E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LCD, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 6x16b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm33z128clh5r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid order-able parts

Valid order-able part numbers are provided on the web. To determine the order-able part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

- MKM13Z64CHH5
- MKM14Z64CHH5
- MKM14Z128CHH5
- MKM32Z64CLH5
- MKM33Z64CLH5
- MKM33Z128CLH5
- MKM32Z64CLL5
- MKM33Z64CLL5
- MKM33Z128CLL5
- MKM34Z128CLL5
- MKM38Z128CLL5

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K M S R FFF T PP CC N

2.3 Fields

Following table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Pre-qualification (Proto)
К	Main family	K = Kinetis
М	Sub family	 M1 = Metering only (No LCD support) M3 = Metering with LCD support
S	Number of Sigma Delta (SD) ADC	 2 = 1 SD ADC with PGA and 1 SD ADC 3 = 2 SD ADC with PGA and 1 SD ADC 4 = 2 SD ADC with PGA and 2 SD ADC 8 = Same as '4'.
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
FFF	Program flash memory size	 64 = 64 KB 128 = 128 KB
Т	Temperature range (°C)	• C = -40 to 85
PP	Package identifier	 HH = 44 LGA (5 mm x 5 mm) LH = 64 LQFP (10 mm x 10 mm) LL = 100 LQFP (14 mm x 14 mm)
CC	Maximum CPU frequency (MHz)	• 5 = 50 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

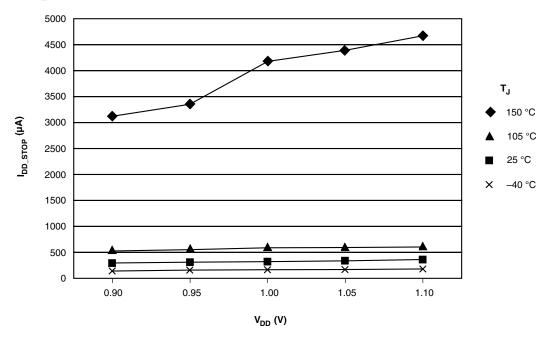
This is an example part number:

• MKM34Z128CLL5

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.


3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

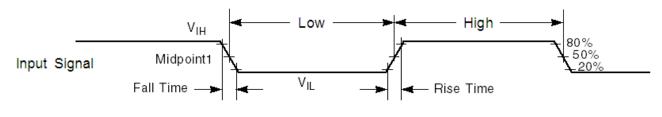
Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model (All pins except RESET pin)	-4000	+4000	V	1
	Electrostatic discharge voltage, human body model (RESET pin only)	-2500	+2500	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model (for corner pins)	-750	+750	V	2
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	3
V _{PESD}	Powered ESD voltage	-6000	+6000	V	
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings


Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.6	V
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{DTamper}	Tamper input voltage	-0.3	V _{BAT} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.6	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

5.2 Nonswitching electrical specifications

General

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage when AFE is operational	2.7	3.6	V	
	Supply voltage when AFE is NOT operational	1.71	3.6	V	
V _{DDA}	Analog supply voltage	2.7	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	1
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
V _{IL} I V _{HYS} I	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	—	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				
	• V _{IN} < V _{SS} -0.3V	-5	—	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current — single pin			m۸	
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-3	_	V V V V V V V V V	
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	—	+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	—	+25		
V _{RFVBAT}	V _{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

1. V_{BAT} always needs to be there for the chip to be operational.

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — high-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_	0.5	V	
	Output low voltage — low-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 2.5 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports		100	mA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	
R _{PU}	Internal pullup resistors	30	60	kΩ	1,
R _{PD}	Internal pulldown resistors	30	60	kΩ	2

Table 4. Voltage and current operating behaviors (continued)

- 1. Measured at Vinput = V_{SS}
- 2. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 25 MHz
- Flash clock = 25 MHz
- Temp: -40 °C, 25 °C, and 85 °C
- V_{DD}: 1.71 V, 3.3 V, and 3.6 V

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execute the first instruction across the operating temperature range of the chip.	563	659	μs	1
	VLLS0 → RUN	—	372	μs	
	• VLLS1 → RUN	—	372	μs	
	• VLLS2 \rightarrow RUN	_	273	μs	
	VLLS3 → RUN	_	273	μs	
	• VLPS → RUN	—	5.0	μs	

Table continues on the next page...

