E·XFL

NXP USA Inc. - MKM33Z128CLH5 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LCD, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 6x16b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm33z128clh5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model (All pins except RESET pin)	-4000	+4000	V	1
	Electrostatic discharge voltage, human body model (RESET pin only)	-2500	+2500	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model (for corner pins)	-750	+750	V	2
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	3
V _{PESD}	Powered ESD voltage	-6000	+6000	V	
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range		60		mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = 20 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 10 \text{ mA}$	V _{DD} – 0.5	_	V	
	Output high voltage — low-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = 5 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 2.5 \text{ mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports		100	mA	

Table continues on the next page...

Symbol Description Min. Тур. Max. Unit Notes Very-low-power wait mode current at 3.0 V - all 6 I_{DD_VLPW} peripheral clocks disabled 162 350 μΑ • 25 °C • -40 °C 158.50 330 μΑ • 105 °C 446.94 1700 μA Stop mode current at 3.0 V IDD_STOP • 25 °C 311.90 730 μΑ • -40 °C 364 700 • 105 °C μΑ 645.13 2250 μA Very-low-power stop mode current at 3.0 V I_{DD_VLPS} • 25 °C 8.56 46 μΑ • -40 °C • 105 °C 44 μΑ 1500 μA Very low-leakage stop mode 3 current at 3.0 V I_{DD_VLLS3} • 25 °C 1.98 3.5 μA • -40 °C • 105 °C 3.3 μΑ 85 μΑ Very low-leakage stop mode 2 current at 3.0 V I_{DD_VLLS2} • 25 °C 1.24 2.6 μΑ • -40 °C • 105 °C 2.5 μΑ 59.5 μΑ I_{DD_VLLS1} Very low-leakage stop mode 1 current at 3.0 V • 25 °C 0.89 1.7 μΑ • -40 °C • 105 °C 1.6 μΑ 38.8 μA Very low-leakage stop mode 0 current at 3.0 V IDD_VLLS0 with POR detect circuit disabled 0.35 0.67 μΑ • 25 °C • -40 °C 0.64 μA • 105 °C 38 μΑ Very low-leakage stop mode 0 current at 3.0 V IDD VLLSO with POR detect circuit enabled 0.472 0.76 μΑ • 25 °C • -40 °C 0.72 μA • 105 °C 38.4 μA Average current with RTC and 32 kHz disabled IDD_VBAT at 3.0 V and VDD is OFF 0.3 1 μΑ • 25 °C 0.95 • -40 °C μA • 105 °C μΑ 15

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page ...

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

103
1
2
2
3
2

Table 10. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. Only PTC2 has high drive capability and load is 75 pF, other pins load (low drive) is 25 pF.

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	105	°C
T _A	Ambient temperature	-40	85	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	100 LQFP	44 LGA	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	63	95	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	50	50	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	53	79	°C/W	1
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	44	45	°C/W	1
	R _{0JB}	Thermal resistance, junction to board	36	35	°C/W	2
-	R _{θJC}	Thermal resistance, junction to case	18	28	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	4	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Single Wire Debug (SWD)

Table 12. SWD switching characteristics at 2.7 V (2.7-3.6 V)

Symbol	Description	Value	Unit	Notes
SWD CLK	Frequency of SWD operation	20	MHz	1
Inputs, tSUI	Data setup time	5	ns	1
inputs,tHI	Data hold time	0	ns	1
after clock edge, tDVO	Data valid Time	32	ns	1
tHO	Data Valid Hold	0	ns	1

1. Input transition assumed =1 ns. Output transition assumed = 50 pf.

Table 13. Switching characteristics at 1.7 V (1.7-3.6 V)

Symbol	Description	Value	Unit	Notes
SWD CLK	Frequency of SWD operation	18	MHz	
Inputs, tSUI	Data setup time	4.7	ns	
inputs,tHI	Data hold time	0	ns	
after clock edge, tDVO	Data valid Time	49.4	ns	2
tHO	Data Valid Hold	0	ns	

1. Frequency of SWD clock (18 Mhz) is applicable only in case the input setup time of the device outside is not more than 6.15 ns, else the frequency of SWD clock would need to be lowered.

