

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	16-DIP (0.300", 7.62mm)
Supplier Device Package	16-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qb8mpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1	General Description17
Chapter 2	Memory
Chapter 3	Analog-to-Digital Converter (ADC10) Module
Chapter 4	Auto Wakeup Module (AWU)51
Chapter 5	Configuration Register (CONFIG)57
Chapter 6	Computer Operating Properly (COP)61
Chapter 7	Central Processor Unit (CPU)65
Chapter 8	External Interrupt (IRQ)77
Chapter 9	Keyboard Interrupt Module (KBI)
Chapter 10	Low-Voltage Inhibit (LVI)
Chapter 11	Oscillator Module (OSC)
Chapter 12	Input/Output Ports (PORTS)
Chapter 13	Enhanced Serial Communications Interface (ESCI) Module
Chapter 14	System Integration Module (SIM)139

General Description

- On-chip random-access memory (RAM)
- Enhanced serial communications interface (ESCI) module
- Serial peripheral interface (SPI) module
- 4-channel, 16-bit timer interface (TIM) module
- 10-channel, 10-bit analog-to-digital converter (ADC) with internal bandgap reference channel (ADC10)
- Up to 13 bidirectional input/output (I/O) lines and one input only:
 - Six shared with KBI
 - Ten shared with ADC
 - Four shared with TIM
 - Two shared with ESCI
 - Four shared with SPI
 - One input only shared with IRQ
 - High current sink/source capability on all port pins
 - Selectable pullups on all ports, selectable on an individual bit basis
 - Three-state ability on all port pins
- 6-bit keyboard interrupt with wakeup feature (KBI)
 - Programmable for rising/falling or high/low level detect
 - Low-voltage inhibit (LVI) module features:
 - Software selectable trip point
- System protection features:
 - Computer operating properly (COP) watchdog
 - Low-voltage detection with reset
 - Illegal opcode detection with reset
 - Illegal address detection with reset
- External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose input pin
- Master asynchronous reset pin with internal pullup (RST) shared with general-purpose input/output (I/O) pin
- Memory mapped I/O registers
- Power saving stop and wait modes
- MC68HC908QB8, MC68HC908QB4 and MC68HC908QY8 are available in these packages:
 - 16-pin plastic dual in-line package (PDIP)
 - 16-pin small outline integrated circuit (SOIC) package
 - 16-pin thin shrink small outline packages (TSSOP)

Features of the CPU08 include the following:

- Enhanced HC05 programming model
- Extensive loop control functions
- 16 addressing modes (eight more than the HC05)
- 16-bit index register and stack pointer
- Memory-to-memory data transfers
- Fast 8 × 8 multiply instruction
- Fast 16/8 divide instruction
- Binary-coded decimal (BCD) instructions
- Optimization for controller applications
- Efficient C language support

General Description

1.4 Pin Assignments

The MC68HC908QB8, MC68HC908QB4, and MC68HC908QY8 are available in 16-pin packages. Figure 1-2 shows the pin assignment for these packages.

Figure 1-2. MCU Pin Assignments

1.5 Pin Functions

Table 1-2 provides a description of the pin functions.

NP,

General Description

Pin Name	Description	Input/Output
	PTB4 — General-purpose I/O port	Input/Output
PTB4	RxD — ESCI receive data I/O	Input/Output
	AD8 — A/D channel 8 input	Input
	PTB5 — General-purpose I/O port	Input/Output
PTB5	TxD — ESCI transmit data I/O	Output
	AD9 — A/D channel 9 input	Input
DTDC	PTB6 — General-purpose I/O port	Input/Output
PIBO	TCH2 — Timer channel 2 I/O	Input/Output
DTD7	PTB7 — General-purpose I/O port	Input/Output
PIB/	TCH3 — Timer channel 3 I/O	Input/Output

Table 1-2. Pin Functions (Continued)

1.6 Pin Function Priority

Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.

NOTE

Upon reset all pins come up as input ports regardless of the priority table.