Symbol Description Min. Тур. Max. Unit Notes Very-low-power wait mode current at 3.0 V - all 6 I_{DD_VLPW} peripheral clocks disabled 162 350 μΑ • 25 °C • -40 °C 158.50 330 μΑ • 105 °C 446.94 1700 μA Stop mode current at 3.0 V IDD_STOP • 25 °C 311.90 730 μΑ • -40 °C 364 700 • 105 °C μΑ 645.13 2250 μA Very-low-power stop mode current at 3.0 V I_{DD_VLPS} • 25 °C 8.56 46 μΑ • -40 °C • 105 °C 44 μΑ 1500 μΑ Very low-leakage stop mode 3 current at 3.0 V I_{DD_VLLS3} • 25 °C 1.98 3.5 μA • -40 °C • 105 °C 3.3 μΑ 85 μΑ Very low-leakage stop mode 2 current at 3.0 V I_{DD_VLLS2} • 25 °C 1.24 2.6 μΑ • -40 °C • 105 °C 2.5 μΑ 59.5 μΑ IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V • 25 °C 0.89 1.7 μΑ • -40 °C • 105 °C 1.6 μΑ 38.8 μA Very low-leakage stop mode 0 current at 3.0 V IDD_VLLS0 with POR detect circuit disabled 0.35 0.67 μΑ • 25 °C • -40 °C 0.64 μA • 105 °C 38 μΑ Very low-leakage stop mode 0 current at 3.0 V IDD VLLSO with POR detect circuit enabled 0.472 0.76 μΑ • 25 °C • -40 °C 0.72 μΑ • 105 °C 38.4 μA Average current with RTC and 32 kHz disabled IDD_VBAT at 3.0 V and VDD is OFF 0.3 1 μΑ • 25 °C 0.95 • -40 °C μΑ • 105 °C 15 μΑ

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page ...

General

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF
C _{IN_D_io60}	Input capacitance: fast digital pins	_	9	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	Э			
f _{SYS}	System and core clock		50	MHz	
f _{BUS}	Bus clock		25	MHz	
f _{FLASH}	Flash clock		25	MHz	
f _{AFE}	AFE Modulator clock		6.5	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock		2	MHz	
f _{BUS}	Bus clock		1	MHz	
f _{FLASH}	Flash clock		1	MHz	
f _{AFE}	AFE Modulator clock ²		1.6	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2. AFE working in low-power mode.

rempheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f_{vco}	VCO operating frequency	11.71875	12.288	14.648437 5	MHz	
I _{pll}	PLL operating current • IO 3.3 V current	_	300	_	μA	9
	Max core voltage current		100			
f _{pll_ref}	PLL reference frequency range	31.25	32.768	39.0625	kHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 12 MHz			700	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	11
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150×10^{-6} + 1075(1/ f _{pll_ref})	S	12

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- 12. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.2.2 Oscillator electrical specifications

6.2.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

[Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	V_{DD}	Supply voltage	1.71	—	3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 1 MHz	_	200	_	μA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	—	mA	
IDDOSC	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	—	25	—	μA	
	• 1 MHz	—	300	—	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	—	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	—	_	—		2, 3
	Capacitance of EXTAL	247	_	—	ff	
	Die level (100 LQFP)Package level (100 LQFP)	0.495			pF	
	Capacitance of XTAL	265	_	_	ff	
	Die level (100 LQFP)Package level (100 LQFP)	0.495			pF	
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	_	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)		1		MΩ	

Table 19. Oscillator DC electrical specifications (continued)

Table continues on the next page ...

rempheral operating requirements and behaviors

6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}		V _{REFH}	V	
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 12-bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Peripheral operating requirements and behaviors

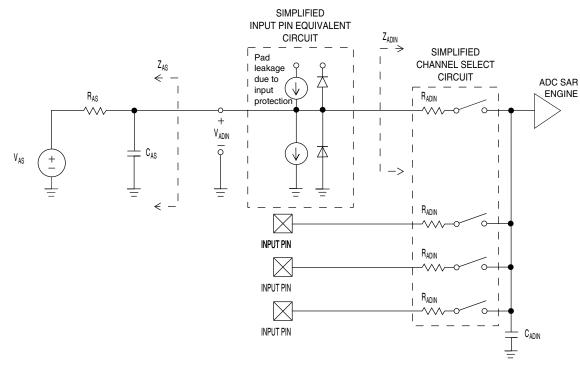


Figure 2. ADC input impedance equivalency diagram

6.4.1.2 16-bit ADC electrical characteristics

Table 28.	16-bit ADC	characteristics	(V _{REFH} =	V _{DDA} ,	$V_{REFL} = V_{S}$	isa)
-----------	------------	-----------------	----------------------	--------------------	--------------------	------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	-0.7 to +0.5		