6.1.2 Analog Front End (AFE)

AFE switching characteristics at (2.7 V-3.6 V)

Case1: Clock is coming In and Data is also coming In (XBAR ports timed with respect to the XBAR ports timed with respect to AFE clock defined at pad ptb[7] and pte[3])

Table 14. AFE switching characteristics (2.7 V-3.6 V)

Symbol	Description	Value	Unit	Notes
AFE CLK	Frequency of operation	10	MHz	1
Inputs, tSUI	Data setup time	5	ns	1
inputs,tHI	Data hold time	0	ns	1

1. Input Transition: 1ns. Output Load: 50 pf.

Case 2: Clock is going Out and Data is coming In (XBAR ports timed with respect to generated clock defined at the XBAR out ports)

Symbol	Description	Value	Unit	Notes
AFE CLK	Frequency of operation	6.2	MHz	
Inputs, tSUI	Data setup time	36	ns	
inputs,tHI	Data hold time	0	ns	

Table 15. AFE switching characteristics (2.7V-3.6V)

AFE switching characteristics at (1.7 V-3.6 V)

Case1: Clock is coming In and Data is also coming In (XBAR ports timed with respect to AFE clock defined at pad ptb[7] and pte[3])

Table 16. AFE switching characteristics (1.7 V-3.6 V)

Symbol	Description	Value	Unit	Notes
AFE CLK	Frequency of operation	10	MHz	
Inputs, tSUI	Data setup time	5.1	ns	
inputs,tHI	Data hold time	0	ns	

Case 2: Clock is going Out and Data is coming In (XBAR ports timed with respect to generated clock defined at XBAR out ports)

 Table 17. AFE switching characteristics (1.7 V-3.6 V)

Symbol	Description	Value	Unit	Notes
AFE CLK	Frequency of operation	6.2	MHz	
Inputs, tSUI	Data setup time	54	ns	
inputs,tHI	Data hold time	0	ns	

6.2 Clock modules

6.2.1 MCG specifications

Table 18. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	—	kHz	

Table continues on the next page...

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
Δf_{ints_t}	Total deviation of i (slow clock) over v	nternal reference frequency voltage and temperature	—	± 4	± 15	%	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25		33.4234	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimr frequency at fixed using SCTRIM and	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM			± 0.6	%f _{dco}	1
Δf _{dco_t}	Total deviation of t frequency over vol	—			%f _{dco}	1	
∆f _{dco_t}	Total deviation of t frequency over fixe range of 0–70°C	rimmed average DCO output ed voltage and temperature	_			%f _{dco}	1
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — nominal VDD and 25°C			4	MHz	
Δf_{intf_t}	Total deviation of i (fast clock) over vo	nternal reference frequency Ditage and temperature	—	± 10	± 15	%	
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al VDD and 25 °C	3		5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	(3/5) x f _{ints_t}		_	kHz		
f _{loc_high}	Loss of external cl RANGE = 01, 10,	(16/5) x f _{ints_t}		_	kHz		
	Į	FI	_L	<u> </u>			<u> </u>
f _{dco}	DCO output	Low-range (DRS=00)	20	20.97	22	MHz	2, 3
	frequency range	$640 \times f_{ints_t}$					
		Mid-range (DRS=01)	40	41.94	45	MHz	
		$1280 \times f_{ints_t}$					
		Mid-high range (DRS=10)	60	62.91	67	MHz	
		$1920 \times f_{ints_t}$					
		High-range (DRS=11)	80	83.89	90	MHz	
		$2560 \times f_{ints_t}$					
f _{dco_t_DMX32}	DCO output	Low-range (DRS=00)	—	23.99	-	MHz	4, 5, 6
	frequency	$732 \times f_{ints_t}$					
		Mid-range (DRS=01)	—	47.97	-	MHz	
		$1464 \times f_{ints_t}$					
		Mid-high range (DRS=10)	—	71.99	-	MHz	
		$2197 \times f_{ints_t}$					
		High-range (DRS=11)	_	95.98	-	MHz	
		$2929 \times f_{ints_t}$					
J _{cyc_fll}	FLL period jitter		—	70	140	ps	7
t _{fll_acquire}	FLL target frequer	cy acquisition time			1	ms	8
		PI	LL				

