



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                    |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                       |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 50MHz                                                                  |
| Connectivity               | I²C, SPI, UART/USART                                                   |
| Peripherals                | DMA, WDT                                                               |
| Number of I/O              | 20                                                                     |
| Program Memory Size        | 128KB (128K x 8)                                                       |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 16K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                           |
| Data Converters            | A/D 5x16b, 4x24b                                                       |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 44-VFLGA Exposed Pad                                                   |
| Supplier Device Package    | 44-MAPLGA (5x5)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm14z128chh5r |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





# 4.4 Voltage and current operating ratings

| Symbol               | Description                                                               | Min.                  | Max.                   | Unit |
|----------------------|---------------------------------------------------------------------------|-----------------------|------------------------|------|
| V <sub>DD</sub>      | Digital supply voltage                                                    | -0.3                  | 3.6                    | V    |
| V <sub>DIO</sub>     | Digital input voltage (except RESET, EXTAL, and XTAL)                     | -0.3                  | V <sub>DD</sub> + 0.3  | V    |
| V <sub>DTamper</sub> | Tamper input voltage                                                      | -0.3                  | V <sub>BAT</sub> + 0.3 | V    |
| V <sub>AIO</sub>     | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage                | -0.3                  | V <sub>DD</sub> + 0.3  | V    |
| ۱ <sub>D</sub>       | Instantaneous maximum current single pin limit (applies to all port pins) | -25                   | 25                     | mA   |
| V <sub>DDA</sub>     | Analog supply voltage                                                     | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3  | V    |
| V <sub>BAT</sub>     | RTC battery supply voltage                                                | -0.3                  | 3.6                    | V    |

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

# 5 General

## 5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is  $V_{IL}$  +  $(V_{IH} - V_{IL})/2$ .

Figure 1. Input signal measurement reference

# 5.2 Nonswitching electrical specifications



Table 6. Power consumption operating behaviors (continued)

| Symbol               | Description                                                             | Min. | Тур.             | Max.           | Unit           | Notes |
|----------------------|-------------------------------------------------------------------------|------|------------------|----------------|----------------|-------|
| I <sub>DD_VBAT</sub> | Average current when VDD is OFF and LFSR and Tamper clocks set to 2 Hz. |      |                  |                |                | 8, 9  |
|                      | • @ 3.0 V<br>• 25 °C<br>• -40 °C<br>• 105 °C                            | _    | 1.3 <sup>7</sup> | 3<br>2.5<br>16 | μΑ<br>μΑ<br>μΑ |       |

- 1. See AFE specification for IDDA.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FBE mode. All peripheral clocks disabled.
- 3. Should be reduced by 500  $\mu$ A.
- 4. 2 MHz core, system, bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing while (1) loop from flash.
- 5. 2 MHz core, system and bus clock, and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing while (1) loop from flash.
- 2 MHz core, system and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. No flash accesses; some activity on DMA & RAM assumed.
- 7. Current consumption will vary with number of CPU accesses done and is dependent on the frequency of the accesses and frequency of bus clock. Number of CPU accesses should be optimized to get optimal current value.
- 8. Includes 32 kHz oscillator current and RTC operation.
- 9. An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC.

### 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

| Symbol              | Description                        | Frequency<br>band (MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|-------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50                 | 14   | dBµV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150                  | 16   | dBµV | •     |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500                 | 12   | dBµV | •     |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500-1000                | 5    | dBµV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15–1000               | М    | —    | 2, 3  |

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2.  $V_{DD}$  = 3.3 V,  $T_A$  = 25 °C,  $f_{OSC}$  = 10 MHz (crystal),  $f_{SYS}$  = 50 MHz,  $f_{BUS}$  = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

# 5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I<sup>2</sup>C signals.

| 103 |
|-----|
| 1   |
| 2   |
| 2   |
| 3   |
|     |
|     |
|     |
|     |
|     |
|     |
| 2   |

Table 10. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. Only PTC2 has high drive capability and load is 75 pF, other pins load (low drive) is 25 pF.

# 5.4 Thermal specifications

## 5.4.1 Thermal operating requirements

#### Table 11. Thermal operating requirements

| Symbol         | Description              | Min. | Max. | Unit |
|----------------|--------------------------|------|------|------|
| TJ             | Die junction temperature | -40  | 105  | °C   |
| T <sub>A</sub> | Ambient temperature      | -40  | 85   | °C   |