Table continues on the next page ...

rempheral operating requirements and behaviors

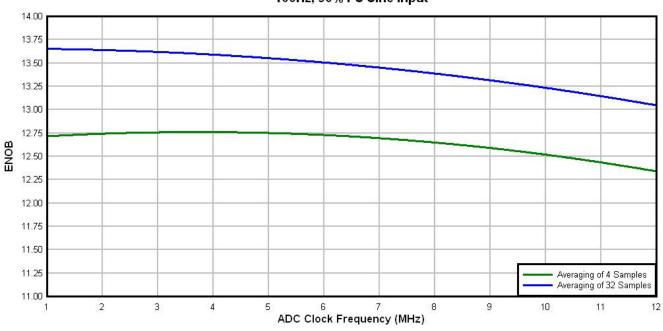

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
E _{FS}	Full-scale error	12-bit modes		-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0		LSB ⁴	
	error	12-bit modes	_	_	±0.5		
ENOB	Effective number	16-bit single-ended mode					6
	of bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8		bits	
			12.2	13.9		bits	
			11.4	13.1	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB + 1	1.76	dB	
THD	Total harmonic	16-bit single-ended mode					7
	distortion	• Avg = 32	_	-94		dB	
			_	-85	_	dB	
SFDR	Spurious free	16-bit single-ended mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
			78	90		dB	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCL voltage and curre operatin ratings
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 3. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.4.2 CMP and 6-bit DAC electrical specifications Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 29. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} –0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = $V_{reference}/64$

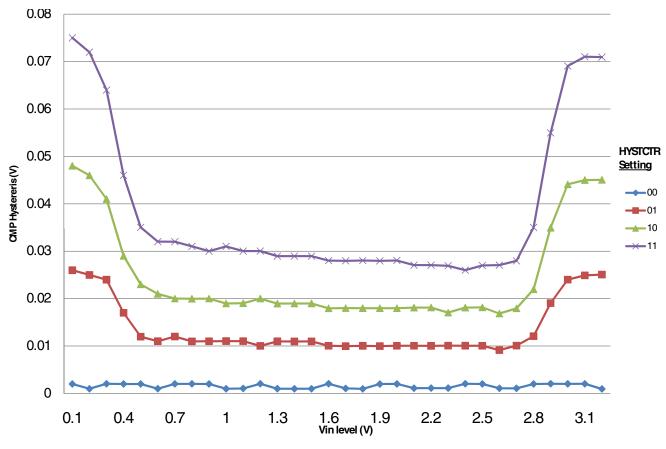


Figure 4. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VREFH	Voltage reference output — user trim	1.178	—	1.202	V	
VREFL	Voltage reference output	0.38	0.4	0.42	V	
V _{step}	Voltage reference trim step	_	0.5	_	mV	
V _{tdrift}	Temperature drift (Vmax - Vmin across the full temperature range)	_	5	_	mV	1
Ac	Aging coefficient	_	_	400	uV/yr	
I _{bg}	Bandgap only current	_	_	80	μA	2
I _{Ip}	Low-power buffer current	_	_	0.19	μA	2
I _{hp}	High-power buffer current	_	_	0.5	mA	2
I _{LOAD}	VREF buffer current	_	_	1	mA	3
ΔV_{LOAD}	Load regulation				mV	2, 4
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA		5			
T _{stup}	Buffer startup time	—		20	ms	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	0.5	_	mV	2

Table 31. VREF full-range operating behaviors (continued)

1. For temp range -40 $^\circ C$ to 105 $^\circ C,$ this value is 15 mV

2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.

- 3. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control Register.
- 4. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.

Table 32. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 33. VREF limited-range operating behaviours

Symbol	Description	Min.	Max.	Unit	Notes
VREFH	Voltage reference output with factory trim	1.173	1.225	V	
VREFL	Voltage reference output	0.38	0.42	V	

