

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	20
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 5x16b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFLGA Exposed Pad
Supplier Device Package	44-MAPLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm14z128chh5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid order-able parts

Valid order-able part numbers are provided on the web. To determine the order-able part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

- MKM13Z64CHH5
- MKM14Z64CHH5
- MKM14Z128CHH5
- MKM32Z64CLH5
- MKM33Z64CLH5
- MKM33Z128CLH5
- MKM32Z64CLL5
- MKM33Z64CLL5
- MKM33Z128CLL5
- MKM34Z128CLL5
- MKM38Z128CLL5

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K M S R FFF T PP CC N

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

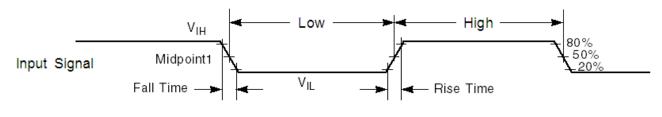
Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model (All pins except RESET pin)	-4000	+4000	V	1
	Electrostatic discharge voltage, human body model (RESET pin only)	-2500	+2500	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model (for corner pins)	-750	+750	V	2
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	3
V _{PESD}	Powered ESD voltage	-6000	+6000	V	
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings


Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.6	V
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{DTamper}	Tamper input voltage	-0.3	V _{BAT} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.6	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

5.2 Nonswitching electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — high-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_	0.5	V	
	Output low voltage — low-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 2.5 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports		100	mA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	
R _{PU}	Internal pullup resistors	30	60	kΩ	1,
R _{PD}	Internal pulldown resistors	30	60	kΩ	2

Table 4. Voltage and current operating behaviors (continued)

- 1. Measured at Vinput = V_{SS}
- 2. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 25 MHz
- Flash clock = 25 MHz
- Temp: -40 °C, 25 °C, and 85 °C
- V_{DD}: 1.71 V, 3.3 V, and 3.6 V

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execute the first instruction across the operating temperature range of the chip.	563	659	μs	1
	VLLS0 → RUN	—	372	μs	
	• VLLS1 → RUN	—	372	μs	
	• VLLS2 \rightarrow RUN	_	273	μs	
	VLLS3 → RUN	_	273	μs	
	• VLPS → RUN	—	5.0	μs	

Table continues on the next page...

Table 5.	Power mode	transition	operating	behaviors	(continued)
----------	------------	------------	-----------	-----------	-------------

Symbol	Description	Min.	Max.	Unit	Notes
	• STOP \rightarrow RUN	_	5.0	μs	

1. Normal boot (FTFA_OPT[LPBOOT]=1)

5.2.5 **Power consumption operating behaviors**

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 3.0 V					
	• 25 °C	—	6.17	7.1	mA	
	• -40 °C	—	6.39	6.7	mA	
	• 105 °C	—	6.93	8.3	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					2
	• @ 3.0 V					
	• 25 °C	—	8.24	10.4	mA	
	● -40 °C ● 105 °C	—	8.26	9.8	mA	
		—	9.00	11.5	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V— all peripheral clocks disabled and Flash is not in	_	3.95	4.65	mA	2
	low-power • 25 °C		0.00	4.4	mA	
	• -40 °C	—				
	• 105 °C	—		6	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V— all					2, 3
	peripheral clocks disabled and Flash disabled (put in low-power)	—	3.81	4.4	mA	
	• 25 °C	—		4.2	mA	
	 -40 °C 105 °C 	—		5.8	mA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all					4
	peripheral clocks disabled • 25 °C	_	248.8	500	μA	
	• -40 °C	_	245.30	470	μA	
	• 105 °C	_	535.40	1800	μA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all				-	5
-	peripheral clocks enabled	_	343.4	530	μA	
	• 25 °C • -40 °C	_	336.62	500	μA	
	• 105 °C		626.18	2000	μA	

Table 6. Power consumption operating behaviors

Table continues on the next page ...

