn n0
C1RXF2EIDH	0312	Ι	Ι		Ι				Receive	Acceptance	Filter 2 Ex	ttended Ider	ntifier <17:6>				00	nnnn nnnn nnnn 00
C1RXF2EIDL	0314	Receive	Acceptanc	ce Filter 2 E	Extended lo	dentifier <5	<0;	I	Ι	I	Ι	I		1			nn -	0000 0000 00nn nn
C1RXF3SID	0318	I	Ι				R¢	sceive Acc	ceptance F	-ilter 3 Stand.	ard Identif.	ier <10:0>				- EXIC	DE 00	n0nn nnnn nnnn n0
C1RXF3EIDH	031A	I	I		I				Receive	Acceptance	Filter 3 Ex	ttended Ider	ntifier <17:6>				00	nnnn nnnn nnnn 00
C1RXF3EIDL	031C	Receive	Acceptanc	ce Filter 3 E	Extended Iv	dentifier <5	<0:	I	Ι	I	I				1		nn -	uu uu00 0000 0000 uu
C1RXF4SID	0320	Ι	Ι				R¢	eceive Acc	ceptance F	-ilter 4 Stand.	ard Identif.	ier <10:0>				- EXIC	DE 00	n0nn nnnn nnnn n0
C1RXF4EIDH	0322	Ι	Ι		Ι				Receive	Acceptance	Filter 4 Ex	ttended Ider	ntifier <17:6>				00	nnnn nnnn nnnn 00
C1RXF4EIDL	0324	Receive	Acceptanc	ce Filter 4 E	Extended Iv	dentifier <5	<0:	I	Ι	I	I				1		nn -	uu uu00 0000 0000 uu
C1RXF5SID	0328	Ι	I				R¢	sceive Acc	ceptance F	Filter 5 Stand	ard Identif.	ier <10:0>				- EXIC	DE 00	nonn nnnn nnnn no
C1RXF5EIDH	032A		I		I				Receive	Acceptance	Filter 5 Ex	ttended Ider	ntifier <17:6>				00	nnnn nnnn nnnn 00
C1RXF5EIDL	032C	Receive	Acceptanc	ce Filter 5 E	Extended lo	dentifier <5	<0:	I	Ι	I	I				1		nn -	uu uu00 0000 0000 uu
C1RXM0SID	0330	1		Ι			Re	sceive Acc	septance N	Aask 0 Stand	lard Identif	ier <10:0>				MID -	DE 00	0u uuuu uuuu uu0u
C1RXM0EIDH	0332	Ι	Ι	Ι	Ι				Receive	Acceptance	Mask 0 E;	xtended Ider	ntifier <17:6>				0.0	00 uuuu uuuu uuuu
C1RXM0EIDL	0334	Receive	Acceptanc	e Mask 0 f	Extended I	Identifier <5	<0>	I		Ι	Ι					 	- nn	uu uu00 0000 0000
C1RXM1SID	0338	I		I			R¢	sceive Acc	septance N	Aask 1 Stand	lard Identif	ier <10:0>				- MID	DE 00	0u uuuu uuuu uu0u
C1RXM1EIDH	033A	Ι							Receive	Acceptance	Mask 1 E:	xtended Ider	ntifier <17:6>				00	00 ииии ииии
C1RXM1EIDL	033C	Receive	Acceptano	e Mask 1 F	Extended I	dentifier <5	<0>	Ι	Ι	Ι	Ι	Ι		-	I	 	- nn	uu uu00 0000 0000 uu
C1TX2SID	0340	Transmi	it Buffer 2 S	Standard Id	entifier <1	0:6>	Ι	Ι	Ι	Tra	ansmit Buff	er 2 Standa	rd Identifier <	<5:0>	S	RR TXI	DE uu	uu u000 uuuu uuuu
C1TX2EID	0342	Transmit Buffe	sr 2 Extende	ed Identifie	ır <17:14>	Ι	Ι	Ι	Ι		Trans	mit Buffer 2	Extended Id	lentifier <	13:6>		nn	uu 0000 uuuu uuuu
C1TX2DLC	0344	Tr	ansmit Bufft	er 2 Exten	ded Identifi	ier <5:0>		TXRTR	TXRB1	TXRB0		S>DLC<	3:0>		-		- nn	uu uuuu uu000
C1TX2B1	0346			Tran:	smit Buffer	r 2 Byte 1						Transm	nit Buffer 2 B	yte 0			nn	nnnn nnnn nnnn nn
C1TX2B2	0348			Tran	smit Buffer	r 2 Byte 3						Transm	hit Buffer 2 B	yte 2			nn	uuuu uuuu uuuu
C1TX2B3	034A			Tran:	smit Buffer	r 2 Byte 5						Transm	hit Buffer 2 B	yte 4			nn	טט טטטט טטט טטט
C1TX2B4	034C			Tran	smit Buffer	r 2 Byte 7						Transm	hit Buffer 2 B	yte 6			nn	עט טטטט טעטט
C1TX2CON	034E	I	I	Ι	I	I				Ι	TXABT	TXLARB T)	KERR TXF	REQ		TXPRI<1:0	> 00	00 0000 0000 0000
C1TX1SID	0350	Transmi	it Buffer 1 S	Standard Id	entifier <1	0:6>	I		I	Tra	ansmit Bufi	er 1 Standa	rd Identifier <	<5:0>	0	RR TXII	DE uu	uu u000 uuuu uuuu
C1TX1EID	0352	Transmit Buff	er 1 Extende	ed Identifie	r <17:14>	I		I	I		Trans	smit Buffer 1	Extended Id	entifier <	13:6>		nn	uu 0000 uuuu uuuu
C1TX1DLC	0354	Tr	ansmit Buff	er 1 Exten	ded Identif	fier <5:0>		TXRTR	TXRB1	TXRB0		S⊃DLC<	3:0>			 	- nn	uu uuuu uu000
Legend:	u = uni	initialized bit; -	- = unimple	emented bi	t, read as	.0,				-								

