
NXP USA Inc. - <u>MC908QB4CDTE Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qb4cdte

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This page intentionally blank.

Table of Contents

Enhanced Serial Communications Interface (ESCI) Module

13.1	Introduction	109
13.2	Features	109
13.3	Functional Description	111
13.3.1	Data Format	112
13.3.2	Transmitter	112
13.3.2.	1 Character Length	113
13.3.2.	2 Character Transmission	113
13.3.2.	3 Break Characters	113
13.3.2.	4 Idle Characters	114
13.3.2.	5 Inversion of Transmitted Output	114
13.3.3	Receiver	114
13.3.3.	1 Character Length	114
13.3.3.	2 Character Reception	114
13.3.3.	3 Data Sampling	116
13.3.3.	4 Framing Errors	117
13.3.3.	5 Baud Rate Tolerance	117
13.3.3.	6 Receiver Wakeup	119
13.4	Interrupts	119
13.4.1	Transmitter Interrupts	
13.4.2	Receiver Interrupts.	120
13.4.3	Error Interrupts	
13.5	Low-Power Modes	
13.5.1	Wait Mode	
13.5.2	Stop Mode	
13.6	ESCI During Break Interrupts	
	•	
13.7	I/O Signals	
13.7.1	ESCI Transmit Data (TxD)	
13.7.2	ESCI Receive Data (RxD)	
13.8	Registers	
13.8.1	ESCI Control Register 1	
13.8.2	ESCI Control Register 2.	
13.8.3	ESCI Control Register 3.	
13.8.4	ESCI Status Register 1	
13.8.5	ESCI Status Register 2	
13.8.6	ESCI Data Register	
13.8.7	ESCI Baud Rate Register	
13.8.8	ESCI Prescaler Register	
13.9	ESCI Arbiter	
13.9.1	ESCI Arbiter Control Register	
13.9.2	ESCI Arbiter Data Register	
13.9.3	Bit Time Measurement	
13.9.4	Arbitration Mode	138

Chapter 14 System Integration Module (SIM)

MC68HC908QB8 Data Sheet, Rev. 3

Chapter 1 General Description

1.1 Introduction

The MC68HC908QB8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

Device	FLASH/RAM Memory Size	ADC	16-Bit Timer Channels	ESCI	SPI	Pin Count
MC68HC908QB8	8K/256 bytes	10 channel, 10 bit	4	Yes	Yes	16 pins
MC68HC908QB4	4K/128 bytes	10 channel, 10 bit	4	Yes	Yes	16 pins
MC68HC908QY8	8K/256 bytes	4 channel, 10 bit	2	No	No	16 pins

Table 1-1. Summary of Device Variations

1.2 Features

Features include:

- High-performance M68HC08 CPU core
- Fully upward-compatible object code with M68HC05 Family
- 5-V and 3-V operating voltages (V_{DD})
- 8-MHz internal bus operation at 5 V, 4-MHz at 3 V
- Trimmable internal oscillator
 - Software selectable 1 MHz, 2 MHz, or 3.2 MHz internal bus operation
 - 8-bit trim capability
 - ± 25% untrimmed
 - Trimmable to approximately 0.4%⁽¹⁾
- Software selectable crystal oscillator range, 32–100 kHz, 1–8 MHz, and 8–32 MHz
- Software configurable input clock from either internal or external source
- Auto wakeup from STOP capability using dedicated internal 32-kHz RC or bus clock source
- On-chip in-application programmable FLASH memory
 - Internal program/erase voltage generation
 - Monitor ROM containing user callable program/erase routines
 - FLASH security⁽²⁾

^{1.} See 18.11 Oscillator Characteristics for internal oscillator specifications