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when VDD is OFF and LFSR and Tamper clocks set to 2 Hz.					8, 9
	• @ 3.0 V • 25 °C • -40 °C • 105 °C	_	1.3 ⁷	3 2.5 16	μΑ μΑ μΑ	

- 1. See AFE specification for IDDA.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FBE mode. All peripheral clocks disabled.
- 3. Should be reduced by 500 μ A.
- 4. 2 MHz core, system, bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing while (1) loop from flash.
- 5. 2 MHz core, system and bus clock, and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing while (1) loop from flash.
- 2 MHz core, system and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. No flash accesses; some activity on DMA & RAM assumed.
- 7. Current consumption will vary with number of CPU accesses done and is dependent on the frequency of the accesses and frequency of bus clock. Number of CPU accesses should be optimized to get optimal current value.
- 8. Includes 32 kHz oscillator current and RTC operation.
- 9. An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC.

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	14	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	16	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	12	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	М	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 50 MHz, f_{BUS} = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_		_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_		_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

Table 20. Oscillator frequency specifications (continued)

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.2.3 32 kHz oscillator electrical characteristics

6.2.3.1 32 kHz oscillator DC electrical specifications Table 21. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	—	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	_	0.6		V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.3.2 32 kHz oscillator frequency specifications Table 22. 32 kHz oscillator frequency specifications

Symb	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768		kHz	

Table continues on the next page ...

rempheral operating requirements and behaviors

6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}		V _{REFH}	V	
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 12-bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Peripheral operating requirements and behaviors

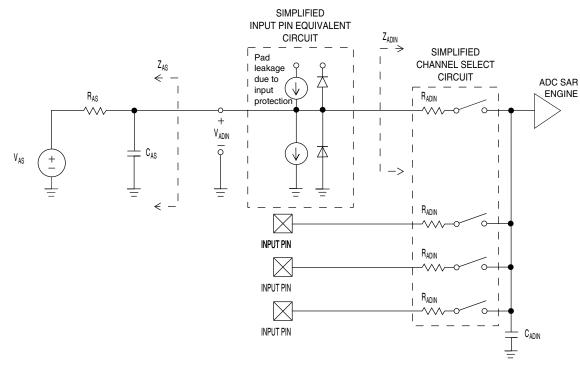
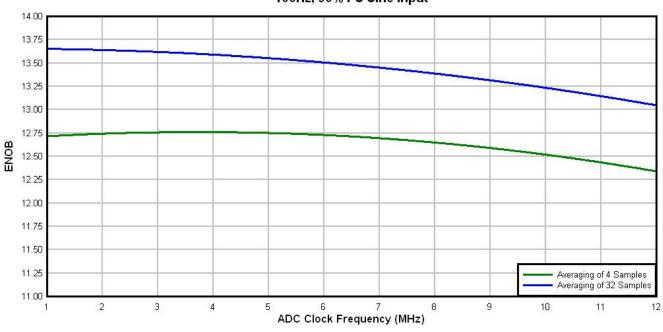


Figure 2. ADC input impedance equivalency diagram

6.4.1.2 16-bit ADC electrical characteristics


Table 28.	16-bit ADC	characteristics	(V _{REFH} =	V _{DDA} ,	$V_{REFL} = V_{S}$	isa)
-----------	------------	-----------------	----------------------	--------------------	--------------------	------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes			
	Supply current		0.215		1.7	mA	3			
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/			
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}			
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz				
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz				
	Sample Time	See Reference Manual chapter	ee Reference Manual chapter for sample times							
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5			
	error	 <12-bit modes 	—	±1.4	±2.1					
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5			
		 <12-bit modes 	_	±0.2	-0.3 to 0.5					
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5			
		• <12-bit modes	—	±0.5	-0.7 to +0.5					

Table continues on the next page ...