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 17	ÿ	CAN2 R	EGISTE	RAP ⁽	¹⁾ (co	NTINUE	<u></u>										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 E	sit 1 Bit 0	Reset State
C2TX1B1	0416			Trans	mit Buffe	r 1 Byte 1						Trans	smit Buffer	1 Byte 0			nuuu uuuu uuuu
C2TX1B2	0418			Transı	mit Buffe	r 1 Byte 3						Trans	smit Buffer	· 1 Byte 2			uuuu uuuu uuuu
C2TX1B3	041A			Trans	mit Buffe	r 1 Byte 5						Trans	smit Buffer	· 1 Byte 4			nnnn nnnn nnnn nnnn
C2TX1B4	041C			Transı	mit Buffe	r 1 Byte 7						Trans	smit Buffer	· 1 Byte 6			uuuu uuuu uuuu
C2TX1CON	041E	Ι	1	Ι	I	Ι	I	1	I	I	TXABT	TXLARB	TXERR	TXREQ	I	TXPRI<1:0>	0000 0000 0000 0000
C2TX0SID	0420	Transn	nit Buffer 0 S	tandard ld∈	sntifier <	10:6>	Ι	1	1	Trar	Ismit Buffe	er 0 Stand	ard Identii	fier <5:0>	0,	SRR TXIDE	uuuu u000 uuuu
C2TX0EID	0422	Transmit Buf	fer 0 Extende	d Identifier	-417:14>	I	Ι	1	I		Trans	mit Buffer	0 Extend	ed Identifier	-13:6>		nnnn nnnn 0000 nnnn
C2TX0DLC	0424		ransmit Buff∈	sr 0 Extend	led Identi	fier <5:0>		TXRTR	TXRB1	TXRB0		DLC	<3:0>		1		nuuu uuuu uuuu
C2TX0B1	0426			Trans	mit Buffe	r 0 Byte 1						Trans	smit Buffer	· 0 Byte 0			uuuu uuuu uuuu
C2TX0B2	0428			Trans	mit Buffe	r 0 Byte 3						Trans	smit Buffer	· 0 Byte 2			uuuu uuuu uuuu
C2TX0B3	042A			Transi	mit Buffe	r 0 Byte 5						Trans	smit Buffer	· 0 Byte 4			uuuu uuuu uuuu
C2TX0B4	042C			Transi	mit Buffe	r 0 Byte 7						Trans	smit Buffer	· 0 Byte 6			nnnn nnnn nnnn
C2TX0CON	042E			Ι	Ι	Ι	Ι	1	I	I	TXABT	TXLARB	TXERR	TXREQ	I	TXPRI<1:0>	0000 0000 0000 0000
C2RX1SID	0430		1	Ι				Receiv	/e Buffer	1 Standard Id	entifier <1	<0:0			0,	SRR RXIDE	000u uuuu uuuu
C2RX1EID	0432			Ι	I				Re	sceive Buffer	1 Extende	ed Identifie	sr <17:6>				0000 nnnn nnnn
C2RX1DLC	0434	Ľ	Receive Buffe	r 1 Extend	ed Identil	fier <5:0>		RXRTR	RXRB1	I	1	I	RXRB0		DLC<3:0	۸	uuuu 0000 uuuu
C2RX1B1	0436			Recei	ive Buffer	r 1 Byte 1						Rece	ive Buffer	1 Byte 0			nnnn nnnn nnnn