^{2.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	ESCI Status Register 2	Read:	0	0	0	0	0	0	BKF	RPF
\$0014	(SCS2)	Write:								
	See page 129.	Reset:	0	0	0	0	0	0	0	0
	ESCI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$0015	(SCDR)	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0
	See page 129.	Reset:				Unaffecte	d by reset			
\$0016	ESCI Baud Rate Register (SCBR)	Read: Write:	LINT	LINR	SCP1	SCP0	R	SCR2	SCR1	SCR0
	See page 130.	Reset:	0	0	0	0	0	0	0	0
\$0017	ESCI Prescaler Register (SCPSC)	Read: Write:	PDS2	PDS1	PDS0	PSSB4	PSSB3	PSSB2	PSSB1	PSSB0
	See page 131.	Reset:	0	0	0	0	0	0	0	0
	ESCI Arbiter Control	Read:	AM1	ALOST	AM0	ACLK	AFIN	ARUN	AROVFL	ARD8
\$0018	Register (SCIACTL)	Write:	AIVIT		AIVIO	AULK				
	See page 135.	Reset:	0	0	0	0	0	0	0	0
	ESCI Arbiter Data Register	Read:	ARD7	ARD6	ARD5	ARD4	ARD3	ARD2	ARD1	ARD0
\$0019	(SCIADAT)	Write:								
	See page 136.	Reset:	0	0	0	0	0	0	0	0
	Keyboard Status and	Read:	0	0	0	0	KEYF	0	IMASKK	MODEK
\$001A	Control Register (KBSCR)	Write:						ACKK		
	See page 87.	Reset:	0	0	0	0	0	0	0	0
	Keyboard Interrupt	Read:	0	AWUIE	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
\$001B	Enable Register (KBIER)	Write:								
	See page 88.	Reset:	0	0	0	0	0	0	0	0
¢0010	Keyboard Interrupt Polarity	Read:	0	0	KBIP5	KBIP4	KBIP3	KBIP2	KBIP1	KBIP0
\$001C	Register (KBIPR) See page 88.	Write: Reset:	0	0	0	0	0	0	0	0
	IRQ Status and Control	Read:	0	0	0	0	IRQF	0	0	0
\$001D	Register (INTSCR)	Write:	0	0	0	0	INQL	ACK	IMASK	MODE
ψυυτD	See page 81.	Reset:	0	0	0	0	0	0	0	0
\$001E	Configuration Register 2 (CONFIG2) ⁽¹⁾	Read: Write:	IRQPUD	IRQEN	R	R	R	ESCIBDSRC	OSCENIN- STOP	RSTEN
400 IL	See page 57.	Reset:	0	0	0	0	0	0	0	0 ⁽²⁾
			1. One-time	writable regis	ter after each	reset.		č	5	-
2. RSTEN reset to 0 by a power-on reset (POR) only.										

		_								
\$001F	Configuration Register 1 (CONFIG1) ⁽¹⁾	Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVITRIP	SSREC	STOP	COPD
	See page 58.	Reset:	0	0	0	0	0 ⁽²⁾	0	0	0
 One-time writable register after each reset. LVITRIP reset to 0 by a power-on reset (POR) only. 										
\$0020	TIM Status and Control Register (TSC)	Read: Write:	TOF 0	TOIE	TSTOP	0 TRST	0	PS2	PS1	PS0
	See page 183.	Reset:	0	0	1	0	0	0	0	0
	TIM Counter Register High	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

\$0021 (TCNTH) See page 185.

Write:

Reset:

0

0

0

R

0

= Reserved

0

U = Unaffected

0

= Unimplemented

MC68HC908QB8 Data Sheet, Rev. 3

0

0

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0036	Oscillator Status and Control Register (OSCSC)	Read: Write:	OSCOPT1	OSCOPT0	ICFS1	ICFS0	ECFS1	ECFS0	ECGON	ECGST
<i>t</i>	See page 100.	Reset:	0	0	0	0	0	0	0	0
\$0037	Reserved									
\$0038	Oscillator Trim Register (OSCTRIM) See page 101.	Read: Write: Reset:	TRIM7	TRIM6 0	TRIM5 0	TRIM4	TRIM3 0	TRIM2	TRIM1	TRIM0 0
\$0039 ↓	Reserved	10001.		U						
\$003B										
\$003C	ADC10 Status and Control Register (ADSCR)	Read: Write:	0000	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
	See page 46.	Reset: Read:	0	0 0	0	1	1	1	1 AD9	1 AD8
\$003D	ADC10 Data Register High (ADRH)	Write:	R	R	R	R	R	R	R	R
φυυυΒ	See page 48.	Reset:	0	0	0	0	0	0	0	0
	ADC10 Data Register Low	Read:	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
\$003E	(ADRL)	Write:	R	R	R	R	R	R	R	R
	See page 48.	Reset:	0	0	0	0	0	0	0	0
\$003F	ADC10 Clock Register (ADCLK)	Read: Write:	ADLPC	ADIV1	ADIV0	ADICLK	MODE1	MODE0	ADLSMP	ACLKEN
	See page 49.	Reset:	0	0	0	0	0	0		0
\$FE00	Break Status Register (BSR) See page 195.	Read: Write:	R	R	R	R	R	R	SBSW 0	R
		Reset: Read:	POR	PIN	COP	ILOP	ILAD	MODRST	0 LVI	0
\$FE01	SIM Reset Status Register (SRSR)	Write:	1011	1 11 1	001	ILOI	ILAD	MODITOT		0
. <u> </u> .	See page 152.	POR:	1	0	0	0	0	0	0	0
\$FE02	Break Auxiliary Register (BRKAR)	Read: Write:	0	0	0	0	0	0	0	BDCOP
	See page 195.	Reset:	0	0	0	0	0	0	0	0
\$FE03	Break Flag Control Register (BFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	See page 195.	Reset:	0							
	Interrupt Status Register 1	Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
\$FE04	(INT1)	Write:	R	R	R	R	R	R	R	R
	See page 149.	Reset:	0	0	0	0	0	0	0	0
\$FE05	Interrupt Status Register 2 (INT2)	Read: Write:	IF14 R	IF13 R	IF12 R	IF11 R	IF10 R	IF9 R	IF8 R	IF7 R
ψι Ευσ	See page 149.	Reset:	<u>н</u> 0	0	0	0	0	0	0	0
	Interrupt Status Register 3	Read:	IF22	IF21	IF20	IF19	IF18	IF17	IF16	IF15
\$FE06	(INT3)	Write:	R	R	R	R	R	R	R	R
	See page 149.	Reset:	0	0	0	0	0	0	0	0
	= Unimplemented R = Reserved U = Unaffected									

Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)

2.6 FLASH Memory (FLASH)

The FLASH memory is intended primarily for program storage. In-circuit programming allows the operating program to be loaded into the FLASH memory after final assembly of the application product. It is possible to program the entire array through the single-wire monitor mode interface. Because no special voltages are needed for FLASH erase and programming operations, in-application programming is also possible through other software-controlled communication paths.

This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from the internal V_{DD} supply. The program and erase operations are enabled through the use of an internal charge pump.

The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations are facilitated through control bits in the FLASH control register (FLCR). Details for these operations appear later in this section.

NOTE An erased bit reads as a 1 and a programmed bit reads as a 0. A security feature prevents viewing of the FLASH contents.⁽¹⁾

2.6.1 FLASH Control Register

The FLASH control register (FLCR) controls FLASH program and erase operations.

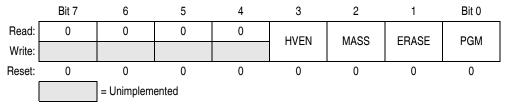


Figure 2-3. FLASH Control Register (FLCR)

HVEN — High Voltage Enable Bit

This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for program or erase is followed.

- 1 = High voltage enabled to array and charge pump on
- 0 = High voltage disabled to array and charge pump off

MASS — Mass Erase Control Bit

This read/write bit configures the memory for mass erase operation.

- 1 = Mass erase operation selected
- 0 = Mass erase operation unselected

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Memory

ERASE — Erase Control Bit

This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time.

- 1 = Erase operation selected
- 0 = Erase operation unselected

PGM — Program Control Bit

This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time.

- 1 = Program operation selected
- 0 = Program operation unselected

2.6.2 FLASH Page Erase Operation

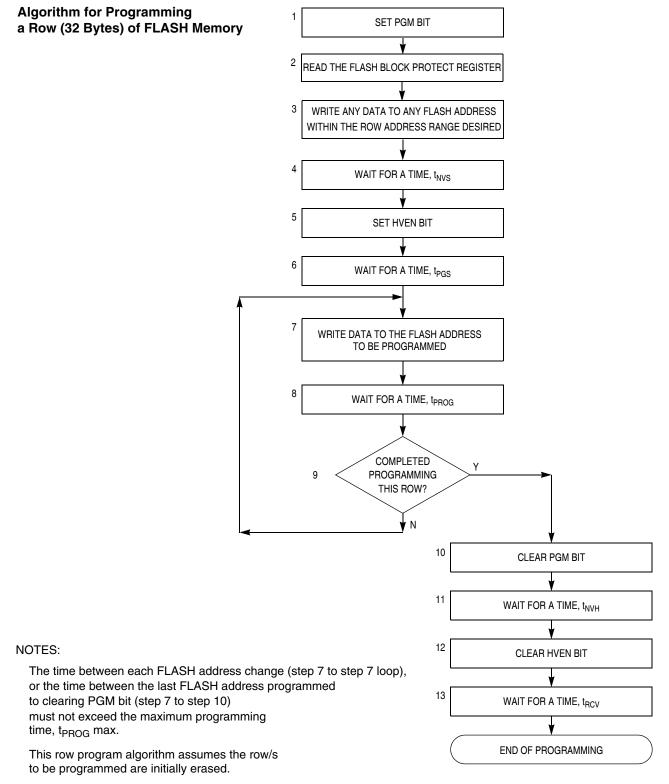
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses \$XX00, \$XX40, \$XX80, or \$XXC0. The 48-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone.

- 1. Set the ERASE bit and clear the MASS bit in the FLASH control register.
- 2. Read the FLASH block protect register.
- 3. Write any data to any FLASH location within the address range of the block to be erased.
- 4. Wait for a time, t_{NVS}.
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{Erase}.
- 7. Clear the ERASE bit.
- 8. Wait for a time, t_{NVH}.
- 9. Clear the HVEN bit.
- 10. After time, t_{RCV}, the memory can be accessed in read mode again.

NOTE

The COP register at location \$FFFF should not be written between steps 5-9, when the HVEN bit is set. Since this register is located at a valid FLASH address, unpredictable behavior may occur if this location is written while HVEN is set.

NOTE


Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, other unrelated operations may occur between the steps.

CAUTION

A page erase of the vector page will erase the internal oscillator trim value at \$FFC0.

FLASH Memory (FLASH)

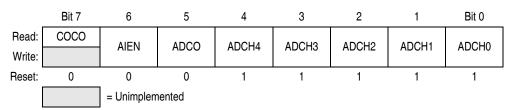
MC68HC908QB8 Data Sheet, Rev. 3

Analog-to-Digital Converter (ADC10) Module

charging. If externally available, connect the V_{REFL} pin to the same potential as V_{SSA} at the single point ground location.

3.7.5 ADC10 Channel Pins (ADn)

The ADC10 has multiple input channels. Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. 0.01 μ F capacitors with good high-frequency characteristics are sufficient. These capacitors are not necessary in all cases, but when used they must be placed as close as possible to the package pins and be referenced to V_{SSA}.


3.8 Registers

These registers control and monitor operation of the ADC10:

- ADC10 status and control register, ADSCR
- ADC10 data registers, ADRH and ADRL
- ADC10 clock register, ADCLK

3.8.1 ADC10 Status and Control Register

This section describes the function of the ADC10 status and control register (ADSCR). Writing ADSCR aborts the current conversion and initiates a new conversion (if the ADCH[4:0] bits are equal to a value other than all 1s).

Figure 3-3. ADC10 Status and Control Register (ADSCR)

COCO — Conversion Complete Bit

COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the status and control register is written or whenever the data register (low) is read.

1 = Conversion completed

0 = Conversion not completed

AIEN — ADC10 Interrupt Enable Bit

When this bit is set, an interrupt is generated at the end of a conversion. The interrupt signal is cleared when the data register is read or the status/control register is written.

1 = ADC10 interrupt enabled

0 = ADC10 interrupt disabled

ADCO — ADC10 Continuous Conversion Bit

When this bit is set, the ADC10 will begin to convert samples continuously (continuous conversion mode) and update the result registers at the end of each conversion, provided the ADCH[4:0] bits do not decode to all 1s. The ADC10 will continue to convert until the MCU enters reset, the MCU enters stop mode (if ACLKEN is clear), ADCLK is written, or until ADSCR is written again. If stop is entered

3.8.4 ADC10 Clock Register (ADCLK)

This register selects the clock frequency for the ADC10 and the modes of operation.

Figure 3-7. ADC10 Clock Register (ADCLK)

ADLPC — ADC10 Low-Power Configuration Bit

ADLPC controls the speed and power configuration of the successive approximation converter. This is used to optimize power consumption when higher sample rates are not required.

1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.

0 = High-speed configuration

ADIV[1:0] — ADC10 Clock Divider Bits

ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK. Table 3-3 shows the available clock configurations.

Table 3-3. ADC10 Clock Divide Ratio

ADIV1	ADIV0	Divide Ratio (ADIV)	Clock Rate
0	0	1	Input clock ÷ 1
0	1	2	Input clock ÷ 2
1	0	4	Input clock ÷ 4
1	1	8	Input clock ÷ 8

ADICLK — Input Clock Select Bit

If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock source to generate the internal clock ADCK. If the alternate clock source is less than the minimum clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (f_{ADCK}) between the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.

1 = The internal bus clock is selected as the input clock source

0 = The alternate clock source IS SELECTED

MODE[1:0] — 10- or 8-Bit or Hardware Triggered Mode Selection

These bits select 10- or 8-bit operation. The successive approximation converter generates a result that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the transfer function to transition at the midpoint between the ideal code voltages, causing a quantization error of $\pm 1/2$ LSB.

Reset returns 8-bit mode.

- 00 = 8-bit, right-justified, ADSCR software triggered mode enabled
- 01 = 10-bit, right-justified, ADSCR software triggered mode enabled
- 10 = Reserved
- 11 = 10-bit, right-justified, hardware triggered mode enabled

Auto Wakeup Module (AWU)

4.3 Functional Description

The function of the auto wakeup logic is to generate periodic wakeup requests to bring the microcontroller unit (MCU) out of stop mode. The wakeup requests are treated as regular keyboard interrupt requests, with the difference that instead of a pin, the interrupt signal is generated by an internal logic.

Entering stop mode will enable the auto wakeup generation logic. Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wakeup interrupt input (see Figure 4-1). A 1 applied to the AWUIREQ input with auto wakeup interrupt request enabled, latches an auto wakeup interrupt request.

Auto wakeup latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data direction or PTA6 pullup exist for this bit.

There are two clock sources for the AWU. An internal RC oscillator (INTRCOSC, exclusive for the auto wakeup feature) drives the wakeup request generator provided the OSCENINSTOP bit in the CONFIG2 register Figure 4-1 is cleared. More accurate wakeup periods are possible using the BUSCLKX2 signal (from the oscillator module) which is selected by setting OSCENINSTOP.

Once the overflow count is reached in the generator counter, a wakeup request, AWUIREQ, is latched and sent to the KBI logic. See Figure 4-1.

Wakeup interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER is set. The AWU shares the keyboard interrupt vector.

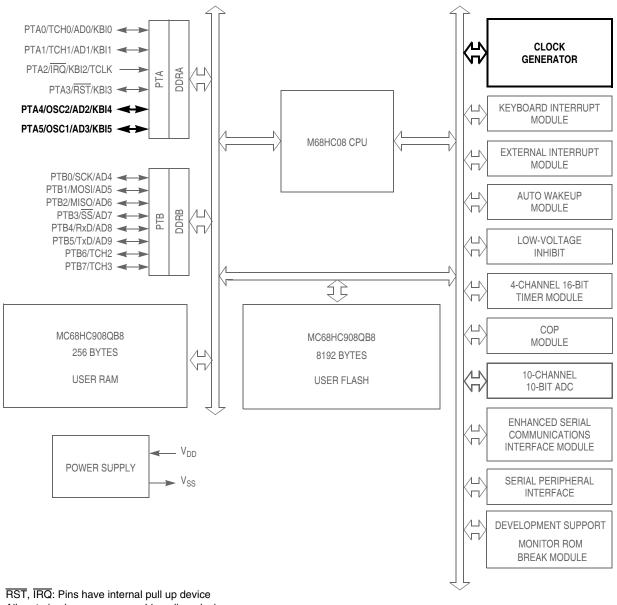
The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was "borrowed" from the computer operating properly (COP) using the fact that the COP feature is idle (no MCU clock available) in stop mode. COPRS = 1 selects the short wakeup period while COPRS = 0 selects the long wakeup period.

The auto wakeup RC oscillator is highly dependent on operating voltage and temperature. This feature is not recommended for use as a time-keeping function.

The wakeup request is latched to allow the interrupt source identification. The latched value, AWUL, can be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 4-1) has no effect on AWUL reading.

The AWU oscillator and counters are inactive in normal operating mode and become active only upon entering stop mode.

4.4 Interrupts


The AWU can generate an interrupt requests:.

AWU Latch (AWUL) — The AWUL bit is set when the AWU counter overflows. The auto wakeup interrupt mask bit, AWUIE, is used to enable or disable AWU interrupt requests.

The AWU shares its interrupt with the KBI vector.

NP

Oscillator Module (OSC)

All port pins have programmable pull up device PTA[0:5]: Higher current sink and source capability

Figure 11-1. Block Diagram Highlighting OSC Block and Pins

Input/Output Ports (PORTS)

12.2.4 Port A Summary Table

The following table summarizes the operation of the port A pins when used as a general-purpose input/output pins.

PTAPUE	DDRA	ΡΤΑ	I/O Pin	Accesses to DDRA	Access	ses to PTA
Bit	Bit	Bit	Mode	Read/Write	Read	Write
1	0	X ⁽¹⁾	Input, V _{DD} ⁽²⁾	DDRA5-DDRA0	Pin	PTA5–PTA0 ⁽³⁾
0	0	Х	Input, Hi-Z ⁽⁴⁾	DDRA5-DDRA0	Pin	PTA5–PTA0 ⁽³⁾
Х	1	Х	Output	DDRA5-DDRA0	PTA5-PTA0	PTA5–PTA0 ⁽⁵⁾

Table 12-1. Port A Pin Functions

1. X = don't care

2. I/O pin pulled to V_{DD} by internal pullup.

3. Writing affects data register, but does not affect input.

4. Hi-Z = high impedance

5. Output does not apply to PTA2

12.3 Port B

Port B is an 8-bit special function port that shares its pins with the 4-channel timer interface module (TIM) (see Chapter 16 Timer Interface Module (TIM)), the 10-bit ADC (see Chapter 3 Analog-to-Digital Converter (ADC10) Module), the serial peripheral interface (SPI) module (see Chapter 15 Serial Peripheral Interface (SPI) Module) and the enhanced serial communications interface (ESCI) module (see Chapter 13 Enhanced Serial Communications Interface (ESCI) Module).

Each port B pin also has a software configurable pullup device if the corresponding port pin is configured as an input port.

12.3.1 Port B Data Register

The port B data register (PTB) contains a data latch for each of the port B pins.

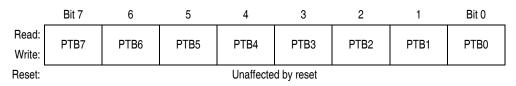


Figure 12-5. Port B Data Register (PTB)

PTB[7:0] — Port B Data Bits

These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.

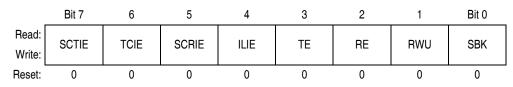
Chapter 13 Enhanced Serial Communications Interface (ESCI) Module

13.1 Introduction

The enhanced serial communications interface (ESCI) module allows asynchronous communications with peripheral devices and other microcontroller units (MCU).

The ESCI module shares its pins with general-purpose input/output (I/O) port pins. See Figure 13-1 for port location of these shared pins. The ESCI baud rate clock source is controlled by a bit (ESCIBDSRC) located in the configuration register.

13.2 Features


Features include:

- Full-duplex operation
- Standard mark/space non-return-to-zero (NRZ) format
- Programmable baud rates
- Programmable 8-bit or 9-bit character length
- Separately enabled transmitter and receiver
- Separate receiver and transmitter interrupt requests
- Programmable transmitter output polarity
- Receiver wakeup methods
 - Idle line
 - Address mark
- Interrupt-driven operation with eight interrupt flags:
 - Transmitter empty
 - Transmission complete
 - Receiver full
 - Idle receiver input
 - Receiver overrun
 - Noise error
 - Framing error
 - Parity error
- Receiver framing error detection
- Hardware parity checking
- 1/16 bit-time noise detection

Enhanced Serial Communications Interface (ESCI) Module

- Enables the receiver
- Enables ESCI wakeup
- Transmits ESCI break characters

Figure 13-10. ESCI Control Register 2 (SCC2)

SCTIE — ESCI Transmit Interrupt Enable Bit

This read/write bit enables the SCTE bit to generate ESCI transmitter interrupt requests. Setting the SCTIE bit in SCC2 enables the SCTE bit to generate interrupt requests.

1 = SCTE enabled to generate interrupt

0 = SCTE not enabled to generate interrupt

TCIE — Transmission Complete Interrupt Enable Bit

This read/write bit enables the TC bit to generate ESCI transmitter interrupt requests.

1 = TC enabled to generate interrupt requests

0 = TC not enabled to generate interrupt requests

SCRIE — ESCI Receive Interrupt Enable Bit

This read/write bit enables the SCRF bit to generate ESCI receiver interrupt requests. Setting the SCRIE bit in SCC2 enables the SCRF bit to generate interrupt requests.

1 = SCRF enabled to generate interrupt

0 = SCRF not enabled to generate interrupt

ILIE — Idle Line Interrupt Enable Bit

This read/write bit enables the IDLE bit to generate ESCI receiver interrupt requests.

1 = IDLE enabled to generate interrupt requests

0 = IDLE not enabled to generate interrupt requests

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (high). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted.

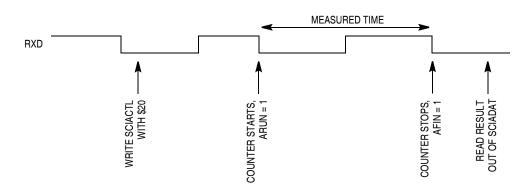
1 = Transmitter enabled

0 = Transmitter disabled

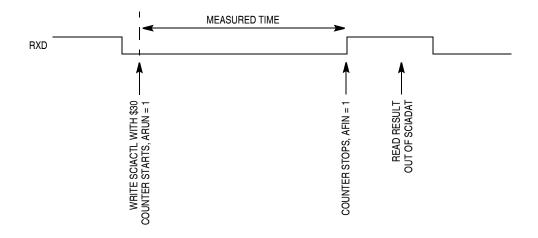
NOTE

Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

RE — Receiver Enable Bit


Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits.

1 = Receiver enabled


0 = Receiver disabled

ESCI Arbiter

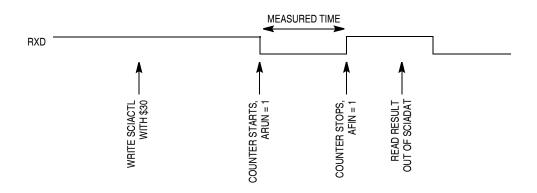


Figure 13-22. Bit Time Measurement with ACLK = 1, Scenario B

MC68HC908QB8 Data Sheet, Rev. 3

14.6 Exception Control

Normal sequential program execution can be changed in three different ways:

- 1. Interrupts
 - a. Maskable hardware CPU interrupts
 - b. Non-maskable software interrupt instruction (SWI)
- 2. Reset
- 3. Break interrupts

14.6.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 14-7 flow charts the handling of system interrupts.

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 14-8 shows interrupt entry timing. Figure 14-9 shows interrupt recovery timing.

14.6.1.1 Hardware Interrupts

A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.

If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 14-10 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.

The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE

To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.

System Integration Module (SIM)

14.6.1.2 SWI Instruction

The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.

NOTE

A software interrupt pushes PC onto the stack. A software interrupt does **not** push PC - 1, as a hardware interrupt does.

14.6.2 Interrupt Status Registers

The flags in the interrupt status registers identify maskable interrupt sources. Table 14-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging.

Priority	Source	Flag	Mask ⁽¹⁾	INT Register Flag	Vector Address
Highest	Reset	_	—	_	\$FFFE-\$FFFF
≜	SWI instruction	—	—	-	\$FFFC-\$FFFD
	IRQ pin	IRQF	IMASK	IF1	\$FFFA-\$FFFB
	Timer channel 0 interrupt	CH0F	CH0IE	IF3	\$FFF6-\$FFF7
	Timer channel 1 interrupt	CH1F	CH1IE	IF4	\$FFF4-\$FFF5
	Timer overflow interrupt	TOF	TOIE	IF5	\$FFF2-\$FFF3
	TIM channel 2 vector	CH2F	CH2IE	IF6	\$FFF0-\$FFF1
	TIM channel 3 vector	CH3F	CH3IE	IF7	\$FFEE-\$FFEF
	ESCI error vector	OR, HF, FE, PE	ORIE, NEIE, FEIE, PEIE	IF9	\$FFEA-\$FFEB
	ESCI receive vector	SCRF	SCRIE	IF10	\$FFE8-\$FFE9
	ESCI transmit vector	SCTE, TC	SCTIE, TCIE	IF11	\$FFE6\$FFE7
	SPI receive	SPRF, OVRF, MODF	SPRIE, ERRIE	IF12	\$FFE4\$FFE5
	SPI transmit	SPTE	SPTIE	IF13	\$FFE2\$FFE3
¥	Keyboard interrupt	KEYF	IMASKK	IF14	\$FFE0-\$FFE1
Lowest	ADC conversion complete interrupt	COCO	AIEN	IF15	\$FFDE-\$FFDF

Table 14-3. Interrupt Sources

1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.

15.7 I/O Signals

The SPI module can share its pins with the general-purpose I/O pins. See Figure 15-1 for the port pins that are shared.

The SPI module has four I/O pins:

- MISO Master input/slave output
- MOSI Master output/slave input
- SPSCK Serial clock
- SS Slave select

15.7.1 MISO (Master In/Slave Out)

MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin.

Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is 0 and its \overline{SS} pin is low. To support a multiple-slave system, a high on the \overline{SS} pin puts the MISO pin in a high-impedance state.

When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port.

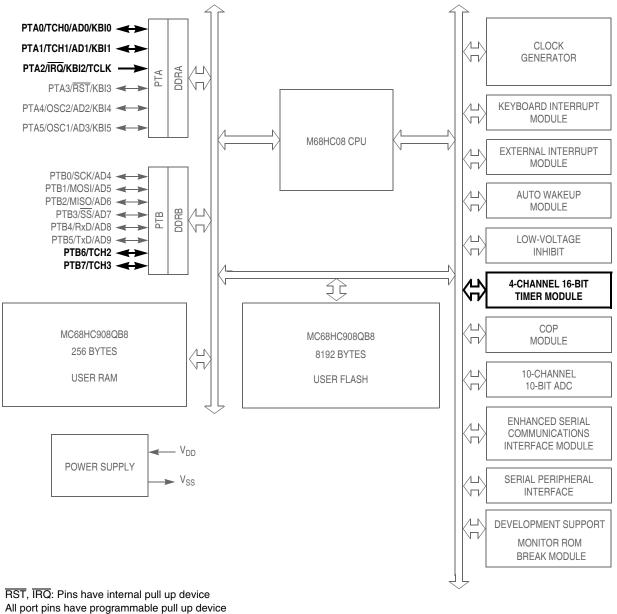
15.7.2 MOSI (Master Out/Slave In)

MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin.

When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction register of the shared I/O port.

15.7.3 SPSCK (Serial Clock)

The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.


When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port.

15.7.4 SS (Slave Select)

The \overline{SS} pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, \overline{SS} is used to select a slave. For CPHA = 0, the \overline{SS} is used to define the start of a transmission. (See 15.3.3 Transmission Formats.) Because it is used to indicate the start of a transmission, \overline{SS} must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 15-12.

Timer Interface Module (TIM)

PTA[0:5]: Higher current sink and source capability

Figure 16-1. Block Diagram Highlighting TIM Block and Pins

16.3.2 Input Capture

With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can be enabled to generate interrupt requests.

MC68HC908QB8 Data Sheet, Rev. 3