8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 3. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.4.2 CMP and 6-bit DAC electrical specifications Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
IDDLS	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	$V_{SS} - 0.3$	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	—	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	_		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VREFH	Voltage reference output — user trim	1.178	—	1.202	V	
VREFL	Voltage reference output	0.38	0.4	0.42	V	
V _{step}	Voltage reference trim step	_	0.5	_	mV	
V _{tdrift}	Temperature drift (Vmax - Vmin across the full temperature range)	_	5	_	mV	1
Ac	Aging coefficient	_	_	400	uV/yr	
I _{bg}	Bandgap only current	_	_	80	μA	2
I _{Ip}	Low-power buffer current	_	_	0.19	μA	2
I _{hp}	High-power buffer current	—	_	0.5	mA	2
I _{LOAD}	VREF buffer current	_	_	1	mA	3
ΔV_{LOAD}	Load regulation				mV	2, 4
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA		5			
T _{stup}	Buffer startup time	—		20	ms	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	0.5	_	mV	2

Table 31. VREF full-range operating behaviors (continued)

1. For temp range -40 $^\circ C$ to 105 $^\circ C,$ this value is 15 mV

2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.

- 3. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control Register.
- 4. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.

Table 32. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 33. VREF limited-range operating behaviours

Symbol	Description	Min.	Max.	Unit	Notes
VREFH	Voltage reference output with factory trim	1.173	1.225	V	
VREFL	Voltage reference output	0.38	0.42	V	

6.4.4 AFE electrical specifications

6.4.4.1 $\Sigma \triangle$ ADC + PGA specifications Table 34. $\Sigma \triangle$ ADC + PGA specifications

Symbo I	Description	Conditions	Min	Typ ¹	Max	Unit	Notes
f _{Nyq}	Input bandwidth	Normal Mode	1.5	1.5	1.5	kHz	
		Low-Power Mode	1.5	1.5	1.5		
V _{CM}	Input Common Mode Reference		0		0.8	V	
VIN _{diff}	Differential input range	Gain = 1 (PGA ON/OFF) ²		+/- 500		mV	
		Gain = 2		+/- 250		mV	
		Gain = 4		+/- 125		mV	
		Gain = 8		+/- 62		mV	
		Gain = 16		+/- 31		mV	
		Gain = 32		+/- 15		mV	
SNR	Signal to Noise Ratio	Normal Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =1000mV (full	90	92		dB	
		range diff.) • f _{IN} =50Hz; gain=02, common mode=0V, V _{pp} = 500mV (differential ended)	88	90			
		 f_{IN}=50Hz; gain=04, common mode=0V, V_{pp}= 250mV (differential ended) 	82	86			
		 f_{IN}=50Hz; gain=08, common mode=0V, V_{pp}= 125mV (differential ended) 	76	82			
		 f_{IN}=50Hz; gain=16, common mode=0V, V_{pp}= 62mV (differential ended) 	70	78			
		 f_{IN}=50Hz; gain=32, common mode=0V, V_{pp}= 31mV (differential ended) 	64	74			
		Low-Power Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =1000mV (full	82	82		dB	
		 range diff.) f_{IN}=50Hz; gain=02, common mode=0V, V_{pp}= 500mV (differential ended) 	76	78			
		 f_{IN}=50Hz; gain=04, common mode=0V, V_{pp}= 250mV (differential ended) 	70	74			
		 f_{IN}=50Hz; gain=08, common mode=0V, V_{pp}= 125mV (differential ended) 	64	70			
		 f_{IN}=50Hz; gain=16, common mode=0V, V_{pp}= 62mV (differential ended) f_{IN}=50Hz; gain=32, common 	58	66			
		mode=0V, V _{pp} = 31mV (differential ended)	52	62			

Table continues on the next page...