Pin Name	Highest-to-Lowest Priority Sequence
PTA0 ⁽¹⁾	$AD0 \rightarrow TCH0 \rightarrow KBI0 \rightarrow PTA0$
PTA1 ⁽¹⁾	$AD1 \rightarrow TCH1 \rightarrow KBI1 \rightarrow PTA1$
PTA2	$\overline{\text{IRQ}} \rightarrow \text{TCLK} \rightarrow \text{KBI2} \rightarrow \text{PTA2}$
PTA3	$\overline{\text{RST}} \rightarrow \text{KBI3} \rightarrow \text{PTA3}$
PTA4 ⁽¹⁾	$OSC2 \rightarrow AD2 \rightarrow KBI4 \rightarrow PTA4$
PTA5 ⁽¹⁾	$OSC1 \rightarrow AD3 \rightarrow KBI5 \rightarrow PTA5$
PTB0 ⁽¹⁾	$AD4 \rightarrow SPSCK \rightarrow PTB0$
PTB1 ⁽¹⁾	$AD5 \rightarrow MOSI \rightarrow PTB1$
PTB2 ⁽¹⁾	$AD6 \rightarrow MISO \rightarrow PTB2$
PTB3 ⁽¹⁾	$AD7 \rightarrow \overline{SS} \rightarrow PTB3$
PTB4 ⁽¹⁾	$AD8 \rightarrow RxD \rightarrow PTB4$
PTB5 ⁽¹⁾	$AD9 \rightarrow TxD \rightarrow PTB5$
PTB6	$TCH2 \rightarrow PTB6$
PTB7	$TCH3 \rightarrow PTB7$

Table 1-3. Function Priority in Shared Pins

1. When a pin is to be used as an ADC pin, the I/O port function should be left as an input and all other shared modules should be disabled. The ADC does not override additional modules using the pin.

Memory

\$0000 ↓ \$003F	IDIRECT PAGE REGISTERS 64 BYTES		
\$0040 ↓ \$013F	RAM 256 BYTES	 RESERVED 64 BYTES	\$0040 ↓ \$007F
\$0140 ↓ \$27FF	UNIMPLEMENTED 9920 BYTES	RAM 128 BYTES	\$0080 ↓ \$00FF
\$2800 ↓ \$2A1F	AUXILIARY ROM 544 BYTES	RESERVED 64 BYTES	\$0100 ↓ \$013F
\$2A20 ↓ \$2F7D	UNIMPLEMENTED 1374 BYTES		
\$2F7E ↓ \$2FFF	AUXILIARY ROM 130 BYTES		
\$3000 ↓ \$DDFF	UNIMPLEMENTED 44,544 BYTES	 	
\$DE00 ↓ \$FDFF	FLASH MEMORY 8192 BYTES	RESERVED 4096 BYTES	\$DE00 ↓ \$EDFF
\$FE00 ↓ \$FE1F	MISCELLANEOUS REGISTERS 32 BYTES	FLASH MEMORY 4096 BYTES	\$EE00 ↓ \$FDFF
\$FE20 ↓ \$FF7D	MONITOR ROM 350 BYTES		
\$FF7E ↓ \$FFAF	UNIMPLEMENTED 50BYTES		
\$FFB0 ↓ \$FFBD	FLASH 14 BYTES		
\$FFBE ↓ \$FFC1	MISCELLANEOUS REGISTERS 4 BYTES		
\$FFC2 ↓ \$FFCF	FLASH 14 BYTES		
\$FFD0 ↓ \$FFFF	USER VECTORS 48 BYTES		

MC68HC908QB8 and MC68HC908QY8 Memory Map MC68HC908QB4 Memory Map

Direct Page Registers

\$FE07	Reserved									
		_								
FLA \$FE08	ASH Control Register (FLCR)	Read: Write:	0	0	0	0	HVEN	MASS	ERASE	PGM
	See page 31.	Reset:	0	0	0	0	0	0	0	0
\$FE09	Break Address High Register (BRKH)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 194.	Reset:	0	0	0	0	0	0	0	0
\$FE0A	Break Address low Register (BRKL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 194.	Reset:	0	0	0	0	0	0	0	0
Brea	ak Status and Control	Read:	BRKE	BRKA	0	0	0	0	0	0
\$FE0B	Register (BRKSCR)	write:	0	0	0	0	0	0	0	0
	See page 194.	Reset:		0	0	0	0	0	0	U
\$FEOC	LVI Status Register	Write	LVIOUT	0	0	0	0	0	0	n
ψi Luo	See page 91.	Reset:	0	0	0	0	0	0	0	0
\$FE0D		10000.	v	•	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	,
↓ \$FE0F	Reserved									
		-								
FFBE	FLASH Block Protect Register (FLBPR)	Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0
	See page 36.	Reset:				Unaffecte	d by reset			
ACCDC	Deserved	ſ								
ֆFFBF	Reserved									
		r								
In \$FFC0 (F	ternal Oscillator Trim Factory Programmed,	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
,	V _{DD} = 3.0 V)	Reset:			Rese	ets to factory p	programmed v	value	L	
		Γ								
\$FFC1	Reserved									
		L			<u> </u>	<u> </u>			<u> </u>	

	COP Control Register	Read:	LOW BYTE OF RESET VECTOR									
\$FFFF	(COPCTL)	Write:	WRITING CLEARS COP COUNTER (ANY VALUE)									
	See page 63.	Reset:	Unaffected by reset									
			= Unimplemented R = Reserved U = Unaffected									

3.3.4.4 Code Width and Quantization Error

The ADC10 quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step ideally has the same height (1 code) and width. The width is defined as the delta between the transition points from one code to the next. The ideal code width for an N bit converter (in this case N can be 8 or 10), defined as 1LSB, is:

$$1LSB = (V_{REFH} - V_{REFL}) / 2^{N}$$

Because of this quantization, there is an inherent quantization error. Because the converter performs a conversion and then rounds to 8 or 10 bits, the code will transition when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be $\pm 1/2$ LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first (\$000) conversion is only 1/2LSB and the code width of the last (\$FF or \$3FF) is 1.5LSB.

3.3.4.5 Linearity Errors

The ADC10 may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors but the user should be aware of them because they affect overall accuracy. These errors are:

- Zero-Scale Error (E_{ZS}) (sometimes called offset) This error is defined as the difference between the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first conversion is \$001, then the difference between the actual \$001 code width and its ideal (1LSB) is used.
- Full-Scale Error (E_{FS}) This error is defined as the difference between the actual code width of the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is \$3FE, then the difference between the actual \$3FE code width and its ideal (1LSB) is used.
- Differential Non-Linearity (DNL) This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.
- Integral Non-Linearity (INL) This error is defined as the highest-value the (absolute value of the) running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total Unadjusted Error (TUE) This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function, and therefore includes all forms of error.

3.3.4.6 Code Jitter, Non-Monotonicity and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter, non-monotonicity, and missing codes.

- Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the converter yields the lower code (and vice-versa). However, even very small amounts of system noise can cause the converter to be indeterminate (between two codes) for a range of input voltages around the transition voltage. This range is normally around ±1/2LSB but will increase with noise.
- Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a higher input voltage.
- Missing codes are those which are never converted for any input value. In 8-bit or 10-bit mode, the ADC10 is guaranteed to be monotonic and to have no missing codes.

Analog-to-Digital Converter (ADC10) Module

3.8.2 ADC10 Result High Register (ADRH)

This register holds the MSBs of the result and is updated each time a conversion completes. All other bits read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with ADRL.

Figure 3-5. ADC10 Data Register High (ADRH), 10-Bit Mode

3.8.3 ADC10 Result Low Register (ADRL)

This register holds the LSBs of the result. This register is updated each time a conversion completes. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.

Figure 3-6. ADC10 Data Register Low (ADRL)

Central Processor Unit (CPU)

Source					Effect on CCR				SS	de	and	s
Form	Operation	Description	v	н	1	N	z	С	ddre lode	bco	pera	ycle
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00 \\ A \leftarrow \$00 \\ X \leftarrow \$00 \\ H \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	ţ	_		ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\underline{M}) = \$FF - (M) \\ A \leftarrow (\underline{A}) = \$FF - (M) \\ X \leftarrow (\underline{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\mathbf{M}) = \$FF - (M) \end{array}$	0	_	I	ţ	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	411435
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-	I	t	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	1	\$	\$	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 4 + rel ? (result) \neq 0 \end{array}$	_	_	-	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr ff rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	_		ţ	ţ	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	_	-	1	t	INH	52		7
EOR #opr EOR opr EOR opr, EOR opr,X EOR opr,X EOR X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	-	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1\\ A \leftarrow (A) + 1\\ X \leftarrow (X) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5

Table 7-1. Instruction Set Summary (Sheet 3 of 6)

Source		-		Effect on CCR					ess	de	and	S
Form	Operation	Description	v	н	1	N	z	С	Addr Aode	Dpco	Dec	Sycle
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	$PC \leftarrow Jump \; Address$	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	$PC \leftarrow (PC) + n (n = 1, 2, or 3)$ $Push (PCL); SP \leftarrow (SP) - 1$ $Push (PCH); SP \leftarrow (SP) - 1$ $PC \leftarrow Unconditional Address$	-	_	_	_	_	_	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	4 5 6 5 4
LDA #opr LDA opr LDA opr,X LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ff ee ff	23443245
LDHX # <i>opr</i> LDHX <i>opr</i>	Load H:X from M	$H:X \leftarrow (M:M+1)$	0	-	-	ţ	ţ	-	IMM DIR	45 55	ii jj dd	3 4
LDX #opr LDX opr LDX opr,X LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load X from M	X ← (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE EE FE 9EEE 9EDE	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left (Same as ASL)	C - 0 b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	$0 \longrightarrow \boxed[b7]{b0} \hline[b]{b0}$	ţ	_	-	0	ţ	ţ	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr	Move	(M) _{Destination} ← (M) _{Source} H:X ← (H:X) + 1 (IX+D, DIX+)	0	_	_	ţ	ţ	-	DD DIX+ IMD IX+D	4E 5E 6E 7E	dd dd dd ii dd dd	5 4 4 4
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$	\$	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	4 1 4 3 5
NOP	No Operation	None	Ι	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap A	A ← (A[3:0]:A[7:4])	-	-	-	-	-	-	INH	62		3
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA opr,SP ORA opr,SP	Inclusive OR A and M	A ← (A) (M)		_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AA BA CA DA EA FA 9EEA 9EDA	ii dd hh II ee ff ff ee ff	23443245
PSHA	Push A onto Stack	Push (A); SP \leftarrow (SP) – 1	-	_	-	-	-	-	INH	87		2
PSHH PSHX	Push H onto Stack Push X onto Stack	Push (H); SP \leftarrow (SP) – 1 Push (X); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH INH	8B 89		2
	•			•	•	•		•				•

Table 7-1. Instruction Set Summary (Sheet 4 c	of 6	5)
---	------	----

Source	Operation	Description					Effect son CCR			ress e	ode	rand	es	
Form	Operation	Description	Decemption					Ν	z	С	Add	Opc	Ope	Cycl
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Pus\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; Pu\\ SP \leftarrow (SP) - 1; Pu\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; L\\ PCH \leftarrow Interrupt Vector\\ PCL \leftarrow Interrupt Vector\\ \end{array}$)) Byte lyte	_	_	1	_		_	INH	83		9	
TAP	Transfer A to CCR	$CCR \leftarrow (A)$			1	1	1	\$	\$	\$	INH	84		2
TAX	Transfer A to X	(A) → X			-	-	-	-	-	-	INH	97		1
TPA	Transfer CCR to A	$A \leftarrow (CCR)$			-	—	-	-		-	INH	85		1
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero	(A) – \$00 or (X) – \$00 o	r (M) –	\$00	0	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 3 2 4
TSX	Transfer SP to H:X	$H:X \leftarrow (SP) +$	1		Ι	-	-	١	-	-	INH	95		2
TXA	Transfer X to A	$A \gets (X)$			Ι	-	-	١	-	-	INH	9F		1
TXS	Transfer H:X to SP	$(SP) \leftarrow (H:X) -$	· 1		Ι	-	-	١	-	-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	I bit ← 0; Inhibit CPU until interrupte	clockin d	g	Ι	_	0	Ι	-	-	INH	8F		1
A Accumu C Carry/bc CCR Conditio dd Direct a DD Direct a DD Direct to DIR Direct a DIX+ Direct to eff High an EXT Extende ff Offset b H Half-car H Index re hh II High an I Interrup ii Immedia IMD Immedia IMD Immedia IMH Inheren IX Indexed IX+D Indexed IX+D Indexed IX+L INDEX IX-L INDEX IX-	Ilator prove bit prove bit pro	of branch instruction sing mode coffset addressing ended addressing ssing mode g mode ing mode ng mode	n opr PCH PCLL rel rr SSP U ∨ X Z & $ \oplus () -(\# \ll \leftarrow ? : \ddagger -$	Any bit Operar Progra Progra Relativ Relativ Relativ Stack p Stack p Stack p Stack p Stack p Undefin Overflo Index r Zero bi Logica Logica Logica Conter Negatii Immed Sign ez Loadec If Concai Set or Not affi	nd o m c e e pooi ooi ooi e e pooi ooi e e pooi ooi e e pooi ooi t e e pooi ooi t e e pooi ooi t e e pooi ooi t e e pooi ooi t e e pooi t e e e pooi t e e e pooi t e e e pooi t e e e e pooi t e e e e e e e e e e e e e e e e e e e	(on could of could of	e or intel intel intel ress gran r, 8- r 16 r LUS o's (alue ed w	r tw r hi r lo bit bit -bi w k	vo t igh owr our our off t of E C mpl	byte byte nod nte set fse OR lerr	es) te e r offset by addressir t addressi	te ng mode ng moc	ə le	

7.8 Opcode Map

See Table 7-2.