## 5.4.2 Thermal attributes

| Board type           | Symbol            | Description                                                                                                          | 100 LQFP | 44 LGA | Unit | Notes |
|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|----------|--------|------|-------|
| Single-layer<br>(1s) | R <sub>θJA</sub>  | Thermal<br>resistance,<br>junction to<br>ambient (natural<br>convection)                                             | 63       | 95     | °C/W | 1     |
| Four-layer<br>(2s2p) | R <sub>θJA</sub>  | Thermal<br>resistance,<br>junction to<br>ambient (natural<br>convection)                                             | 50       | 50     | °C/W | 1     |
| Single-layer<br>(1s) | R <sub>ejma</sub> | Thermal<br>resistance,<br>junction to<br>ambient (200 ft./<br>min. air speed)                                        | 53       | 79     | °C/W | 1     |
| Four-layer<br>(2s2p) | R <sub>ejma</sub> | Thermal<br>resistance,<br>junction to<br>ambient (200 ft./<br>min. air speed)                                        | 44       | 45     | °C/W | 1     |
|                      | R <sub>0JB</sub>  | Thermal<br>resistance,<br>junction to<br>board                                                                       | 36       | 35     | °C/W | 2     |
| -                    | R <sub>θJC</sub>  | Thermal<br>resistance,<br>junction to case                                                                           | 18       | 28     | °C/W | 3     |
| _                    | Ψ <sub>JT</sub>   | Thermal<br>characterization<br>parameter,<br>junction to<br>package top<br>outside center<br>(natural<br>convection) | 3        | 4      | °C/W | 4     |

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

# 6 Peripheral operating requirements and behaviors



**Case 2:** Clock is going Out and Data is coming In (XBAR ports timed with respect to generated clock defined at the XBAR out ports)

| Symbol       | Description            | Value | Unit | Notes |
|--------------|------------------------|-------|------|-------|
| AFE CLK      | Frequency of operation | 6.2   | MHz  |       |
| Inputs, tSUI | Data setup time        | 36    | ns   |       |
| inputs,tHI   | Data hold time         | 0     | ns   |       |

Table 15. AFE switching characteristics (2.7V-3.6V)

### AFE switching characteristics at (1.7 V-3.6 V)

**Case1:** Clock is coming In and Data is also coming In (XBAR ports timed with respect to AFE clock defined at pad ptb[7] and pte[3])

Table 16. AFE switching characteristics (1.7 V-3.6 V)

| Symbol       | Description            | Value | Unit | Notes |
|--------------|------------------------|-------|------|-------|
| AFE CLK      | Frequency of operation | 10    | MHz  |       |
| Inputs, tSUI | Data setup time        | 5.1   | ns   |       |
| inputs,tHI   | Data hold time         | 0     | ns   |       |

Case 2: Clock is going Out and Data is coming In (XBAR ports timed with respect to generated clock defined at XBAR out ports)

 Table 17. AFE switching characteristics (1.7 V-3.6 V)

| Symbol       | Description            | Value | Unit | Notes |
|--------------|------------------------|-------|------|-------|
| AFE CLK      | Frequency of operation | 6.2   | MHz  |       |
| Inputs, tSUI | Data setup time        | 54    | ns   |       |
| inputs,tHI   | Data hold time         | 0     | ns   |       |

# 6.2 Clock modules

## 6.2.1 MCG specifications

Table 18. MCG specifications

| Symbol               | Description                                                                          | Min. | Тур.   | Max. | Unit | Notes |
|----------------------|--------------------------------------------------------------------------------------|------|--------|------|------|-------|
| f <sub>ints_ft</sub> | Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C | _    | 32.768 | —    | kHz  |       |

Table continues on the next page...



| Symbol                   | Description                                                    |                                                                  | Min.  | Тур.     | Max.              | Unit              | Notes    |  |  |  |
|--------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------|----------|-------------------|-------------------|----------|--|--|--|
| $\Delta f_{ints_t}$      | Total deviation of i<br>(slow clock) over v                    | nternal reference frequency<br>voltage and temperature           | —     | ± 4      | ± 15              | %                 |          |  |  |  |
| f <sub>ints_t</sub>      | Internal reference<br>trimmed                                  | frequency (slow clock) — user                                    | 31.25 |          | 33.4234           | kHz               |          |  |  |  |
| $\Delta_{fdco\_res\_t}$  | Resolution of trimr<br>frequency at fixed<br>using SCTRIM and  | ned average DCO output<br>voltage and temperature —<br>d SCFTRIM | _     | ± 0.3    | ± 0.6             | %f <sub>dco</sub> | 1        |  |  |  |
| Δf <sub>dco_t</sub>      | Total deviation of t<br>frequency over vol                     | rimmed average DCO output<br>Itage and temperature               | —     |          |                   | %f <sub>dco</sub> | 1        |  |  |  |
| ∆f <sub>dco_t</sub>      | Total deviation of t<br>frequency over fixe<br>range of 0–70°C | _                                                                |       |          | %f <sub>dco</sub> | 1                 |          |  |  |  |
| f <sub>intf_ft</sub>     | Internal reference<br>factory trimmed at                       |                                                                  |       | 4        | MHz               |                   |          |  |  |  |
| $\Delta f_{intf_t}$      | Total deviation of i (fast clock) over vo                      | —                                                                | ± 10  | ± 15     | %                 |                   |          |  |  |  |
| f <sub>intf_t</sub>      | Internal reference<br>trimmed at nomina                        | 3                                                                |       | 5        | MHz               |                   |          |  |  |  |
| f <sub>loc_low</sub>     | Loss of external cl<br>RANGE = 00                              | (3/5) x<br>f <sub>ints_t</sub>                                   |       | _        | kHz               |                   |          |  |  |  |
| f <sub>loc_high</sub>    | Loss of external cl<br>RANGE = 01, 10,                         | (16/5) x<br>f <sub>ints_t</sub>                                  |       | _        | kHz               |                   |          |  |  |  |
|                          | Į                                                              | FI                                                               | _L    | <u> </u> |                   |                   | <u> </u> |  |  |  |
| f <sub>dco</sub>         | DCO output                                                     | Low-range (DRS=00)                                               | 20    | 20.97    | 22                | MHz               | 2, 3     |  |  |  |
|                          | frequency range                                                | $640 \times f_{ints_t}$                                          |       |          |                   |                   |          |  |  |  |
|                          |                                                                | Mid-range (DRS=01)                                               | 40    | 41.94    | 45                | MHz               |          |  |  |  |
|                          |                                                                | $1280 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
|                          |                                                                | Mid-high range (DRS=10)                                          | 60    | 62.91    | 67                | MHz               |          |  |  |  |
|                          |                                                                | $1920 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
|                          |                                                                | High-range (DRS=11)                                              | 80    | 83.89    | 90                | MHz               |          |  |  |  |
|                          |                                                                | $2560 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
| f <sub>dco_t_DMX32</sub> | DCO output                                                     | Low-range (DRS=00)                                               | —     | 23.99    | -                 | MHz               | 4, 5, 6  |  |  |  |
|                          | frequency                                                      | $732 \times f_{ints_t}$                                          |       |          |                   |                   |          |  |  |  |
|                          |                                                                | Mid-range (DRS=01)                                               | —     | 47.97    | -                 | MHz               |          |  |  |  |
|                          |                                                                | $1464 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
|                          |                                                                | Mid-high range (DRS=10)                                          | —     | 71.99    | -                 | MHz               |          |  |  |  |
|                          |                                                                | $2197 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
|                          |                                                                | High-range (DRS=11)                                              | _     | 95.98    | -                 | MHz               |          |  |  |  |
|                          |                                                                | $2929 \times f_{ints_t}$                                         |       |          |                   |                   |          |  |  |  |
| J <sub>cyc_fll</sub>     | FLL period jitter                                              |                                                                  | —     | 70       | 140               | ps                | 7        |  |  |  |
| t <sub>fll_acquire</sub> | FLL target frequer                                             | cy acquisition time                                              |       |          | 1                 | ms                | 8        |  |  |  |
|                          | PLL                                                            |                                                                  |       |          |                   |                   |          |  |  |  |

Table 18. MCG specifications (continued)

Table continues on the next page...



| Symbol                | Description                                 | Min.     | Тур.   | Max.                   | Unit | Notes |
|-----------------------|---------------------------------------------|----------|--------|------------------------|------|-------|
| f <sub>vco</sub>      | VCO operating frequency                     | 11.71875 | 12.288 | 14.648437              | MHz  |       |
|                       |                                             |          |        | 5                      |      |       |
| I <sub>pll</sub>      | PLL operating current<br>• IO 3.3 V current | _        | 300    | _                      | μA   | 9     |
|                       | Max core voltage current                    |          | 100    |                        |      |       |
| f <sub>pll_ref</sub>  | PLL reference frequency range               | 31.25    | 32.768 | 39.0625                | kHz  |       |
| J <sub>cyc_pll</sub>  | PLL period jitter (RMS)                     |          |        |                        |      | 10    |
|                       | • f <sub>vco</sub> = 12 MHz                 |          |        | 700                    | ps   |       |
| D <sub>lock</sub>     | Lock entry frequency tolerance              | ± 1.49   | —      | ± 2.98                 | %    | 11    |
| D <sub>unl</sub>      | Lock exit frequency tolerance               | ± 4.47   | —      | ± 5.97                 | %    |       |
| t <sub>pll_lock</sub> | Lock detector detection time                | —        | —      | 150 × 10 <sup>-6</sup> | s    | 12    |
|                       |                                             |          |        | + 1075(1/              |      |       |
|                       |                                             |          |        | f <sub>pll_ref</sub> ) |      |       |

#### Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- 12. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

## 6.2.2 Oscillator electrical specifications

#### 6.2.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

| Symbol          | Description    | Min. | Тур. | Max. | Unit | Notes |
|-----------------|----------------|------|------|------|------|-------|
| V <sub>DD</sub> | Supply voltage | 1.71 |      | 3.6  | V    |       |

Table continues on the next page...



| able 22. 32 kHz oscillator frequency specifications (continued | ator frequency specifications (continued) |
|----------------------------------------------------------------|-------------------------------------------|
|----------------------------------------------------------------|-------------------------------------------|

| Symbol                  | Description                               | Min. | Тур. | Max.             | Unit | Notes |
|-------------------------|-------------------------------------------|------|------|------------------|------|-------|
| t <sub>start</sub>      | Crystal start-up time                     | —    | 1000 | —                | ms   | 1     |
| V <sub>ec_extal32</sub> | Externally provided input clock amplitude | 700  | —    | V <sub>BAT</sub> | mV   | 2,3   |

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and  $V_{IH}$  and  $V_{IL}$  specifications do not apply. The voltage of the applied clock must be within the range of  $V_{SS}$  to  $V_{BAT}$ .

### NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

## 6.3 Memories and memory interfaces

## 6.3.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

## 6.3.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                | Description                        | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>   | Longword Program high-voltage time | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub> | Sector Erase high-voltage time     | —    | 13   | 113  | ms   | 1     |
| t <sub>hversall</sub> | Erase All high-voltage time        | —    | 52   | 452  | ms   | 1     |

Table 23. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

#### 6.3.1.2 Flash timing specifications — commands Table 24. Flash command timing specifications

| Symbol                | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------|------|------|------|------|-------|
| t <sub>rd1sec1k</sub> | Read 1s Section execution time (flash sector) | —    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>   | Program Check execution time —                |      | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>   | Read Resource execution time                  |      |      | 30   | μs   | 1     |

Table continues on the next page...



### 6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

| Symbol            | Description                               | Conditions                                                                                    | Min.              | Typ. <sup>1</sup> | Max.              | Unit | Notes |
|-------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage                            | Absolute                                                                                      | 1.71              | _                 | 3.6               | V    |       |
| $\Delta V_{DDA}$  | Supply voltage                            | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                            | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high                |                                                                                               | 1.13              | V <sub>DDA</sub>  | V <sub>DDA</sub>  | V    |       |
| V <sub>REFL</sub> | ADC reference voltage low                 |                                                                                               | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V    |       |
| V <sub>ADIN</sub> | Input voltage                             |                                                                                               | V <sub>REFL</sub> | —                 | V <sub>REFH</sub> | V    |       |
| C <sub>ADIN</sub> | Input capacitance                         | 16-bit mode                                                                                   | _                 | 8                 | 10                | pF   |       |
|                   |                                           | <ul> <li>8-bit / 10-bit / 12-bit<br/>modes</li> </ul>                                         |                   | 4                 | 5                 |      |       |
| R <sub>ADIN</sub> | Input series resistance                   |                                                                                               | _                 | 2                 | 5                 | kΩ   |       |
| R <sub>AS</sub>   | Analog source<br>resistance<br>(external) | 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz                                                     | _                 | _                 | 5                 | kΩ   | 3     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | ≤ 12-bit mode                                                                                 | 1.0               |                   | 18.0              | MHz  | 4     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | 16-bit mode                                                                                   | 2.0               |                   | 12.0              | MHz  | 4     |
| C <sub>rate</sub> | ADC conversion                            | ≤ 12-bit modes                                                                                |                   |                   |                   |      | 5     |
|                   | rate                                      | No ADC hardware averaging                                                                     | 20.000            | _                 | 818.330           | Ksps |       |
|                   |                                           | Continuous conversions<br>enabled, subsequent<br>conversion time                              |                   |                   |                   |      |       |
| C <sub>rate</sub> | ADC conversion                            | 16-bit mode                                                                                   |                   |                   |                   |      | 5     |
|                   | rate                                      | No ADC hardware averaging<br>Continuous conversions<br>enabled, subsequent<br>conversion time | 37.037            |                   | 461.467           | Ksps |       |

1. Typical values assume  $V_{DDA}$  = 3.0 V, Temp = 25 °C,  $f_{ADCK}$  = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8  $\Omega$  analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



| Symbol             | Description                                         | Min. | Тур. | Max. | Unit             |
|--------------------|-----------------------------------------------------|------|------|------|------------------|
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1, PMODE=0)   | 80   | 250  | 600  | ns               |
|                    | Analog comparator initialization delay <sup>2</sup> | —    | —    | 40   | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                   | _    | 7    | —    | μA               |
| INL                | 6-bit DAC integral non-linearity                    | -0.5 | —    | 0.5  | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                | -0.3 |      | 0.3  | LSB              |

#### Table 29. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to  $V_{DD}$ –0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP\_DACCR[DACEN], CMP\_DACCR[VRSEL], CMP\_DACCR[VOSEL], CMP\_MUXCR[PSEL], and CMP\_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB =  $V_{reference}/64$



Figure 4. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)



| Symbol              | Description                                                       | Min.  | Тур. | Max.  | Unit  | Notes |
|---------------------|-------------------------------------------------------------------|-------|------|-------|-------|-------|
| VREFH               | Voltage reference output — user trim                              | 1.178 | —    | 1.202 | V     |       |
| VREFL               | Voltage reference output                                          | 0.38  | 0.4  | 0.42  | V     |       |
| V <sub>step</sub>   | Voltage reference trim step                                       | _     | 0.5  | —     | mV    |       |
| V <sub>tdrift</sub> | Temperature drift (Vmax - Vmin across the full temperature range) |       | 5    | _     | mV    | 1     |
| Ac                  | Aging coefficient                                                 | _     | _    | 400   | uV/yr |       |
| I <sub>bg</sub>     | Bandgap only current                                              | _     | _    | 80    | μA    | 2     |
| I <sub>lp</sub>     | Low-power buffer current                                          | _     | _    | 0.19  | μA    | 2     |
| I <sub>hp</sub>     | High-power buffer current                                         | _     | _    | 0.5   | mA    | 2     |
| I <sub>LOAD</sub>   | VREF buffer current                                               | —     | _    | 1     | mA    | 3     |
| $\Delta V_{LOAD}$   | Load regulation                                                   |       |      |       | mV    | 2, 4  |
|                     | • current = + 1.0 mA                                              | _     | 2    | _     |       |       |
|                     | • current = - 1.0 mA                                              |       | 5    |       |       |       |
| T <sub>stup</sub>   | Buffer startup time                                               | —     | —    | 20    | ms    |       |
| V <sub>vdrift</sub> | Voltage drift (Vmax -Vmin across the full voltage range)          |       | 0.5  | _     | mV    | 2     |

#### Table 31. VREF full-range operating behaviors (continued)

1. For temp range -40  $^\circ C$  to 105  $^\circ C,$  this value is 15 mV

2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.

- 3. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control Register.
- 4. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.

#### Table 32. VREF limited-range operating requirements

| Symbol         | Description | Min. | Max. | Unit | Notes |
|----------------|-------------|------|------|------|-------|
| T <sub>A</sub> | Temperature | 0    | 50   | °C   |       |

#### Table 33. VREF limited-range operating behaviours

| Symbol | Description                                      | Min.  | Max.  | Unit | Notes |
|--------|--------------------------------------------------|-------|-------|------|-------|
| VREFH  | Voltage reference<br>output with factory<br>trim | 1.173 | 1.225 | V    |       |
| VREFL  | Voltage reference<br>output                      | 0.38  | 0.42  | V    |       |

## 6.4.4 AFE electrical specifications



# 

| Symbo<br>I                 | Description                                                                           | Conditions                                                                                                                                                                                                  | Min  | Typ <sup>1</sup> | Мах  | Unit   | Notes |
|----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|------|--------|-------|
| f <sub>Nyq</sub>           | Input bandwidth                                                                       | Normal Mode                                                                                                                                                                                                 | 1.5  | 1.5              | 1.5  | kHz    |       |
|                            |                                                                                       | Low-Power Mode                                                                                                                                                                                              | 1.5  | 1.5              | 1.5  |        |       |
| V <sub>CM</sub>            | Input Common Mode<br>Reference                                                        |                                                                                                                                                                                                             | 0    |                  | 0.8  | V      |       |
| VIN <sub>diff</sub>        | Input range                                                                           | Differential                                                                                                                                                                                                |      | +/- 500          |      | mV     |       |
|                            |                                                                                       | Single Ended                                                                                                                                                                                                |      | +/- 250          |      | mV     |       |
| SNR                        | Signal to Noise Ratio                                                                 | Normal Mode                                                                                                                                                                                                 |      |                  |      | dB     |       |
|                            |                                                                                       | <ul> <li>f<sub>IN</sub>=50Hz; common mode=0V,<br/>V<sub>pp</sub>= 500mV (differential<br/>ended)</li> <li>f<sub>IN</sub>=50Hz; common mode=0V,<br/>V = 500mV (full range on)</li> </ul>                     | 88   | 90               |      |        |       |
|                            |                                                                                       | $V_{pp} = 500mV \text{ (full range se.)}$ Low-Power Mode • $f_{IN} = 50Hz$ ; common mode=0V, $V_{pp} = 500mV \text{ (diff.)}$ • $f_{IN} = 50Hz$ ; common mode=0V, $V_{pp} = 500mV \text{ (full range se.)}$ | 76   | 70               |      |        |       |
| ∆Gain <sub>Te</sub><br>mp  | Gain Temperate Drift - Gain<br>error caused by<br>temperature drifts <sup>2</sup>     | <ul> <li>Gain bypassed Vpp = 500 mV<br/>(differential)</li> <li>PGA bypassed Vpp = 500 mV<br/>(differential), VCM = 0 V</li> </ul>                                                                          |      |                  | 55   | ppm/ºC |       |
| ∆Offset<br><sub>Temp</sub> | Offset Temperate Drift -<br>Offset error caused by<br>temperature drifts <sup>3</sup> | <ul> <li>Gain bypassed Vpp = 500 mV<br/>(differential), VCM = 0 V</li> </ul>                                                                                                                                |      |                  | 30   | ppm/ºC |       |
| SINAD                      | Signal-to-Noise + Distortion<br>Ratio                                                 | Normal Mode<br>• f <sub>IN</sub> =50Hz; common mode=0V,<br>V <sub>pp</sub> = 500mV (diff.)<br>• f <sub>IN</sub> =50Hz; common mode=0V,<br>V <sub>pp</sub> = 500mV (full range se.)                          |      | 80               |      | dB     |       |
|                            |                                                                                       | Low-Power Mode<br>• f <sub>IN</sub> =50Hz; common mode=0V,<br>V <sub>pp</sub> =500mV (diff.)<br>• f <sub>IN</sub> =50Hz; common mode=0V,<br>V <sub>pp</sub> =500mV (full range se.)                         |      | 74               |      |        |       |
| CMMR                       | Common Mode Rejection<br>Ratio                                                        | • f <sub>IN</sub> =50Hz; common mode=0V,<br>V <sub>id</sub> =100 mV                                                                                                                                         |      | 90               |      | dB     |       |
| PSRR <sub>A</sub><br>c     | AC Power Supply Rejection Ratio                                                       | Gain=01, VCC = 3V $\pm$ 100mV, f <sub>IN</sub> = 50 Hz                                                                                                                                                      |      | 60               |      | dB     |       |
| ХТ                         | Crosstalk                                                                             | Gain=01, $V_{id}$ = 500 mV, $f_{IN}$ = 50 Hz                                                                                                                                                                |      |                  | -100 | dB     |       |
| f <sub>MCLK</sub>          | Modulator Clock Frequency                                                             | Normal Mode                                                                                                                                                                                                 | 0.03 |                  | 6.5  | MHz    |       |
|                            | Range                                                                                 | Low-Power Mode                                                                                                                                                                                              | 0.03 |                  | 1.6  |        |       |
| I <sub>DDA_AD</sub><br>C   | Current Consumption by ADC (each channel)                                             | Normal Mode (f <sub>MCLK</sub> = 6.144 MHz,<br>OSR= 2048)                                                                                                                                                   |      |                  | 1.4  | mA     |       |
|                            |                                                                                       | Low-Power Mode ( $f_{MCLK} = 0.768MHz$ , OSR= 256)                                                                                                                                                          |      |                  | 0.5  |        |       |



- Typical values assume VDDA = 3.0 V, Temp = 25°C, f<sub>MCLK</sub> = 6.144 MHz, OSR = 2048 for Normal mode and f<sub>MCLK</sub> = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Represent combined gain temperature drift of the SD ADC, and Internal 1.2 VREF blocks.
- Represent combined offset temperature drift of the SD ADC, and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.

## 6.4.4.3 External modulator interface

The external modulator interface on this device comprises of a Clock signal and 1-bit data signal. Depending on the modulator device being used the interface works as follows:

- Clock supplied to external modulator which drives data on rising edge and the KM device captures it on falling edge or next rising edge.
- Clock and data are supplied by external modulator and KM device can sample it on falling edge or next rising edge.

Depending on control bit in AFE, the sampling edge is changed.

## 6.5 Timers

See General switching specifications.

## 6.6 Communication interfaces

## 6.6.1 I2C switching specifications

See General switching specifications.

## 6.6.2 UART switching specifications

See General switching specifications.



## 6.6.3 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following table provides some reference values to be met on SoC.

| Description                                                                  | Min.       | Max.         | Unit       | Notes |
|------------------------------------------------------------------------------|------------|--------------|------------|-------|
| Frequency of operation (F <sub>sys</sub> )                                   | _          | 50           | MHz        | 1     |
| SCK frequency<br>• Master<br>• Slave                                         | 2          | 12.5<br>12.5 | MHz<br>Mhz | 3     |
| SCK Duty Cycle                                                               | 50%        | _            | _          |       |
| Data Setup Time (inputs, tSUI) <ul> <li>Master</li> <li>Slave</li> </ul>     | 25<br>3    |              | ns         |       |
| Input Data Hold Time (inputs, tHI) <ul> <li>Master</li> <li>Slave</li> </ul> | 0          |              | ns         |       |
| Data hold time (outputs, tHO)<br>• Master<br>• Slave                         | 0          |              | ns         |       |
| Data Valid Out Time (after SCK edge, tDVO)<br>• Master<br>• Slave            | 13<br>28   |              | ns         |       |
| Rise time input<br>• Master<br>• Slave                                       | 1          |              | ns         |       |
| Fall time input<br>• Master<br>• Slave                                       | 1          |              | ns         |       |
| Rise time output<br>• Master<br>• Slave                                      | 8.9<br>8.9 |              | ns         |       |
| Fall time output<br>• Master<br>• Slave                                      | 7.8<br>7.8 |              | ns         |       |

Table 36. SPI switching characteristics at 2.7 V (2.7 - 3.6)

1. SPI modules will work on core clock.

2. F<sub>sys</sub>/(Max Divider Value from registers)

3. F<sub>SYS</sub>/2 in Master mode and F<sub>SYS</sub>/4 in Slave mode. F<sub>SYS</sub>/4 in Master as well as Slave Modes, where F<sub>SYS</sub>=50Mhz

## NOTE

The values assumed for input transition and output load are: Input transition = 1 ns Output load = 50 pF

#### Table 37. SPI switching characteristics at 1.7 V (1.7 - 3.6)

| Description                                | Min. | Max. | Unit | Notes |
|--------------------------------------------|------|------|------|-------|
| Frequency of operation (F <sub>sys</sub> ) |      | 50   | MHz  |       |