6.4.4 AFE electrical specifications

Symbo I	Description	Conditions	Min	Typ ¹	Max	Unit	Notes
f _{Nyq}	Input bandwidth	Normal Mode	1.5	1.5	1.5	kHz	
		Low-Power Mode	1.5	1.5	1.5		
V _{CM}	Input Common Mode Reference		0		0.8	V	
VIN _{diff}	Input range	Differential		+/- 500		mV	
		Single Ended		+/- 250		mV	
SNR	Signal to Noise Ratio	Normal Mode				dB	
		 f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (differential ended) f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (full range se.) 	88 76	90 78			
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)					
ΔGain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ²	 Gain bypassed Vpp = 500 mV (differential) PGA bypassed Vpp = 500 mV (differential), VCM = 0 V 			55	ppm/ºC	
∆Offset _{Temp}	Offset Temperate Drift - Offset error caused by temperature drifts ³	 Gain bypassed Vpp = 500 mV (differential), VCM = 0 V 			30	ppm/ºC	
SINAD	Signal-to-Noise + Distortion Ratio	Normal Mode • f _{IN} =50Hz; common mode=0V, V _{pp} = 500mV (diff.) • f _{IN} =50Hz; common mode=0V, V _{pp} = 500mV (full range se.)		80		dB	
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)		74			
CMMR	Common Mode Rejection Ratio	 f_{IN}=50Hz; common mode=0V, V_{id}=100 mV 		90		dB	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
XT	Crosstalk	Gain=01, V_{id} = 500 mV, f_{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency Range	Normal Mode	0.03		6.5	MHz	
		Low-Power Mode	0.03		1.6		
I _{DDA_AD} C	Current Consumption by ADC (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		

Peripheral operating requirements and behaviors

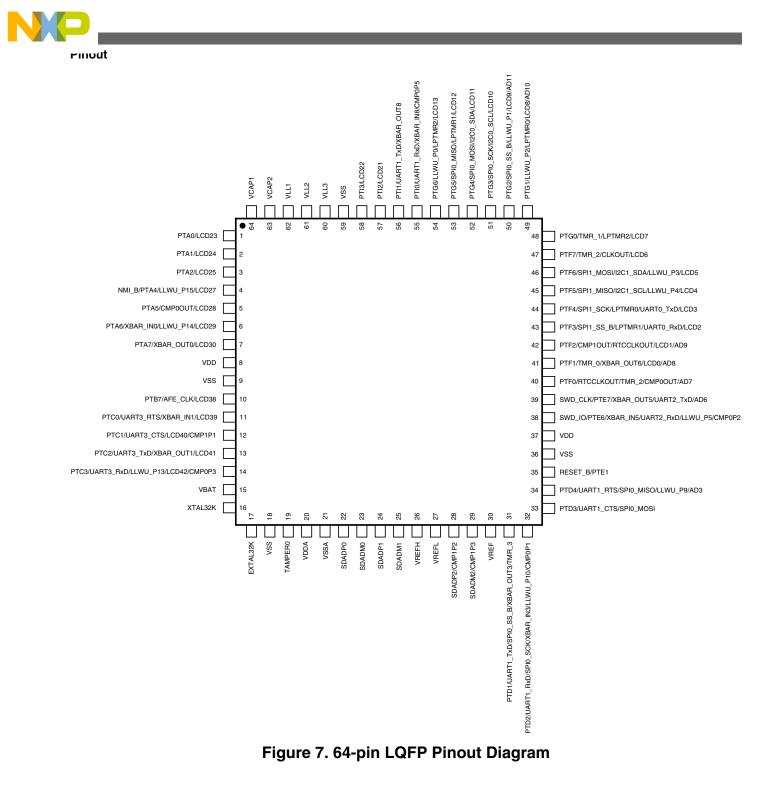

Description	Min.	Max.	Unit	Notes
Rise time input Master 	1		ns	
Slave	1			
Fall time input Master 	1		ns	
Slave	1			
Rise time output Master 	30.4		ns	
Slave	30.4			
Fall time output	33.5		ns	
Master Slave	29.0			

Table 38. SPI switching characteristics at 1.7 V (1.7 - 3.6) (continued)

Table 39. SPI switching characteristics at 2.7 V (2.7 - 3.6)

Description	Min.	Max.	Unit	Notes
Data Setup Time (inputs, tSUI) • Master	29		ns	
Slave	4			
Input Data Hold Time (inputs, tHI) Master 	0		ns	
Slave	1			
Data hold time (outputs, tHO) • Master	0		ns	
Slave	0			
Data Valid Out Time (after SCK edge, tDVO) Master 	49		ns	
Slave	49			
Rise time input Master 	1		ns	
Slave	1			
Fall time input Master 	1		ns	
• Slave	1			
Rise time output Master 	17.3		ns	
• Slave	17.3			
Fall time output • Master	16.6		ns	
Slave	16.0			

6.7 Human-Machine Interfaces (HMI)

8.2.3 44-pin LGA

The following figure represents44-pin LGA pinouts: