

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                           |
| Core Size                  | 32-Bit Single-Core                                         |
| Speed                      | 50MHz                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                          |
| Peripherals                | DMA, LCD, WDT                                              |
| Number of I/O              | 68                                                         |
| Program Memory Size        | 128KB (128K × 8)                                           |
| Program Memory Type        | FLASH                                                      |
| EEPROM Size                | -                                                          |
| RAM Size                   | 16K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                               |
| Data Converters            | A/D 16b SAR, 24b Sigma                                     |
| Oscillator Type            | Internal                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                          |
| Mounting Type              | Surface Mount                                              |
| Package / Case             | 100-LQFP                                                   |
| Supplier Device Package    | 100-LQFP (14x14)                                           |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkm33z128cll5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **Table of Contents**

| 1 | Orde | ering pa  | rts4                                         |
|---|------|-----------|----------------------------------------------|
|   | 1.1  | Determ    | ining valid order-able parts4                |
| 2 | Part | identific | cation4                                      |
|   | 2.1  | Descrip   | otion4                                       |
|   | 2.2  | Format    | 4                                            |
|   | 2.3  | Fields.   | 4                                            |
|   | 2.4  | Examp     | le5                                          |
| 3 | Terr | ninology  | y and guidelines5                            |
|   | 3.1  | Definiti  | on: Operating requirement5                   |
|   | 3.2  | Definiti  | on: Operating behavior6                      |
|   | 3.3  | Definiti  | on: Attribute6                               |
|   | 3.4  | Definiti  | on: Rating7                                  |
|   | 3.5  | Result    | of exceeding a rating7                       |
|   | 3.6  | Relatio   | nship between ratings and operating          |
|   |      | require   | ments7                                       |
|   | 3.7  | Guideli   | nes for ratings and operating requirements8  |
|   | 3.8  | Definiti  | on: Typical value8                           |
|   | 3.9  | Typical   | value conditions9                            |
| 4 | Rati | ngs       |                                              |
|   | 4.1  | Therma    | al handling ratings10                        |
|   | 4.2  | Moistu    | re handling ratings10                        |
|   | 4.3  | ESD ha    | andling ratings10                            |
|   | 4.4  | Voltage   | e and current operating ratings11            |
| 5 | Gen  | eral      | 11                                           |
|   | 5.1  | AC ele    | ctrical characteristics11                    |
|   | 5.2  | Nonsw     | itching electrical specifications11          |
|   |      | 5.2.1     | Voltage and current operating requirements11 |
|   |      | 5.2.2     | LVD and POR operating requirements12         |
|   |      | 5.2.3     | Voltage and current operating behaviors13    |
|   |      | 5.2.4     | Power mode transition operating behaviors14  |
|   |      | 5.2.5     | Power consumption operating behaviors15      |
|   |      | 5.2.6     | EMC radiated emissions operating behaviors17 |
|   |      | 5.2.7     | Designing with radiated emissions in mind17  |
|   |      | 5.2.8     | Capacitance attributes18                     |

|   | 5.3  | Switch   | ing specifications18                           |
|---|------|----------|------------------------------------------------|
|   |      | 5.3.1    | Device clock specifications                    |
|   |      | 5.3.2    | General switching specifications               |
|   | 5.4  | Therm    | al specifications19                            |
|   |      | 5.4.1    | Thermal operating requirements19               |
|   |      | 5.4.2    | Thermal attributes19                           |
| 6 | Peri | pheral o | operating requirements and behaviors20         |
|   | 6.1  | Core n   | nodules21                                      |
|   |      | 6.1.1    | Single Wire Debug (SWD)21                      |
|   |      | 6.1.2    | Analog Front End (AFE)21                       |
|   | 6.2  | Clock I  | modules22                                      |
|   |      | 6.2.1    | MCG specifications22                           |
|   |      | 6.2.2    | Oscillator electrical specifications24         |
|   |      | 6.2.3    | 32 kHz oscillator electrical characteristics27 |
|   | 6.3  | Memor    | ries and memory interfaces28                   |
|   |      | 6.3.1    | Flash electrical specifications28              |
|   | 6.4  | Analog   | J                                              |
|   |      | 6.4.1    | ADC electrical specifications29                |
|   |      | 6.4.2    | CMP and 6-bit DAC electrical specifications33  |
|   |      | 6.4.3    | Voltage reference electrical specifications35  |
|   |      | 6.4.4    | AFE electrical specifications                  |
|   | 6.5  | Timers   |                                                |
|   | 6.6  | Comm     | unication interfaces40                         |
|   |      | 6.6.1    | I2C switching specifications40                 |
|   |      | 6.6.2    | UART switching specifications40                |
|   |      | 6.6.3    | SPI switching specifications40                 |
|   | 6.7  | Humar    | n-Machine Interfaces (HMI)43                   |
|   |      | 6.7.1    | LCD electrical characteristics43               |
| 7 | Dim  | ensions  |                                                |
|   | 7.1  | Obtain   | ing package dimensions45                       |
| 8 | Pinc | out      |                                                |
|   | 8.1  | KM Sig   | gnal multiplexing and pin assignments45        |
|   | 8.2  | KM Fa    | mily Pinouts48                                 |
| 9 | Rev  | ision Hi | story51                                        |



## 2.3 Fields

Following table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description                    | Values                                                                                                                                                                   |
|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q     | Qualification status           | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Pre-qualification (Proto)</li> </ul>                                                                      |
| К     | Main family                    | • K = Kinetis                                                                                                                                                            |
| Μ     | Sub family                     | <ul> <li>M1 = Metering only (No LCD support)</li> <li>M3 = Metering with LCD support</li> </ul>                                                                          |
| S     | Number of Sigma Delta (SD) ADC | <ul> <li>2 = 1 SD ADC with PGA and 1 SD ADC</li> <li>3 = 2 SD ADC with PGA and 1 SD ADC</li> <li>4 = 2 SD ADC with PGA and 2 SD ADC</li> <li>8 = Same as '4'.</li> </ul> |
| R     | Silicon revision               | <ul> <li>Z = Initial</li> <li>(Blank) = Main</li> <li>A = Revision after main</li> </ul>                                                                                 |
| FFF   | Program flash memory size      | <ul> <li>64 = 64 KB</li> <li>128 = 128 KB</li> </ul>                                                                                                                     |
| Т     | Temperature range (°C)         | • C = -40 to 85                                                                                                                                                          |
| PP    | Package identifier             | <ul> <li>HH = 44 LGA (5 mm x 5 mm)</li> <li>LH = 64 LQFP (10 mm x 10 mm)</li> <li>LL = 100 LQFP (14 mm x 14 mm)</li> </ul>                                               |
| CC    | Maximum CPU frequency (MHz)    | • 5 = 50 MHz                                                                                                                                                             |
| Ν     | Packaging type                 | <ul> <li>R = Tape and reel</li> <li>(Blank) = Trays</li> </ul>                                                                                                           |

## 2.4 Example

This is an example part number:

• MKM34Z128CLL5

## 3 Terminology and guidelines

## 3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.



## 3.1.1 Example

This is an example of an operating requirement:

| Symbol          | Description                  | Min. | Max. | Unit |
|-----------------|------------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | 0.9  | 1.1  | V    |

## 3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

### 3.2.1 Example

This is an example of an operating behavior:

| Symbol          | Description                                  | Min. | Max. | Unit |
|-----------------|----------------------------------------------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10   | 130  | μA   |

## 3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

### 3.3.1 Example

This is an example of an attribute:

| Symbol | Description                        | Min. | Max. | Unit |
|--------|------------------------------------|------|------|------|
| CIN_D  | Input capacitance:<br>digital pins | _    | 7    | pF   |



## 4 Ratings

## 4.1 Thermal handling ratings

| Symbol           | Description                   | Min. | Max. | Unit | Notes |
|------------------|-------------------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | -55  | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | —    | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

## 4.2 Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level | —    | 3    | —    | 1     |

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

## 4.3 ESD handling ratings

| Symbol            | Description                                                                   | Min.  | Max.  | Unit | Notes |
|-------------------|-------------------------------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub>  | Electrostatic discharge voltage, human body model (All pins except RESET pin) | -4000 | +4000 | V    | 1     |
|                   | Electrostatic discharge voltage, human body model (RESET pin only)            | -2500 | +2500 | V    | 1     |
| V <sub>CDM</sub>  | Electrostatic discharge voltage, charged-device model (for corner pins)       | -750  | +750  | V    | 2     |
| V <sub>CDM</sub>  | Electrostatic discharge voltage, charged-device model                         | -500  | +500  | V    | 3     |
| V <sub>PESD</sub> | Powered ESD voltage                                                           | -6000 | +6000 | V    |       |
| I <sub>LAT</sub>  | Latch-up current at ambient temperature of 105°C                              | -100  | +100  | mA   |       |

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.



## 4.4 Voltage and current operating ratings

| Symbol               | Description                                                               | Min.                  | Max.                   | Unit |
|----------------------|---------------------------------------------------------------------------|-----------------------|------------------------|------|
| V <sub>DD</sub>      | Digital supply voltage                                                    | -0.3                  | 3.6                    | V    |
| V <sub>DIO</sub>     | Digital input voltage (except RESET, EXTAL, and XTAL)                     | -0.3                  | V <sub>DD</sub> + 0.3  | V    |
| V <sub>DTamper</sub> | Tamper input voltage                                                      | -0.3                  | V <sub>BAT</sub> + 0.3 | V    |
| V <sub>AIO</sub>     | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage                | -0.3                  | V <sub>DD</sub> + 0.3  | V    |
| ۱ <sub>D</sub>       | Instantaneous maximum current single pin limit (applies to all port pins) | -25                   | 25                     | mA   |
| V <sub>DDA</sub>     | Analog supply voltage                                                     | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3  | V    |
| V <sub>BAT</sub>     | RTC battery supply voltage                                                | -0.3                  | 3.6                    | V    |

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

## 5 General

## 5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is  $V_{IL}$  +  $(V_{IH} - V_{IL})/2$ .

Figure 1. Input signal measurement reference

## 5.2 Nonswitching electrical specifications



| Symbol             | Description                                                 | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-------------------------------------------------------------|------|------|------|------|-------|
|                    | Low-voltage warning thresholds — high range                 |      |      |      |      | 1     |
| V <sub>LVW1H</sub> | Level 1 falling (LVWV=00)                                   | 2.62 | 2.70 | 2.78 | V    |       |
| V <sub>LVW2H</sub> | Level 2 falling (LVWV=01)                                   | 2.72 | 2.80 | 2.88 | V    |       |
| V <sub>LVW3H</sub> | Level 3 falling (LVWV=10)                                   | 2.82 | 2.90 | 2.98 | V    |       |
| V <sub>LVW4H</sub> | Level 4 falling (LVWV=11)                                   | 2.92 | 3.00 | 3.08 | v    |       |
| V <sub>HYSH</sub>  | Low-voltage inhibit reset/recover hysteresis — high range   | _    | 80   | _    | mV   |       |
| V <sub>LVDL</sub>  | Falling low-voltage detect threshold — low range (LVDV=00)  | 1.54 | 1.60 | 1.66 | V    |       |
|                    | Low-voltage warning thresholds — low range                  |      |      |      |      | 1     |
| V <sub>LVW1L</sub> | Level 1 falling (LVWV=00)                                   | 1.74 | 1.80 | 1.86 | V    |       |
| V <sub>LVW2L</sub> | Level 2 falling (LVWV=01)                                   | 1.84 | 1.90 | 1.96 | V    |       |
| V <sub>LVW3L</sub> | Level 3 falling (LVWV=10)                                   | 1.94 | 2.00 | 2.06 | V    |       |
| V <sub>LVW4L</sub> | Level 4 falling (LVWV=11)                                   | 2.04 | 2.10 | 2.16 | v    |       |
| V <sub>HYSL</sub>  | Low-voltage inhibit reset/recover hysteresis —<br>low range |      | 60   |      | mV   |       |
| V <sub>BG</sub>    | Bandgap voltage reference                                   | 0.97 | 1.00 | 1.03 | V    |       |
| t <sub>LPO</sub>   | Internal low power oscillator period — factory trimmed      | 900  | 1000 | 1100 | μs   |       |

## Table 2. $V_{DD}$ supply LVD and POR operating requirements (continued)

1. Rising threshold is the sum of falling threshold and hysteresis voltage

### Table 3. VBAT power operating requirements

| Symbol                | Description                            | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|----------------------------------------|------|------|------|------|-------|
| V <sub>POR_VBAT</sub> | Falling VBAT supply POR detect voltage | 0.8  | 1.1  | 1.5  | V    |       |

### 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

| Symbol           | Description                                                                                           | Min.                  | Max. | Unit | Notes |
|------------------|-------------------------------------------------------------------------------------------------------|-----------------------|------|------|-------|
| V <sub>OH</sub>  | Output high voltage — high-drive strength                                                             |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = 20 mA                                  | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 10 \text{ mA}$  | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | Output high voltage — low-drive strength                                                              |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = 5 mA                                   | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 2.5 \text{ mA}$ | V <sub>DD</sub> – 0.5 | _    | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                               |                       | 100  | mA   |       |

Table continues on the next page...



Table 6. Power consumption operating behaviors (continued)

| Symbol               | Description                                                             | Min. | Тур.             | Max.           | Unit           | Notes |
|----------------------|-------------------------------------------------------------------------|------|------------------|----------------|----------------|-------|
| I <sub>DD_VBAT</sub> | Average current when VDD is OFF and LFSR and Tamper clocks set to 2 Hz. |      |                  |                |                | 8, 9  |
|                      | • @ 3.0 V<br>• 25 °C<br>• -40 °C<br>• 105 °C                            | _    | 1.3 <sup>7</sup> | 3<br>2.5<br>16 | μΑ<br>μΑ<br>μΑ |       |

- 1. See AFE specification for IDDA.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FBE mode. All peripheral clocks disabled.
- 3. Should be reduced by 500  $\mu$ A.
- 4. 2 MHz core, system, bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing while (1) loop from flash.
- 5. 2 MHz core, system and bus clock, and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing while (1) loop from flash.
- 2 MHz core, system and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. No flash accesses; some activity on DMA & RAM assumed.
- 7. Current consumption will vary with number of CPU accesses done and is dependent on the frequency of the accesses and frequency of bus clock. Number of CPU accesses should be optimized to get optimal current value.
- 8. Includes 32 kHz oscillator current and RTC operation.
- 9. An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC.

### 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

| Symbol              | Description                        | Frequency<br>band (MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|-------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50                 | 14   | dBµV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150                  | 16   | dBµV | •     |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500                 | 12   | dBµV |       |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500-1000                | 5    | dBµV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15–1000               | М    | —    | 2, 3  |

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2.  $V_{DD}$  = 3.3 V,  $T_A$  = 25 °C,  $f_{OSC}$  = 10 MHz (crystal),  $f_{SYS}$  = 50 MHz,  $f_{BUS}$  = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method



General

### 5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

### 5.2.8 Capacitance attributes

### Table 8. Capacitance attributes

| Symbol                 | Description                          | Min. | Max. | Unit |
|------------------------|--------------------------------------|------|------|------|
| C <sub>IN_A</sub>      | Input capacitance: analog pins       | —    | 7    | pF   |
| C <sub>IN_D</sub>      | Input capacitance: digital pins      |      | 7    | pF   |
| C <sub>IN_D_io60</sub> | Input capacitance: fast digital pins |      | 9    | pF   |

## 5.3 Switching specifications

## 5.3.1 Device clock specifications

### Table 9. Device clock specifications

| Symbol             | Description                      | Min. | Max. | Unit | Notes |
|--------------------|----------------------------------|------|------|------|-------|
|                    | Normal run mode                  | e    | -    | -    | -     |
| f <sub>SYS</sub>   | System and core clock            |      | 50   | MHz  |       |
| f <sub>BUS</sub>   | Bus clock                        |      | 25   | MHz  |       |
| f <sub>FLASH</sub> | Flash clock                      |      | 25   | MHz  |       |
| f <sub>AFE</sub>   | AFE Modulator clock              |      | 6.5  | MHz  |       |
|                    | VLPR mode <sup>1</sup>           | •    |      |      |       |
| f <sub>SYS</sub>   | System and core clock            |      | 2    | MHz  |       |
| f <sub>BUS</sub>   | Bus clock                        |      | 1    | MHz  |       |
| f <sub>FLASH</sub> | Flash clock                      |      | 1    | MHz  |       |
| f <sub>AFE</sub>   | AFE Modulator clock <sup>2</sup> |      | 1.6  | MHz  |       |

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2. AFE working in low-power mode.