Table 18. MCG specifications (continued)

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{vco}	VCO operating frequency	11.71875	12.288	14.648437	MHz	
				5		
I _{pll}	PLL operating current • IO 3.3 V current	_	300	_	μA	9
	Max core voltage current		100			
f _{pll_ref}	PLL reference frequency range	31.25	32.768	39.0625	kHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 12 MHz			700	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	11
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	—	—	150 × 10 ⁻⁶	s	12
				+ 1075(1/		
				f _{pll_ref})		

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- 12. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.2.2 Oscillator electrical specifications

6.2.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71		3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	—	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_		_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)				ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	—	1	_	ms	

Table 20. Oscillator frequency specifications (continued)

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.2.3 32 kHz oscillator electrical characteristics

6.2.3.1 32 kHz oscillator DC electrical specifications Table 21. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	—	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	—	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.3.2 32 kHz oscillator frequency specifications Table 22. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	

Table continues on the next page...

Peripheral operating requirements and behaviors

Figure 2. ADC input impedance equivalency diagram

6.4.1.2 16-bit ADC electrical characteristics

Table 28.	16-bit ADC	characteristics	$(V_{REFH} =$	V _{DDA} ,	$V_{REFL} =$	V _{SSA})
-----------	------------	-----------------	---------------	--------------------	--------------	--------------------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
fadack		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.5	-0.7 to +0.5		

Table continues on the next page ...

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0		LSB ⁴	
	error	12-bit modes	_	_	±0.5		
ENOB	Effective number	16-bit single-ended mode					6
	of bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	—	bits	
			12.2	13.9	—	bits	
			11.4	13.1	—	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	6.02 × ENOB + 1.76		dB	
THD	THD Total harmonic	16-bit single-ended mode					7
	distortion	• Avg = 32	_	-94	_	dB	
			_	-85	_	dB	
SFDR	Spurious free	16-bit single-ended mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
			78	90		dB	
E _{IL}	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 3. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.4.2 CMP and 6-bit DAC electrical specifications Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	_	10	—	mV
	• CR0[HYSTCTR] = 10	—	20	—	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	—	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page ...

Symbo I	Description	Conditions	Min	Typ ¹	Мах	Unit	Notes
SINAD	Signal-to-Noise + Distortion Ratio	Normal Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =500mV (differential ended)		78		dB	
		Low-Power Mode • f _{IN} =50Hz; gain=01, common mode=0V, V _{pp} =500mV (differential ended)		74		dB	
CMMR	Common Mode Rejection Ratio	 f_{IN}=50Hz; gain=01, common mode=0V, Vid=100 mV f_{IN}=50Hz; gain=32, common mode=0V, V_{id}=100 mV 		70 70		dB	
E _{offset}	Offset Error	Gain=01, V _{pp} =1000 mV (full range diff.)			+/- 5	mV	
∆Offset _{Temp}	Offset Temperature Drift ³	Gain=01, V _{pp} =1000mV (full range diff.)			+/- 25	ppm/ºC	
∆Gain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ⁴	 Gain=01, V_{pp}=500mV (differential ended) Gain=32, V_{pp}=15mV (differential ended) 			+/- 75	ppm/ºC	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
ХТ	Crosstalk (with the input of the affected channel grounded)	Gain=01, V _{id} = 500 mV, f _{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency	Normal Mode	0.03		6.5	MHz	
	Range	Low-Power Mode	0.03		1.6		
I _{DDA_PG}	Current consumption by PGA (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			2.6	mA	5
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0		
I _{DDA_AD} C	Current Consumption by ADC (each chanel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		

Table 34. $\Sigma \triangle$ ADC + PGA specifications (continued)

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. The full-scale input range in single-ended mode is 0.5Vpp
- 3. Represents combined offset temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.
- 4. Represents combined gain temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks.
- 5. PGA is disabled in low-power modes.

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Represent combined gain temperature drift of the SD ADC, and Internal 1.2 VREF blocks.
- Represent combined offset temperature drift of the SD ADC, and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.

6.4.4.3 External modulator interface

The external modulator interface on this device comprises of a Clock signal and 1-bit data signal. Depending on the modulator device being used the interface works as follows:

- Clock supplied to external modulator which drives data on rising edge and the KM device captures it on falling edge or next rising edge.
- Clock and data are supplied by external modulator and KM device can sample it on falling edge or next rising edge.

Depending on control bit in AFE, the sampling edge is changed.

6.5 Timers

See General switching specifications.

6.6 Communication interfaces

6.6.1 I2C switching specifications

See General switching specifications.

6.6.2 UART switching specifications

See General switching specifications.

Description	Min.	Max.	Unit	Notes
Rise time input	1		ns	
Slave	1			
Fall time input	1		ns	
• Slave	1			
Rise time output	30.4		ns	
• Slave	30.4			
Fall time output	33.5		ns	
Slave	29.0			

Table 38. SPI switching characteristics at 1.7 V (1.7 - 3.6) (continued)

Table 39. SPI switching characteristics at 2.7 V (2.7 - 3.6)

Description	Min.	Max.	Unit	Notes
Data Setup Time (inputs, tSUI) • Master	29		ns	
Slave	4			
Input Data Hold Time (inputs, tHI) Master 	0		ns	
Slave	1			
Data hold time (outputs, tHO) • Master	0		ns	
Slave	0			
Data Valid Out Time (after SCK edge, tDVO) • Master	49		ns	
Slave	49			
Rise time input • Master	1		ns	
Slave	1			
Fall time input Master 	1		ns	
Slave	1			
Rise time output • Master	17.3		ns	
Slave	17.3			
Fall time output Master 	16.6		ns	
Slave	16.0			

6.7 Human-Machine Interfaces (HMI)

NOTE VSS also connects to flag on 44 LGA.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev1	10/2012	Initial release
Rev2	01/2013	Updated part numbers
		Updated Table: Power mode transition operating behaviors
		Updated Table: Power consumption operating behaviors. Included readings for temperature - 40 °C, 25 °C, and 85 °C
		Updated AFE Modulator clock maximum value in table "Device clock specifications"
		Updated Table: General switching specifications
		Updated Table: Thermal operating requirements
		Updated Table: SWD switching specifications
		Added Table: AFE (Analog Frontend) Switching characteristics
		Updated Table: Oscillator DC electrical specifications
		Updated Table: $\Sigma\Delta$ ADC + PGA specifications
		 Under section SPI switching specification, Table SPI timing renamed to SPI switching characteristics at 2.7 V (2.7 - 3.6) Modified row: "Data Hold Time (inputs, tHI)" to "Input Data Hold Time
		 (inputs, tHI)" Modified row: "Data valid time (after SCK edge, tDVO)" to "Data Valid Out Time (after SCK edge, tDVO)"
		Added table: SPI Switching characteristics at 1.7V (1.7 - 3.6V)
		NOTE added to KM Signal Multiplexing and Pin Assignments topic
Rev3	04/2013	Updated orderable part numbers
		Updated Table: ESD handling ratings
		Add new row: Electrostatic discharge voltage, charged-device mode
		Updated Table: Voltage and current operating behaviors
		Updated Table: Power consumption operating behaviors
		Updated "Inputs, tSUI" row in Table: SWD switching characteristics at 2.7 V (2.7 - 3.6 V)
		Updated "Inputs, tSUI" row in Table: AFE switching characteristics (1.7 V - 3.6 V)
		Updated "Supply voltage" minimum value in table: Voltage reference electrical specifications
		Added table: OD cells in SPI Switching specification
		Updated Table: VREF full-range operating behaviors
		Updated Table: $\Sigma\Delta$ ADC + PGA specifications
		Updated Table: ADC standalone specifications

Table 41. Revision History

Table continues on the next page ...