C2RX1B2	0438			Recei	ive Buffel	r 1 Byte 3						Rece	ive Buffer	1 Byte 2			nnnn nnnn nnnn
C2RX1B3	043A			Recei	ive Buffer	r 1 Byte 5						Rece	ive Buffer	1 Byte 4			uuuu uuuu uuuu
C2RX1B4	043C			Recei	ive Buffe	r 1 Byte 7						Rece	ive Buffer	1 Byte 6			nnnn nnnn nnnn nnnn
C2RX1CON	043E	I		Ι	Ι	Ι	I	I		RXFUL		I	1	RTRRO	FILF	HT<2:0>	0000 0000 0000 0000
C2RX0SID	0440	Ι	Ι	Ι				Receiv	/e Buffer	0 Standard Id	entifier <1	<0:0			5	SRR RXIDE	000u uuuu uuuu
C2RX0EID	0442				Ι				Re	eceive Buffer	0 Extende	ed Identifie	sr <17:6>				0000 nnnn nnnn 0000
C2RX0DLC	0444	Ľ	Receive Buffe	r 0 Extend	ed Identii	fier <5:0>		RXRTR	RXRB1		1	I	RXRB0		DLC<3:0	٨	uuuu 0000 uuuu
C2RX0B1	0446			Recei	ive Buffe	r 0 Byte 1						Rece	ive Buffer	0 Byte 0			nnnn nnnn nnnn nnnn
C2RX0B2	0448			Recei	ive Buffe	r 0 Byte 3						Rece	ive Buffer	0 Byte 2			nnnn nnnn nnnn nnnn
C2RX0B3	044A			Recei	ive Buffe	r 0 Byte 5						Rece	ive Buffer	0 Byte 4			uuuu uuuu uuuu
C2RX0B4	044C			Recei	ive Buffe	r 0 Byte 7						Rece	ive Buffer	0 Byte 6			nnnn nnnn nnnn nnnn
C2RX0CON	044E	Ι		Ι	Ι	Ι			Ι	RXFUL			I	RXRTRRO	DBEN JI		0000 0000 0000 0000
C2CTRL	0450	CANCAP		CSIDLE	ABAT	CANCKS	RE	EQOP<2:0	^	OPM	ODE<2:0:			ICOL)E<2:0>		0000 0100 1000 0000
C2CFG1	0452	Ι	Ι	Ι	Ι	Ι				SJW<1:	<0			BRP<5:(<		0000 0000 0000 0000
C2CFG2	0454		WAKFIL		Ι	I	BS	G2PH<2:0	^	SEG2PHTS	SAM	SE	:G1PH<2:	~0	PRS	EG<2:0>	0000 0uuu uuuu
C2INTF	0456	RX00VR	RX10VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF R	X1IF RX0IF	0000 0000 0000 0000
C2INTE	0458	Ι	Ι	Ι	Ι	Ι				IVRIE	WAKIE	ERRIE	TX2IE	TX1IE	TX0IE R	X1E RX0IE	0000 0000 0000 0000
C2EC	045A			Transmit	Error Co	unt Regist	sr					Receive	Error Co	unt Register			0000 0000 0000 0000
Legend: Note 1:	u = uni Refer to	nitialized bit; the "dsPIC3	— = unimple OF Family R€	emented bit eference M	t, read as 'anual" (D	<u>s '0</u> ')S70046) fc	r descripti	ons of regi	ster bit fi	elds.							

ITINUE	
(CON	
MAP ⁽¹	
STER	
REGIS	
CAN2 I	
ä	
17-	

dsPIC30F6011A/6012A/6013A/6014A

20.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock monitor circuits. It may also be used to provide a low frequency clock source option for applications where power consumption is critical, and timing accuracy is not required.

The LPRC oscillator is always enabled at a Power-on Reset, because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator will remain ON if one of the following is TRUE:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the COSC<2:0> control bits in the OSCCON register

If one of the above conditions is not true, the LPRC will shut-off after the PWRT expires.

- Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<4:0>).
 - 2: Note that OSC1 pin cannot be used as an I/O pin, even if the secondary oscillator or an internal clock source is selected at all times.

20.2.7 FAIL-SAFE CLOCK MONITOR

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by appropriately programming the FCKSM Configuration bits (Clock Switch and Monitor Selection bits) in the Fosc device Configuration register. If the FSCM function is enabled, the LPRC internal oscillator will run at all times (except during Sleep mode) and will not be subject to control by the SWDTEN bit.

In the event of an oscillator failure, the FSCM will generate a clock failure trap event and will switch the system clock over to the FRC oscillator. The user will then have the option to either attempt to restart the oscillator or execute a controlled shutdown. The user may decide to treat the trap as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. In this event, the CF (Clock Fail) status bit (OSCCON<3>) is also set whenever a clock failure is recognized.

In the event of a clock failure, the WDT is unaffected and continues to run on the LPRC clock.

If the oscillator has a very slow start-up time coming out of POR, BOR or Sleep, it is possible that the PWRT timer will expire before the oscillator has started. In such cases, the FSCM will be activated and the FSCM will initiate a clock failure trap, and the COSC<2:0> bits are loaded with FRC oscillator selection. This will effectively shut-off the original oscillator that was trying to start.

The user may detect this situation and restart the oscillator in the clock fail trap ISR.

Upon a clock failure detection, the FSCM module will initiate a clock switch to the FRC oscillator as follows:

- 1. The COSC bits (OSCCON<14:12>) are loaded with the FRC oscillator selection value.
- 2. CF bit is set (OSCCON<3>).
- 3. OSWEN control bit (OSCCON<0>) is cleared.

For the purpose of clock switching, the clock sources are sectioned into four groups:

- Primary
- · Secondary
- Internal FRC
- Internal LPRC

The user can switch between these functional groups, but cannot switch between options within a group. If the primary group is selected, then the choice within the group is always determined by the FPR<4:0> Configuration bits.

The OSCCON register holds the control and status bits related to clock switching.

- COSC<2:0>: Read-only status bits always reflect the current oscillator group in effect
- NOSC<2:0>: Control bits which are written to indicate the new oscillator group of choice
 - On POR and BOR, COSC<2:0> and NOSC<2:0> are both loaded with the Configuration bit values FOS<2:0>
- LOCK: The LOCK status bit indicates a PLL lock
- CF: Read-only status bit indicating if a clock fail detect has occurred
- OSWEN: Control bit changes from a '0' to a '1' when a clock transition sequence is initiated. Clearing the OSWEN control bit will abort a clock transition in progress (used for hang-up situations).

If Configuration bits FCKSM<1:0> = 1x, then the clock switching and Fail-Safe Clock Monitor functions are disabled. This is the default Configuration bit setting.

If clock switching is disabled, then the FOS<2:0> and FPR<4:0> bits directly control the oscillator selection and the COSC<2:0> bits do not control the clock selection. However, these bits will reflect the clock source selection.

Note: The application should not attempt to switch to a clock of frequency lower than 100 kHz when the Fail-Safe Clock Monitor is enabled. If clock switching is performed, the device may generate an oscillator fail trap and switch to the fast RC oscillator.

Ξ	
1	
3	
\sim	
Ξ	
8	
<u> </u>	
<u>ц</u>	
0	
0	
_	
ц	
<u></u>	
σ	
~	
5	
0	
ш	
_	
ц	
⋖	
Ś	
2	
~	
. <u>ш</u>	
S	
75	
Ċ	
ш	
۳ ۳	
R	
N RE	
ON RE	
ION RE	
TION RE	
ATION RE	
ATION RE	
RATION RE	
GRATION RE	
EGRATION RE	
<i>TEGRATION RE</i>	
ITEGRATION RE	
NTEGRATION RE	
INTEGRATION RE	
M INTEGRATION RE	
EM INTEGRATION RE	
TEM INTEGRATION RE	
STEM INTEGRATION RE	
STEM INTEGRATION RE	
YSTEM INTEGRATION RE	
SYSTEM INTEGRATION RE	
7: SYSTEM INTEGRATION RE	
-7: SYSTEM INTEGRATION RE	
0-7: SYSTEM INTEGRATION RE	
20-7: SYSTEM INTEGRATION RE	
E 20-7: SYSTEM INTEGRATION RE	
.E 20-7: SYSTEM INTEGRATION RE	
ILE 20-7: SYSTEM INTEGRATION RE	
BLE 20-7: SYSTEM INTEGRATION RE	
ABLE 20-7: SYSTEM INTEGRATION RE	

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
RCON	0740	TRAPR	IOPUWR	BGST	LVDEN		LVDL	<3:0>		EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Depends on type of Reset.
OSCCON	0742	Ι	00)SC<2:0:	۸		Z	IOSC<2:0.	^	POST-	<1:0>	LOCK		CF	I	LPOSCEN	OSWEN	Depends on Configuration bits.
OSCTUN	0744	1				1					1	1	1		TUN	<3:0>		0000 0000 0000 0000
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD			DCIMD	I2CMD	U2MD	U1MD	SPI2MD	SP11MD	C2MD	C1MD	ADCMD	0000 0000 0000 0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000 0000 0000 0000
- huana l		= unimule	mented hit	read ac	, o, .													

Legena: Note 1

— = unimplemented bit, read as '0' Refer to the "dsP/C30F Family Reference Manual" (DS70046) for descriptions of register bit fields. ÷

DEVICE CONFIGURATION REGISTER MAP⁽¹⁾ 20-8: TABLE

Name	Address	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FOSC	F80000	FCKSM	<1:0>		I	I		FOS<2:0>				I			FPR<4:0>		
FWDT	F80002	FWDTEN	Ι	Ι	I	I	Ι	Ι	I			FWPSA	<1:0>		FWPSE	3<3:0>	
FBORPOR	F80004	MCLREN		Ι	Ι	Ι	PWMPIN ⁽²⁾	HPOL ⁽²⁾	LPOL ⁽²⁾	BOREN	-	BORV	<1:0>	Ι	Ι	FPWR1	-<1:0>
FBS	F80006	Ι	Ι	RBS<	:1:0>	Ι	Ι	Ι	EBS	Ι		Ι	Ι		BSS<2:0>		BWRP
FSS	F80008	Ι	I	RSS<	:1:0>	I	Ι	ESS	<1:0>	I		I	I		SSS<2:0>		SWRP
FGS	F8000A	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι			Ι	Ι		GSS	1:0>	GWRP
FICD	F8000C	BKBUG	COE	Ι	Ι	Ι	Ι	Ι	Ι	Ι		Ι	Ι	Ι	Ι	ICS<	1:0>
Legend: Note 1:	— = unimp Refer to th	blemented bit e "dsPIC30F	, read as '0 Family Ref	, erence Man	ual" (DS70	046) for des	scriptions of re	gister bit fie	ids.								

Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. These bits are reserved (read as '1' and must be programmed as '1'). ÷ ä

dsPIC30F6011A/6012A/6013A/6014A

22.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

22.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

22.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

22.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

22.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

23.1 DC Characteristics

TABLE 23-1: OPERATING MIPS VS. VOLTAGE

Vpp Banga	Tomp Pongo	Мах	MIPS
VDD Range	Temp Kange	dsPIC30F601XA-30I	dsPIC30F601XA-20E
4.5-5.5V	-40°C to 85°C	30	_
4.5-5.5V	-40°C to 125°C	—	20
3.0-3.6V	-40°C to 85°C	15	—
3.0-3.6V	-40°C to 125°C	—	10
2.5-3.0V	-40°C to 85°C	10	

TABLE 23-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC30F601xA-30I					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	T _A	-40	—	+85	°C
dsPIC30F601xA-20E					
Operating Junction Temperature Range	Τ _J	-40	—	+150	°C
Operating Ambient Temperature Range	T _A	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \sum I_{OH})$ I/O Pin power dissipation: $P_{IVO} = \sum (\{V_{DD} - V_{OH}\} \times I_{OH}) + \sum (V_{OL} \times I_{OL})$	P _D		P _{INT} + P _{I/O}		W
Maximum Allowed Power Dissipation	PDMAX	($T_J - T_A)/\theta_J$	A	W

TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 80-pin TQFP (14x14x1mm)	θ_{JA}	34	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (14x14x1mm)	θ_{JA}	34	—	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1mm)	θ_{JA}	39	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1mm)	θ_{JA}	39		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-ja (θ_{JA}) numbers are achieved by package simulations.

FIGURE 23-7: BAND GAP START-UP TIME CHARACTERISTICS

Note: Set LVDEN bit (RCON<12>) or BOREN bit (FBORPOR<7>).

TABLE 23-22: BAND GAP START-UP TIME REQUIREMENTS

АС СНА	RACTERIS	TICS	Stand (unles Opera	ard Oper s otherw ting temp	rating C vise stat perature	onditio ted) -40°0 -40°0	ns: 2.5V to 5.5V C ≤TA ≤+85°C for Industrial C ≤TA ≤+125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SY40	TBGAP	Band Gap Start-up Time	_	40	65	μs	Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON<13> Status bit

 $\label{eq:Note 1: These parameters are characterized but not tested in manufacturing.$

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 23-8: TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 23-23: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА	RACTERIST	ICS		Standa (unless Operat	ord Operating (s otherwise stating temperatur	Conditio ated) e -40° -40°	ONS: 2.5\ C ≤TA ≤+; C ≤TA ≤+;	/ to 5.5V 85°C for 125°C fo	ndustrial pr Extended
Param No.	Symbol	Charact	eristic		Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchro no preso	nous, caler	0.5 TCY + 20			ns	Must also meet parameter TA15
			Synchro with pres	nous, scaler	10		—	ns	
			Asynchr	onous	10		_	ns	
TA11	ΤτxL	TxCK Low Time	Synchro no preso	nous, caler	0.5 TCY + 20		—	ns	Must also meet parameter TA15
			Synchro with pres	nous, scaler	10		_	ns	
			Asynchr	onous	10		—	ns	
TA15	ΤτχΡ	TxCK Input Period	Synchro no preso	nous, caler	Tcy + 10	_	—	ns	
			Synchro with pres	nous, scaler	Greater of: 20 ns or (TCY + 40)/N	_	_	-	N = prescale value (1, 8, 64, 256)
			Asynchr	onous	20		—	ns	
OS60	Ft1	SOSC1/T1CK oscil frequency range (or by setting bit TCS (llator inpu scillator e T1CON,	it enabled bit 1))	DC	—	50	kHz	
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	II TxCK C ement	lock	0.5 TCY	_	1.5 Тсү	—	

Note 1: Timer1 is a Type A.

TABLE 23-38: 12-BIT ADC MODULE SPECIFICATIONS

АС СНА		STICS	Standard ((unless oth Operating t	Dperatin herwise temperat	g Conditions stated) ture -40°C ≤ -40°C ≤	s: 2.7V te ≤Ta ≤+85 ≤Ta ≤+12	o 5.5V °C for Industrial 5°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
			Device St	upply			
AD01	AVdd	Module VDD Supply	Greater of VDD - 0.3 or 2.7	_	Lesser of VDD + 0.3 or 5.5	V	
AD02	AVss	Module Vss Supply	Vss - 0.3	—	Vss + 0.3	V	
			Reference	Inputs			•
AD05	Vrefh	Reference Voltage High	AVss + 2.7	—	AVdd	V	
AD06	Vrefl	Reference Voltage Low	AVss	—	AVDD - 2.7	V	
AD07	Vref	Absolute Reference Voltage	AVss - 0.3	—	AVDD + 0.3	V	
AD08	IREF	Current Drain		150 .001	200 1	μA μA	operating off
			Analog I	nput			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	—	VREFH	V	See Note
AD11	VIN	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V	
AD12	_	Leakage Current	_	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V Source Impedance = $2.5 \text{ K}\Omega$
AD13		Leakage Current	—	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$ Source Impedance = 2.5 K Ω
AD15	Rss	Switch Resistance	—	3.2K		Ω	
AD16	CSAMPLE	Sample Capacitor		18		pF	
AD17	Rin	Recommended Impedance of Analog Voltage Source	· 2.5K Ω				
	1	Γ	DC Accu	racy			1
AD20	Nr	Resolution	1	2 data b	its	bits	
AD21	INL	Integral Nonlinearity ⁽³⁾	_	_	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD21A	INL	Integral Nonlinearity ⁽³⁾	—		<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD22	DNL	Differential Nonlinearity ⁽³⁾	_	-	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD22A	DNL	Differential Nonlinearity ⁽³⁾	—	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD23	Gerr	Gain Error ⁽³⁾	+1.25	+1.5	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Parameters are characterized but not tested. Use as design guidance only.

3: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.