## 5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I<sup>2</sup>C signals.

| 103 |
|-----|
| 1   |
| 2   |
| 2   |
| 3   |
|     |
|     |
|     |
|     |
|     |
|     |
| 2   |

Table 10. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. Only PTC2 has high drive capability and load is 75 pF, other pins load (low drive) is 25 pF.

## 5.4 Thermal specifications

### 5.4.1 Thermal operating requirements

### Table 11. Thermal operating requirements

| Symbol         | Description              | Min. | Max. | Unit |
|----------------|--------------------------|------|------|------|
| TJ             | Die junction temperature | -40  | 105  | °C   |
| T <sub>A</sub> | Ambient temperature      | -40  | 85   | °C   |



#### rempheral operating requirements and behaviors

| Symbol                | Description                                 | Min.     | Тур.   | Max.                   | Unit | Notes |
|-----------------------|---------------------------------------------|----------|--------|------------------------|------|-------|
| f <sub>vco</sub>      | VCO operating frequency                     | 11.71875 | 12.288 | 14.648437              | MHz  |       |
|                       |                                             |          |        | 5                      |      |       |
| I <sub>pll</sub>      | PLL operating current<br>• IO 3.3 V current | _        | 300    | _                      | μA   | 9     |
|                       | Max core voltage current                    |          | 100    |                        |      |       |
| f <sub>pll_ref</sub>  | PLL reference frequency range               | 31.25    | 32.768 | 39.0625                | kHz  |       |
| J <sub>cyc_pll</sub>  | PLL period jitter (RMS)                     |          |        |                        |      | 10    |
|                       | • f <sub>vco</sub> = 12 MHz                 |          |        | 700                    | ps   |       |
| D <sub>lock</sub>     | Lock entry frequency tolerance              | ± 1.49   | —      | ± 2.98                 | %    | 11    |
| D <sub>unl</sub>      | Lock exit frequency tolerance               | ± 4.47   | —      | ± 5.97                 | %    |       |
| t <sub>pll_lock</sub> | Lock detector detection time                | —        | —      | 150 × 10 <sup>-6</sup> | s    | 12    |
|                       |                                             |          |        | + 1075(1/              |      |       |
|                       |                                             |          |        | f <sub>pll_ref</sub> ) |      |       |

### Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 50 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- 12. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

### 6.2.2 Oscillator electrical specifications

### 6.2.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

| Symbol          | Description    | Min. | Тур. | Max. | Unit | Notes |
|-----------------|----------------|------|------|------|------|-------|
| V <sub>DD</sub> | Supply voltage | 1.71 |      | 3.6  | V    |       |

Table continues on the next page...



| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| R <sub>S</sub>               | Series resistor — low-frequency, low-power mode (HGO=0)                                                | _    | _               | _    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                | _    | 200             |      | kΩ   |       |
|                              | Series resistor — high-frequency, low-power<br>mode (HGO=0)                                            | —    | _               |      | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              | 1 MHz resonator                                                                                        | _    | 6.6             | _    | kΩ   |       |
|                              | 2 MHz resonator                                                                                        | _    | 3.3             | _    | kΩ   |       |
|                              | 4 MHz resonator                                                                                        | _    | 0               | _    | kΩ   |       |
|                              | 8 MHz resonator                                                                                        | _    | 0               | _    | kΩ   |       |
|                              | 16 MHz resonator                                                                                       | _    | 0               | _    | kΩ   |       |
|                              | 20 MHz resonator                                                                                       | _    | 0               | _    | kΩ   |       |
|                              | 32 MHz resonator                                                                                       | _    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) | _    | V <sub>DD</sub> | _    | V    |       |

### Table 19. Oscillator DC electrical specifications (continued)

- 1. V<sub>DD</sub>=3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C<sub>x</sub> and C<sub>y</sub> can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected,  $R_F$  is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

### 6.2.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

| Symbol                | Description                                                                                           | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low-<br>frequency mode (MCG_C2[RANGE]=00)                 | 32   | —    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high-<br>frequency mode (low range)<br>(MCG_C2[RANGE]=01) | 1    |      | 8    | MHz  |       |

Table continues on the next page ...



| able 22. 32 kHz oscillator frequency specifications (continued | ator frequency specifications (continued) |
|----------------------------------------------------------------|-------------------------------------------|
|----------------------------------------------------------------|-------------------------------------------|

| Symbol                  | Description                               |     | Тур. | Max.             | Unit | Notes |
|-------------------------|-------------------------------------------|-----|------|------------------|------|-------|
| t <sub>start</sub>      | Crystal start-up time                     | —   | 1000 | —                | ms   | 1     |
| V <sub>ec_extal32</sub> | Externally provided input clock amplitude | 700 | —    | V <sub>BAT</sub> | mV   | 2,3   |

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and  $V_{IH}$  and  $V_{IL}$  specifications do not apply. The voltage of the applied clock must be within the range of  $V_{SS}$  to  $V_{BAT}$ .

### NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

### 6.3 Memories and memory interfaces

### 6.3.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

### 6.3.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                | Description                         | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>   | Longword Program high-voltage time  | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub> | Sector Erase high-voltage time      | —    | 13   | 113  | ms   | 1     |
| t <sub>hversall</sub> | versall Erase All high-voltage time |      | 52   | 452  | ms   | 1     |

Table 23. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

### 6.3.1.2 Flash timing specifications — commands Table 24. Flash command timing specifications

| Symbol                | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------|------|------|------|------|-------|
| t <sub>rd1sec1k</sub> | Read 1s Section execution time (flash sector) | —    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>   | Program Check execution time                  | —    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>   | Read Resource execution time                  |      |      | 30   | μs   | 1     |

Table continues on the next page...



| Symbol               | Description                               | Min. | Тур. | Max. | Unit | Notes |
|----------------------|-------------------------------------------|------|------|------|------|-------|
| t <sub>pgm4</sub>    | Program Longword execution time           | —    | 65   | 145  | μs   |       |
| t <sub>ersscr</sub>  | Erase Flash Sector execution time         | _    | 14   | 114  | ms   | 2     |
| t <sub>rd1all</sub>  | Read 1s All Blocks execution time         | _    | —    | 1.8  | ms   |       |
| t <sub>rdonce</sub>  | Read Once execution time                  | —    | _    | 25   | μs   | 1     |
| t <sub>pgmonce</sub> | Program Once execution time               | _    | 65   | _    | μs   |       |
| t <sub>ersall</sub>  | Erase All Blocks execution time           | _    | 88   | 650  | ms   | 2     |
| t <sub>vfykey</sub>  | Verify Backdoor Access Key execution time | _    | _    | 30   | μs   | 1     |

Table 24. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

### 6.3.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

| Symbol              | Description                                                                                  | Min. | Тур. | Max. | Unit |
|---------------------|----------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | I <sub>DD_PGM</sub> Average current adder during high voltage<br>flash programming operation |      | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | I <sub>DD_ERS</sub> Average current adder during high voltage<br>flash erase operation       |      | 1.5  | 4.0  | mA   |

### 6.3.1.4 Reliability specifications

#### Table 26. NVM reliability specifications

| Symbol                                                       | Description                            | Min. | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |  |  |
|--------------------------------------------------------------|----------------------------------------|------|-------------------|------|--------|-------|--|--|--|
| Program Flash                                                |                                        |      |                   |      |        |       |  |  |  |
| t <sub>nvmretp10k</sub>                                      | Data retention after up to 10 K cycles | 5    | 50                | —    | years  |       |  |  |  |
| t <sub>nvmretp1k</sub> Data retention after up to 1 K cycles |                                        | 20   | 100               | _    | years  |       |  |  |  |
| n <sub>nvmcycp</sub>                                         | Cycling endurance                      | 10 K | 50 K              | _    | cycles | 2     |  |  |  |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C  $\leq$  T<sub>i</sub>  $\leq$  125 °C.

## 6.4 Analog

### 6.4.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.



rempheral operating requirements and behaviors

### 6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

| Symbol            | Description                               | Conditions                                                                                    | Min.              | Typ. <sup>1</sup> | Max.              | Unit | Notes |
|-------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage                            | Absolute                                                                                      | 1.71              | _                 | 3.6               | V    |       |
| $\Delta V_{DDA}$  | Supply voltage                            | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                            | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high                |                                                                                               | 1.13              | V <sub>DDA</sub>  | V <sub>DDA</sub>  | V    |       |
| V <sub>REFL</sub> | ADC reference voltage low                 |                                                                                               | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V    |       |
| V <sub>ADIN</sub> | Input voltage                             |                                                                                               | V <sub>REFL</sub> | —                 | V <sub>REFH</sub> | V    |       |
| C <sub>ADIN</sub> | Input capacitance                         | 16-bit mode                                                                                   | _                 | 8                 | 10                | pF   |       |
|                   |                                           | <ul> <li>8-bit / 10-bit / 12-bit<br/>modes</li> </ul>                                         |                   | 4                 | 5                 |      |       |
| R <sub>ADIN</sub> | Input series resistance                   |                                                                                               | _                 | 2                 | 5                 | kΩ   |       |
| R <sub>AS</sub>   | Analog source<br>resistance<br>(external) | 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz                                                     | _                 | _                 | 5                 | kΩ   | 3     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | ≤ 12-bit mode                                                                                 | 1.0               |                   | 18.0              | MHz  | 4     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | 16-bit mode                                                                                   | 2.0               |                   | 12.0              | MHz  | 4     |
| C <sub>rate</sub> | ADC conversion                            | ≤ 12-bit modes                                                                                |                   |                   |                   |      | 5     |
|                   | rate                                      | No ADC hardware averaging                                                                     | 20.000            | _                 | 818.330           | Ksps |       |
|                   |                                           | Continuous conversions<br>enabled, subsequent<br>conversion time                              |                   |                   |                   |      |       |
| C <sub>rate</sub> | ADC conversion                            | 16-bit mode                                                                                   |                   |                   |                   |      | 5     |
|                   | rate                                      | No ADC hardware averaging<br>Continuous conversions<br>enabled, subsequent<br>conversion time | 37.037            |                   | 461.467           | Ksps |       |

1. Typical values assume  $V_{DDA}$  = 3.0 V, Temp = 25 °C,  $f_{ADCK}$  = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8  $\Omega$  analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



Peripheral operating requirements and behaviors



Figure 2. ADC input impedance equivalency diagram

### 6.4.1.2 16-bit ADC electrical characteristics

| Table 28. | 16-bit ADC | characteristics | $(V_{REFH} =$ | V <sub>DDA</sub> , | $V_{REFL} =$ | V <sub>SSA</sub> ) |
|-----------|------------|-----------------|---------------|--------------------|--------------|--------------------|
|-----------|------------|-----------------|---------------|--------------------|--------------|--------------------|

| Symbol               | Description                    | Conditions <sup>1</sup> .            | Min.                                          | Typ. <sup>2</sup> | Max.            | Unit             | Notes              |  |  |
|----------------------|--------------------------------|--------------------------------------|-----------------------------------------------|-------------------|-----------------|------------------|--------------------|--|--|
| I <sub>DDA_ADC</sub> | Supply current                 |                                      | 0.215                                         | —                 | 1.7             | mA               | 3                  |  |  |
|                      | ADC                            | • ADLPC = 1, ADHSC = 0               | 1.2                                           | 2.4               | 3.9             | MHz              | $t_{ADACK} = 1/$   |  |  |
|                      | asynchronous<br>clock source   | • ADLPC = 1, ADHSC = 1               | 2.4                                           | 4.0               | 6.1             | MHz              | † <sub>ADACK</sub> |  |  |
| fadack               |                                | • ADLPC = 0, ADHSC = 0               | 3.0                                           | 5.2               | 7.3             | MHz              |                    |  |  |
|                      |                                | • ADLPC = 0, ADHSC = 1               | 4.4                                           | 6.2               | 9.5             | MHz              |                    |  |  |
|                      | Sample Time                    | See Reference Manual chapter         | See Reference Manual chapter for sample times |                   |                 |                  |                    |  |  |
| TUE                  | Total unadjusted               | 12-bit modes                         | —                                             | ±4                | ±6.8            | LSB <sup>4</sup> | 5                  |  |  |
|                      | error                          | <ul> <li>&lt;12-bit modes</li> </ul> | —                                             | ±1.4              | ±2.1            |                  |                    |  |  |
| DNL                  | Differential non-<br>linearity | 12-bit modes                         | —                                             | ±0.7              | -1.1 to<br>+1.9 | LSB <sup>4</sup> | 5                  |  |  |
|                      |                                | <ul> <li>&lt;12-bit modes</li> </ul> | —                                             | ±0.2              | -0.3 to 0.5     |                  |                    |  |  |
| INL                  | Integral non-<br>linearity     | 12-bit modes                         | —                                             | ±1.0              | -2.7 to<br>+1.9 | LSB <sup>4</sup> | 5                  |  |  |
|                      |                                | • <12-bit modes                      | —                                             | ±0.5              | -0.7 to<br>+0.5 |                  |                    |  |  |

Table continues on the next page...



#### rempheral operating requirements and behaviors

| Symbol              | Description                     | Conditions <sup>1</sup> .                       | Min.               | Typ. <sup>2</sup>      | Max. | Unit             | Notes                                                                     |
|---------------------|---------------------------------|-------------------------------------------------|--------------------|------------------------|------|------------------|---------------------------------------------------------------------------|
| E <sub>FS</sub>     | Full-scale error                | 12-bit modes                                    | _                  | -4                     | -5.4 | LSB <sup>4</sup> | V <sub>ADIN</sub> =                                                       |
|                     |                                 | <ul> <li>&lt;12-bit modes</li> </ul>            | _                  | -1.4                   | -1.8 |                  | V <sub>DDA</sub> <sup>5</sup>                                             |
| EQ                  | Quantization                    | 16-bit modes                                    | _                  | -1 to 0                |      | LSB <sup>4</sup> |                                                                           |
|                     | error                           | 12-bit modes                                    | _                  | _                      | ±0.5 |                  |                                                                           |
| ENOB                | Effective number                | 16-bit single-ended mode                        |                    |                        |      |                  | 6                                                                         |
|                     | of dits                         | • Avg = 32                                      | 12.8               | 14.5                   | —    | bits             |                                                                           |
|                     |                                 | • Avg = 4                                       | 11.9               | 13.8                   | —    | bits             |                                                                           |
|                     |                                 |                                                 |                    |                        |      |                  |                                                                           |
|                     |                                 |                                                 |                    |                        |      |                  |                                                                           |
|                     |                                 |                                                 | 12.2               | 13.9                   | —    | bits             |                                                                           |
|                     |                                 |                                                 | 11.4               | 13.1                   | —    | bits             |                                                                           |
| SINAD               | Signal-to-noise plus distortion | See ENOB                                        | 6.02 × ENOB + 1.76 |                        | dB   |                  |                                                                           |
| THD                 | Total harmonic                  | 16-bit single-ended mode                        |                    |                        |      |                  | 7                                                                         |
|                     | distortion                      | • Avg = 32                                      | _                  | -94                    | _    | dB               |                                                                           |
|                     |                                 |                                                 |                    |                        |      |                  |                                                                           |
|                     |                                 |                                                 | _                  | -85                    | _    | dB               |                                                                           |
| SFDR                | Spurious free                   | 16-bit single-ended mode                        |                    |                        |      |                  | 7                                                                         |
|                     | dynamic range                   | • Avg = 32                                      | 82                 | 95                     | —    | dB               |                                                                           |
|                     |                                 |                                                 |                    |                        |      |                  |                                                                           |
|                     |                                 |                                                 | 78                 | 90                     |      | dB               |                                                                           |
| E <sub>IL</sub>     | Input leakage<br>error          |                                                 |                    | $I_{In} \times R_{AS}$ |      | mV               | I <sub>In</sub> =<br>leakage<br>current                                   |
|                     |                                 |                                                 |                    |                        |      |                  | (refer to<br>the MCU's<br>voltage<br>and current<br>operating<br>ratings) |
|                     | Temp sensor<br>slope            | Across the full temperature range of the device | 1.55               | 1.62                   | 1.69 | mV/°C            | 8                                                                         |
| V <sub>TEMP25</sub> | Temp sensor<br>voltage          | 25 °C                                           | 706                | 716                    | 726  | mV               | 8                                                                         |

### Table 28. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with  $V_{REFH} = V_{DDA}$
- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC\_CFG1[ADLPC] (low power). For lowest power operation, ADC\_CFG1[ADLPC] must be set, the ADC\_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.



Peripheral operating requirements and behaviors



Figure 5. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

### 6.4.3 Voltage reference electrical specifications

| Symbol           | Description             | Min.              | Max. | Unit | Notes |
|------------------|-------------------------|-------------------|------|------|-------|
| V <sub>DDA</sub> | Supply voltage          | 1.71 <sup>1</sup> | 3.6  | V    |       |
| T <sub>A</sub>   | Temperature             | -40 85            |      | °C   |       |
| CL               | Output load capacitance | 100               |      | nF   | 2, 3  |

1. AFE is enabled.

2. C<sub>L</sub> must be connected between VREFH and VREFL.

 The load capacitance should not exceed +/-25% of the nominal specified C<sub>L</sub> value over the operating temperature range of the device.

| Symbol | Description                                                                             | Min.   | Тур. | Max.   | Unit | Notes |
|--------|-----------------------------------------------------------------------------------------|--------|------|--------|------|-------|
| VREFH  | Voltage reference output with factory trim at nominal $V_{DDA}$ and temperature = 25 °C | 1.1915 | 1.2  | 1.2027 | V    |       |
| VREFH  | Voltage reference output with — factory trim                                            | 1.1584 | —    | 1.2376 | V    |       |

Table 31. VREF full-range operating behaviors

Table continues on the next page ...



| Symbol              | Description                                                       | Min.  | Тур. | Max.  | Unit  | Notes |
|---------------------|-------------------------------------------------------------------|-------|------|-------|-------|-------|
| VREFH               | Voltage reference output — user trim                              | 1.178 | —    | 1.202 | V     |       |
| VREFL               | Voltage reference output                                          | 0.38  | 0.4  | 0.42  | V     |       |
| V <sub>step</sub>   | Voltage reference trim step                                       | _     | 0.5  | —     | mV    |       |
| V <sub>tdrift</sub> | Temperature drift (Vmax - Vmin across the full temperature range) |       | 5    | _     | mV    | 1     |
| Ac                  | Aging coefficient                                                 | _     | _    | 400   | uV/yr |       |
| I <sub>bg</sub>     | Bandgap only current                                              | _     | _    | 80    | μA    | 2     |
| I <sub>lp</sub>     | Low-power buffer current                                          | _     | _    | 0.19  | μA    | 2     |
| I <sub>hp</sub>     | High-power buffer current                                         | _     | _    | 0.5   | mA    | 2     |
| I <sub>LOAD</sub>   | VREF buffer current                                               | —     | _    | 1     | mA    | 3     |
| $\Delta V_{LOAD}$   | Load regulation                                                   |       |      |       | mV    | 2, 4  |
|                     | • current = + 1.0 mA                                              | _     | 2    | _     |       |       |
|                     | • current = - 1.0 mA                                              |       | 5    |       |       |       |
| T <sub>stup</sub>   | Buffer startup time                                               | —     | —    | 20    | ms    |       |
| V <sub>vdrift</sub> | Voltage drift (Vmax -Vmin across the full voltage range)          |       | 0.5  | _     | mV    | 2     |

### Table 31. VREF full-range operating behaviors (continued)

1. For temp range -40  $^\circ C$  to 105  $^\circ C,$  this value is 15 mV

2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.

- 3. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control Register.
- 4. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.

### Table 32. VREF limited-range operating requirements

| Symbol         | Description | Min. | Max. | Unit | Notes |
|----------------|-------------|------|------|------|-------|
| T <sub>A</sub> | Temperature | 0    | 50   | °C   |       |

### Table 33. VREF limited-range operating behaviours

| Symbol | Description                                      | Min.  | Max.  | Unit | Notes |
|--------|--------------------------------------------------|-------|-------|------|-------|
| VREFH  | Voltage reference<br>output with factory<br>trim | 1.173 | 1.225 | V    |       |
| VREFL  | Voltage reference<br>output                      | 0.38  | 0.42  | V    |       |

### 6.4.4 AFE electrical specifications

| 100<br>QFP | 64<br>QFP | 44<br>LGA | DEFAULT  | ALT0          | ALT1 | ALT2      | ALT3      | ALT4      | ALT5      | ALT6 | ALT7    |
|------------|-----------|-----------|----------|---------------|------|-----------|-----------|-----------|-----------|------|---------|
| 55         | _         | _         | Disabled |               | PTE0 | I2C0_SDA  | XBAR_OUT4 | UART3_TxD | CLKOUT    |      |         |
| 56         | 35        | 25        | RESET_B  |               | PTE1 |           |           |           |           |      | RESET_B |
| 57         | _         | 26        | EXTAL1   | EXTAL1        | PTE2 | EWM_IN    | XBAR_IN6  | I2C1_SDA  |           |      |         |
| 58         | _         | 27        | XTAL1    | XTAL1         | PTE3 | EWM_OUT   | AFE_CLK   | I2C1_SCL  |           |      |         |
| 59         | 36        | 28        | VSS      | VSS           |      |           |           |           |           |      |         |
| 60         | _         | 29        | SAR_VSSA | SAR_VSSA      |      |           |           |           |           |      |         |
| 61         | _         | 30        | SAR_VDDA | SAR_VDDA      |      |           |           |           |           |      |         |
| 62         | 37        | 31        | VDD      | VDD           |      |           |           |           |           |      |         |
| 63         | -         | -         | Disabled |               | PTE4 | LPTMR0    | UART2_CTS | EWM_IN    |           |      |         |
| 64         | _         | _         | Disabled |               | PTE5 | TMR_3     | UART2_RTS | EWM_OUT   | LLWU_P6   |      |         |
| 65         | 38        | 32        | SWD_IO   | CMP0P2        | PTE6 | XBAR_IN5  | UART2_RxD | LLWU_P5   |           |      | SWD_IO  |
| 66         | 39        | 33        | SWD_CLK  | AD6           | PTE7 | XBAR_OUT5 | UART2_TxD |           |           |      | SWD_CLK |
| 67         | 40        | -         | Disabled | AD7           | PTF0 | RTCCLKOUT | TMR_2     | CMP0OUT   |           |      |         |
| 68         | 41        | 34        | Disabled | LCD0/<br>AD8  | PTF1 | TMR_0     | XBAR_OUT6 |           |           |      |         |
| 69         | 42        | 35        | Disabled | LCD1/<br>AD9  | PTF2 | CMP1OUT   | RTCCLKOUT |           |           |      |         |
| 70         | 43        | -         | Disabled | LCD2          | PTF3 | SPI1_SS_B | LPTMR1    | UART0_RxD |           |      |         |
| 71         | 44        | -         | Disabled | LCD3          | PTF4 | SPI1_SCK  | LPTMR0    | UART0_TxD |           |      |         |
| 72         | 45        | -         | Disabled | LCD4          | PTF5 | SPI1_MISO | I2C1_SCL  | LLWU_P4   |           |      |         |
| 73         | 46        | -         | Disabled | LCD5          | PTF6 | SPI1_MOSI | I2C1_SDA  | LLWU_P3   |           |      |         |
| 74         | 47        | -         | Disabled | LCD6          | PTF7 | TMR_2     | CLKOUT    |           |           |      |         |
| 75         | 48        | _         | Disabled | LCD7          | PTG0 | TMR_1     | LPTMR2    |           |           |      |         |
| 76         | 49        | 36        | Disabled | LCD8/<br>AD10 | PTG1 | LLWU_P2   | LPTMR0    |           |           |      |         |
| 77         | 50        | 37        | Disabled | LCD9/<br>AD11 | PTG2 | SPI0_SS_B | LLWU_P1   |           |           |      |         |
| 78         | 51        | 38        | Disabled | LCD10         | PTG3 | SPI0_SCK  | I2C0_SCL  |           |           |      |         |
| 79         | 52        | 39        | Disabled | LCD11         | PTG4 | SPI0_MOSI | I2C0_SDA  |           |           |      |         |
| 80         | 53        | 40        | Disabled | LCD12         | PTG5 | SPI0_MISO | LPTMR1    |           |           |      |         |
| 81         | 54        | -         | Disabled | LCD13         | PTG6 | LLWU_P0   | LPTMR2    |           |           |      |         |
| 82         | —         | -         | Disabled | LCD14         | PTG7 |           |           |           |           |      |         |
| 83         | —         | _         | Disabled | LCD15         | PTH0 |           |           |           |           |      |         |
| 84         | —         | -         | Disabled | LCD16         | PTH1 |           |           |           |           |      |         |
| 85         | —         | -         | Disabled | LCD17         | PTH2 |           |           |           |           |      |         |
| 86         | —         | -         | Disabled | LCD18         | PTH3 |           |           |           |           |      |         |
| 87         | —         | -         | Disabled | LCD19         | PTH4 |           |           |           |           |      |         |
| 88         | -         | -         | Disabled | LCD20         | PTH5 |           |           |           |           |      |         |
| 89         | -         | 41        | Disabled |               | PTH6 | UART1_CTS | SPI1_SS_B | XBAR_IN7  |           |      |         |
| 90         | -         | 42        | Disabled |               | PTH7 | UART1_RTS | SPI1_SCK  | XBAR_OUT7 |           |      |         |
| 91         | 55        | 43        | Disabled | CMP0P5        | PTIO | UART1_RxD | XBAR_IN8  | SPI1_MISO | SPI1_MOSI |      |         |
| 92         | 56        | 44        | Disabled |               | PTI1 | UART1_TxD | XBAR_OUT8 | SPI1_MOSI | SPI1_MISO |      |         |

### KM Family Data Sheet, Rev. 7, 01/2014.

NP

Pinout



#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are the registered trademarks of ARM Limited.

©2011-2014 Freescale Semiconductor, Inc.

Document Number MKMxxZxxCxx5 Revision 7, 01/2014