Table continues on the next page ...



onnensions

## 6.7.1 LCD electrical characteristics

Table 40. LCD electricals

| Symbol             | Description                                                                           | Min.     | Тур. | Max. | Unit                | Notes |
|--------------------|---------------------------------------------------------------------------------------|----------|------|------|---------------------|-------|
| f <sub>Frame</sub> | LCD frame frequency                                                                   | 28       | 30   | 58   | Hz                  |       |
| C <sub>LCD</sub>   | LCD charge pump capacitance — nominal value                                           | _        | 100  | —    | nF                  | 1     |
| C <sub>BYLCD</sub> | LCD bypass capacitance — nominal value                                                | _        | 100  | —    | nF                  | 1     |
| C <sub>Glass</sub> | LCD glass capacitance                                                                 | _        | 2000 | 8000 | pF                  | 2     |
| VIREG              | V <sub>IREG</sub>                                                                     |          |      |      |                     | 3     |
|                    | <ul> <li>HREFSEL=0, RVTRIM=1111</li> </ul>                                            | _        | 1.11 | _    | V                   |       |
|                    | HREFSEL=0, RVTRIM=1000                                                                | _        | 1.01 | _    | V                   |       |
|                    | HREFSEL=0, RVTRIM=0000                                                                | _        | 0.91 | _    | v                   |       |
|                    |                                                                                       |          |      |      |                     |       |
| Δ <sub>RTRIM</sub> | V <sub>IREG</sub> TRIM resolution                                                     | _        | _    | 3.0  | % V <sub>IREG</sub> |       |
| I <sub>VIREG</sub> | V <sub>IREG</sub> current adder — RVEN = 1                                            | _        | 1    | _    | μA                  | 4     |
| I <sub>RBIAS</sub> | RBIAS current adder                                                                   |          | 15   |      | uА                  |       |
|                    | <ul> <li>LADJ = 10 or 11 — High load (LCD glass<br/>capacitance ≤ 8000 pF)</li> </ul> | _        | 3    | _    | μA                  |       |
|                    | <ul> <li>LADJ = 00 or 01 — Low load (LCD glass<br/>capacitance ≤ 2000 pF)</li> </ul>  |          |      |      |                     |       |
| VLL2               | VLL2 voltage                                                                          |          |      |      |                     |       |
|                    | • HREFSEL = 0                                                                         | 2.0 – 5% | 2.0  | _    | V                   |       |
| VLL3               | VLL3 voltage                                                                          |          |      |      |                     |       |
|                    |                                                                                       | 3.0 – 5% | 3.0  | —    | V                   |       |

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD\_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3.  $V_{IREG}$  maximum should never be externally driven to any level other than  $V_{DD}$  - 0.15 V.

4. 2000 pF load LCD, 32 Hz frame frequency.

#### NOTE

KM family devices have a 1/3 bias controller that works with a 1/3 bias LCD glass. To avoid ghosting, the LCD OFF threshold should be greater than VLL1 level. If the LCD glass has an OFF threshold less than VLL1 level, use the internal VREG mode and generate VLL1 internally using RVTRIM option. This can reduce VLL1 level to allow for a lower OFF threshold LCD glass.

# 7 Dimensions



| 100<br>QFP | 64<br>QFP | 44<br>LGA | DEFAULT  | ALT0  | ALT1 | ALT2 | ALT3 | ALT4 | ALT5 | ALT6 | ALT7 |
|------------|-----------|-----------|----------|-------|------|------|------|------|------|------|------|
| 93         | 57        | _         | Disabled | LCD21 | PTI2 |      |      |      |      |      |      |
| 94         | 58        | _         | Disabled | LCD22 | PTI3 |      |      |      |      |      |      |
| 95         | 59        | _         | VSS      | VSS   |      |      |      |      |      |      |      |
| 96         | 60        | _         | VLL3     | VLL3  |      |      |      |      |      |      |      |
| 97         | 61        | _         | VLL2     | VLL2  |      |      |      |      |      |      |      |
| 98         | 62        | _         | VLL1     | VLL1  |      |      |      |      |      |      |      |
| 99         | 63        | -         | VCAP2    | VCAP2 |      |      |      |      |      |      |      |
| 100        | 64        | _         | VCAP1    | VCAP1 |      |      |      |      |      |      |      |

# 8.2 KM Family Pinouts

## 8.2.1 100-pin LQFP

The following figure represents the KM 100 LQFP pinouts:





Figure 6. 100-pin LQFP Pinout Diagram

## 8.2.2 64-pin LQFP

The following figure represents 64-pin LQFP pinouts:



| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                   |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev1     | 10/2012 | Initial release                                                                                                                                                                                                                       |
| Rev2     | 01/2013 | Updated part numbers                                                                                                                                                                                                                  |
|          |         | Updated Table: Power mode transition operating behaviors                                                                                                                                                                              |
|          |         | Updated Table: Power consumption operating behaviors. Included readings for temperature - 40 °C, 25 °C, and 85 °C                                                                                                                     |
|          |         | Updated AFE Modulator clock maximum value in table "Device clock specifications"                                                                                                                                                      |
|          |         | Updated Table: General switching specifications                                                                                                                                                                                       |
|          |         | Updated Table: Thermal operating requirements                                                                                                                                                                                         |
|          |         | Updated Table: SWD switching specifications                                                                                                                                                                                           |
|          |         | Added Table: AFE (Analog Frontend ) Switching characteristics                                                                                                                                                                         |
|          |         | Updated Table: Oscillator DC electrical specifications                                                                                                                                                                                |
|          |         | Updated Table: $\Sigma\Delta$ ADC + PGA specifications                                                                                                                                                                                |
|          |         | <ul> <li>Under section SPI switching specification,</li> <li>Table SPI timing renamed to SPI switching characteristics at 2.7 V (2.7 - 3.6)</li> <li>Modified row: "Data Hold Time (inputs, tHI)" to "Input Data Hold Time</li> </ul> |
|          |         | <ul> <li>(inputs, tHI)"</li> <li>Modified row: "Data valid time (after SCK edge, tDVO)" to "Data Valid Out<br/>Time (after SCK edge, tDVO)"</li> </ul>                                                                                |
|          |         | Added table: SPI Switching characteristics at 1.7V (1.7 - 3.6V)                                                                                                                                                                       |
|          |         | NOTE added to KM Signal Multiplexing and Pin Assignments topic                                                                                                                                                                        |
| Rev3     | 04/2013 | Updated orderable part numbers                                                                                                                                                                                                        |
|          |         | Updated Table: ESD handling ratings                                                                                                                                                                                                   |
|          |         | Add new row: Electrostatic discharge voltage, charged-device mode                                                                                                                                                                     |
|          |         | Updated Table: Voltage and current operating behaviors                                                                                                                                                                                |
|          |         | Updated Table: Power consumption operating behaviors                                                                                                                                                                                  |
|          |         | Updated "Inputs, tSUI" row in Table: SWD switching characteristics at 2.7 V (2.7 - 3.6 V)                                                                                                                                             |
|          |         | Updated "Inputs, tSUI" row in Table: AFE switching characteristics (1.7 V - 3.6 V)                                                                                                                                                    |
|          |         | Updated "Supply voltage" minimum value in table: Voltage reference electrical specifications                                                                                                                                          |
|          |         | Added table: OD cells in SPI Switching specification                                                                                                                                                                                  |
|          |         | Updated Table: VREF full-range operating behaviors                                                                                                                                                                                    |
|          |         | Updated Table: $\Sigma\Delta$ ADC + PGA specifications                                                                                                                                                                                |
|          |         | Updated Table: ADC standalone specifications                                                                                                                                                                                          |

## Table 41. Revision History

Table continues on the next page ...



| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev4     | 07/2013 | Editorial changes through out the document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |         | Values of table "Power mode transition operating behaviors" updated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |         | In table "Power consumption operating behaviors":<br>Row I <sub>DD_RUN</sub> value updated<br>Row I <sub>DD_WAIT</sub> value updated<br>Row I <sub>DD_VLPR</sub> value updated<br>Row I <sub>DD_VLPR</sub> value updated<br>Row I <sub>DD_VLPS</sub> value updated<br>Row I <sub>DD_VLS3</sub> value updated<br>Row I <sub>DD_VLS2</sub> value updated<br>Row I <sub>DD_VLS1</sub> value updated<br>Row I <sub>DD_VLS0</sub> value updated<br>New row "I <sub>DD_VLS0</sub> with POR enabled" added.<br>Values of table "General switching specifications" updated.<br>In table "VREF full-range operating behaviors":<br>Row V <sub>tdrift</sub> : value updated and footnote added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bev5     | 10/2013 | Table: Obtaining package dimensions undated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rev6     | 11/2013 | Updated Section Fields:<br>• Row: Temperature range values updated.<br>Updated Table: Power consumption operating behaviors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rev7     | 1/2014  | <ul> <li>Table: Power consumption operating behaviors <ul> <li>All rows with temperature 110 °C updated to 105 °C</li> <li>Footnote 9 updated: An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC.</li> <li>Row I<sub>DD_VLPR</sub>: Minimum value updated</li> <li>Row I<sub>DD_VLLS1</sub>: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit disabled: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit enabled: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit enabled: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit enabled: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit enabled: Typ value updated</li> <li>Row I<sub>DD_VLLS0</sub> with POR circuit enabled: Typ value updated</li> </ul> </li> <li>Table: EMC radiated emissions operating behaviors <ul> <li>All TBD updated</li> <li>Footnote 2: f<sub>osc</sub> value updated to 10 MHz</li> </ul> </li> <li>Table: ADC + PGA specifications <ul> <li>Row CMMR: V<sub>id</sub> value updated</li> </ul> </li> <li>Table: ADC standalone specifications <ul> <li>Row CMMR: V<sub>id</sub> value updated</li> </ul> </li> </ul> |

## Table 41. Revision History (continued)