Symbo I	Description	Conditions	Min	Typ ¹	Max	Unit	Notes
SINAD	Signal-to-Noise + Distortion Ratio	Normal Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =500mV (differential ended)		78		dB	
		Low-Power Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =500mV (differential ended)		74		dB	
CMMR	Common Mode Rejection Ratio	 f_{IN}=50Hz; gain=01, common mode=0V, Vid=100 mV f_{IN}=50Hz; gain=32, common mode=0V, V_{id}=100 mV 		70 70		dB	
E _{offset}	Offset Error	Gain=01, V _{pp} =1000 mV (full range diff.)			+/- 5	mV	
∆Offset _{Temp}	Offset Temperature Drift ³	Gain=01, V _{pp} =1000mV (full range diff.)			+/- 25	ppm/ºC	
ΔGain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ⁴	 Gain=01, V_{pp}=500mV (differential ended) Gain=32, V_{pp}=15mV (differential ended) 			+/- 75	ppm/ºC	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
ХТ	Crosstalk (with the input of the affected channel grounded)	Gain=01, V _{id} = 500 mV, f _{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency	Normal Mode	0.03		6.5	MHz	
	Range	Low-Power Mode	0.03		1.6		
I _{DDA_PG} A	Current consumption by PGA (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			2.6	mA	5
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0		
I _{DDA_AD} C	Current Consumption by ADC (each chanel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		

Table 34. ΣΔ ADC + PGA specifications (continued)

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. The full-scale input range in single-ended mode is 0.5Vpp
- 3. Represents combined offset temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.
- 4. Represents combined gain temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks.
- 5. PGA is disabled in low-power modes.

Symbo I	Description	Conditions	Min	Typ ¹	Мах	Unit	Notes
f _{Nyq}	Input bandwidth	Normal Mode	1.5	1.5	1.5	kHz	
		Low-Power Mode	1.5	1.5	1.5		
V _{CM}	Input Common Mode Reference		0		0.8	V	
VIN _{diff}	Input range	Differential		+/- 500		mV	
		Single Ended		+/- 250		mV	
SNR	Signal to Noise Ratio	Normal Mode				dB	
		 f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (differential ended) f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (full range se.) 	88 76	90 78			
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)					
ΔGain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ²	 Gain bypassed Vpp = 500 mV (differential) PGA bypassed Vpp = 500 mV (differential), VCM = 0 V 			55	ppm/ºC	
∆Offset _{Temp}	Offset Temperate Drift - Offset error caused by temperature drifts ³	 Gain bypassed Vpp = 500 mV (differential), VCM = 0 V 			30	ppm/ºC	
SINAD	Signal-to-Noise + Distortion Ratio	Normal Mode • f _{IN} =50Hz; common mode=0V, V _{pp} = 500mV (diff.) • f _{IN} =50Hz; common mode=0V, V _{pp} = 500mV (full range se.)		80		dB	
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)		74			
CMMR	Common Mode Rejection Ratio	 f_{IN}=50Hz; common mode=0V, V_{id}=100 mV 		90		dB	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
XT	Crosstalk	Gain=01, V_{id} = 500 mV, f_{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency Range	Normal Mode	0.03		6.5	MHz	
		Low-Power Mode	0.03		1.6		
I _{DDA_AD} C	Current Consumption by ADC (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		

rempheral operating requirements and behaviors

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Represent combined gain temperature drift of the SD ADC, and Internal 1.2 VREF blocks.
- Represent combined offset temperature drift of the SD ADC, and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.

6.4.4.3 External modulator interface

The external modulator interface on this device comprises of a Clock signal and 1-bit data signal. Depending on the modulator device being used the interface works as follows:

- Clock supplied to external modulator which drives data on rising edge and the KM device captures it on falling edge or next rising edge.
- Clock and data are supplied by external modulator and KM device can sample it on falling edge or next rising edge.

Depending on control bit in AFE, the sampling edge is changed.

6.5 Timers

See General switching specifications.

6.6 Communication interfaces

6.6.1 I2C switching specifications

See General switching specifications.

6.6.2 UART switching specifications

See General switching specifications.

onnensions

6.7.1 LCD electrical characteristics

Table 40. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	—	100	—	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	—	100	—	nF	1
C _{Glass}	LCD glass capacitance	—	2000	8000	pF	2
VIREG	V _{IREG}					3
	HREFSEL=0, RVTRIM=1111	_	1.11	_	V	
	HREFSEL=0, RVTRIM=1000	_	1.01	_	V	
	HREFSEL=0, RVTRIM=0000	_	0.91	_	V	
Δ_{RTRIM}	V _{IREG} TRIM resolution	—	_	3.0	% V _{IREG}	
I _{VIREG}	V _{IREG} current adder — RVEN = 1		1	—	μA	4
I _{RBIAS}	RBIAS current adder	_	15		μA	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	3	_	μA	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					
VLL2	VLL2 voltage					
	• HREFSEL = 0	2.0 – 5%	2.0	_	V	
VLL3	VLL3 voltage					
		3.0 – 5%	3.0		V	

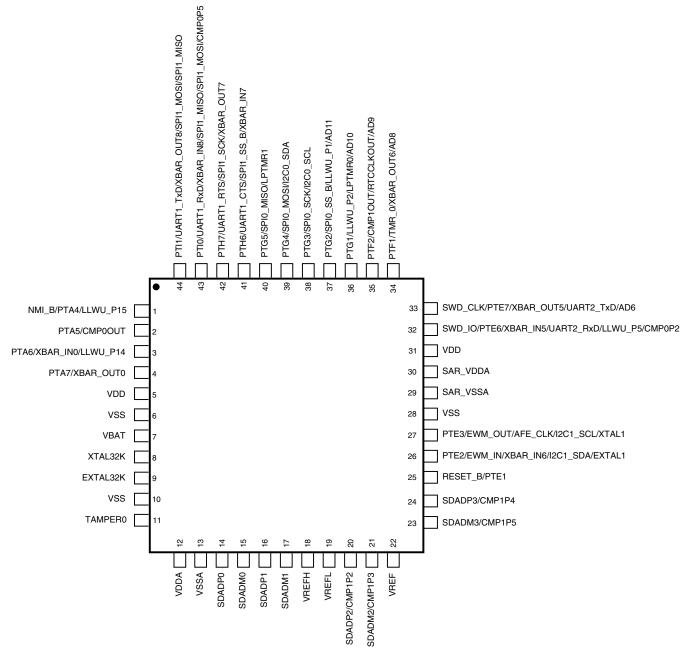
1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V.

4. 2000 pF load LCD, 32 Hz frame frequency.

NOTE


KM family devices have a 1/3 bias controller that works with a 1/3 bias LCD glass. To avoid ghosting, the LCD OFF threshold should be greater than VLL1 level. If the LCD glass has an OFF threshold less than VLL1 level, use the internal VREG mode and generate VLL1 internally using RVTRIM option. This can reduce VLL1 level to allow for a lower OFF threshold LCD glass.

7 Dimensions

100 QFP	64 QFP	44 LGA	DEFAULT	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
18	10	-	Disabled	LCD38	PTB7	AFE_CLK					
19	11	_	Disabled	LCD39	PTC0	UART3_RTS	XBAR_IN1				
20	12	-	Disabled	LCD40/ CMP1P1	PTC1	UART3_CTS					
21	13	-	Disabled	LCD41	PTC2	UART3_TxD	XBAR_OUT1				
22	14	-	Disabled	LCD42/ CMP0P3	PTC3	UART3_RxD	LLWU_P13				
23	-	_	Disabled	LCD43	PTC4						
24	15	7	VBAT	VBAT							
25	16	8	XTAL32K	XTAL32K							
26	17	9	EXTAL32K	EXTAL32K							
27	18	10	VSS	VSS							
28	_	_	TAMPER2	TAMPER2							
29	_	_	TAMPER1	TAMPER1							
30	19	11	TAMPER0	TAMPER0							
31	20	12	VDDA	VDDA							
32	21	13	VSSA	VSSA							
33	22	14	SDADP0	SDADP0							
34	23	15	SDADMO	SDADMO							
35	24	16	SDADP1	SDADP1							
36	25	17	SDADM1	SDADM1							
37	26	18	VREFH	VREFH							
38	27	19	VREFL	VREFL							
39	28	20	SDADP2/ CMP1P2	SDADP2/ CMP1P2							
40	29	21	SDADM2/ CMP1P3	SDADM2/ CMP1P3							
41	30	22	VREF	VREF							
42	-	24	SDADP3/ CMP1P4	SDADP3/ CMP1P4							
43	-	23	SDADM3/ CMP1P5	SDADM3/ CMP1P5							
44	_	-	Disabled	AD0	PTC5	UART0_RTS	LLWU_P12				
45	_	-	Disabled	AD1	PTC6	UARTO_CTS	TMR_1				
46	_	_	Disabled	AD2	PTC7	UART0_TxD	XBAR_OUT2				
47	_	_	Disabled	CMP0P0	PTD0	UART0_RxD	XBAR_IN2	LLWU_P11			
48	31	_	Disabled		PTD1	UART1_TxD	SPI0_SS_B	XBAR_OUT3	TMR_3		
49	32	_	Disabled	CMP0P1	PTD2	UART1_RxD	SPI0_SCK	XBAR_IN3	LLWU_P10		
50	33	_	Disabled		PTD3	UART1_CTS	SPI0_MOSI				
51	34	_	Disabled	AD3	PTD4	UART1_RTS	SPI0_MISO	LLWU_P9			
52	_	_	Disabled	AD4	PTD5	LPTMR2	TMR_0	UART3_CTS			
53	_	_	Disabled	AD5	PTD6	LPTMR1	CMP1OUT	UART3_RTS	LLWU_P8		
54	_	_	Disabled	CMP0P4	PTD7	I2C0_SCL	XBAR_IN4	UART3_RxD	LLWU_P7		

NOTE VSS also connects to flag on 44 LGA.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev4	07/2013	Editorial changes through out the document.
		Values of table "Power mode transition operating behaviors" updated.
		In table "Power consumption operating behaviors": • Row I _{DD_RUN} value updated • Row I _{DD_WAIT} value updated • Row I _{DD_VLPR} value updated • Row I _{DD_VLPR} value updated • Row I _{DD_VLPS} value updated • Row I _{DD_VLPS} value updated • Row I _{DD_VLLS3} value updated • Row I _{DD_VLLS2} value updated • Row I _{DD_VLLS1} value updated • Row I _{DD_VLLS0} value updated • Row I _{DD_VLLS0} value updated • New row "I _{DD_VLLS0} with POR enabled" added. Values of table "General switching specifications" updated. In table "VREF full-range operating behaviors": • Row V _{tdrift} : value updated and footnote added.
Devis	10/0010	Row I _{RBIAS} : values updated.
Rev5	10/2013	Table: Obtaining package dimensions updated
Rev6	11/2013	Updated Section Fields:Row: Temperature range values updated.
Rev7	1/2014	 Updated Table: Power consumption operating behaviors Table: Power consumption operating behaviors All rows with temperature 110 °C updated to 105 °C Footnote 9 updated: An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC. Row I_{DD_VLPR}: Minimum value updated Row I_{DD_VLLS1}: Typ value updated Row I_{DD_VLLS0} with POR circuit disabled: Typ value updated Row I_{DD_VLLS0} with POR circuit enabled: Typ value updated Table: EMC radiated emissions operating behaviors All TBD updated Footnote 2: f_{osc} value updated to 10 MHz Table: ADC + PGA specifications Row CMMR: V_{id} value updated Table: ADC standalone specifications Row CMMR: V_{id} value updated

Table 41. Revision History (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are the registered trademarks of ARM Limited.

©2011-2014 Freescale Semiconductor, Inc.

Document Number MKMxxZxxCxx5 Revision 7, 01/2014