Enhanced Serial Communications Interface (ESCI) Module

Slow Data Tolerance

Figure 13-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.

For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times \times 16 RT cycles + 10 RT cycles = 154 RT cycles.

With the misaligned character shown in Figure 13-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times \times 16 RT cycles + 3 RT cycles = 147 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is:

$$\left|\frac{154 - 147}{154}\right| \times 100 = 4.54\%$$

For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles.

With the misaligned character shown in Figure 13-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times \times 16 RT cycles + 3 RT cycles = 163 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is:

$$\left|\frac{170 - 163}{170}\right| \times 100 = 4.12\%$$

Fast Data Tolerance

Figure 13-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10.

Enhanced Serial Communications Interface (ESCI) Module

13.4.1 Transmitter Interrupts

These conditions can generate interrupt requests from the ESCI transmitter:

- ESCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter interrupt request. Setting the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter interrupt requests.
- Transmission complete (TC) The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter interrupt requests.

13.4.2 Receiver Interrupts

These sources can generate interrupt requests from the ESCI receiver:

- ESCI receiver full (SCRF) The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver interrupt request. Setting the ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver interrupts.
- Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate interrupt requests.

13.4.3 Error Interrupts

These receiver error flags in SCS1 can generate interrupt requests:

- Receiver overrun (OR) The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate ESCI error interrupt requests.
- Noise flag (NF) The NF bit is set when the ESCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate ESCI error interrupt requests.
- Framing error (FE) The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error interrupt requests.
- Parity error (PE) The PE bit in SCS1 is set when the ESCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error interrupt requests.

13.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

13.5.1 Wait Mode

The ESCI module remains active in wait mode. Any enabled interrupt request from the ESCI module can bring the MCU out of wait mode.

If ESCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction.

Enhanced Serial Communications Interface (ESCI) Module

PDS[2:1:0]	PSSB[4:3:2:1:0]	SCP[1:0]	Prescaler Divisor (BPD)	SCR[2:1:0]	Baud Rate Divisor (BD)	Baud Rate (f _{Bus} = 4.9152 MHz)
000	ххххх	0 0	1	000	1	76,800
1 1 1	0 0 0 0 0	0 0	1	000	1	9600
1 1 1	00001	0 0	1	000	1	9562.65
1 1 1	00010	0 0	1	000	1	9525.58
1 1 1	11111	0 0	1	000	1	8563.07
0 0 0	X X X X X	0 0	1	001	2	38,400
0 0 0	X X X X X	0 0	1	010	4	19,200
000	X X X X X	0 0	1	011	8	9600
0 0 0	X X X X X	0 0	1	100	16	4800
0 0 0	X X X X X	0 0	1	101	32	2400
000	X X X X X	0 0	1	1 1 0	64	1200
0 0 0	X X X X X	0 0	1	111	128	600
0 0 0	X X X X X	0 1	3	0 0 0	1	25,600
000	X X X X X	0 1	3	001	2	12,800
0 0 0	X X X X X	0 1	3	010	4	6400
0 0 0	X X X X X	0 1	3	011	8	3200
0 0 0	X X X X X	0 1	3	100	16	1600
0 0 0	ххххх	0 1	3	101	32	800
000	ххххх	0 1	3	110	64	400
000	X X X X X	0 1	3	111	128	200
0 0 0	ххххх	10	4	0 0 0	1	19,200
0 0 0	ххххх	10	4	001	2	9600
000	X X X X X	10	4	010	4	4800
000	ххххх	10	4	011	8	2400
000	X	10	4	100	16	1200
000	ххххх	10	4	101	32	600
000	ххххх	10	4	110	64	300
000	X	10	4	111	128	150
000	X	11	13	000	1	5908
000	ххххх	11	13	001	2	2954
000	X	11	13	010	4	1477
000	x x x x x x	1 1	13	0 1 1	8	739
000	ххххх	1 1	13	100	16	369
000	ххххх	1 1	13	101	32	185
000	ххххх	1 1	13	1 1 0	64	92
000	XXXXX	1 1	13	111	128	46

Table 13-10	. ESCI Bau	d Rate Selection	on Examples
-------------	------------	------------------	-------------

13.9 ESCI Arbiter

The ESCI module comprises an arbiter module designed to support software for communication tasks as bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit counter with 1-bit overflow and control logic. The can control operation mode via the ESCI arbiter control register (SCIACTL).

13.9.1 ESCI Arbiter Control Register

Figure 13-18. ESCI Arbiter Control Register (SCIACTL)

AM1 and AM0 — Arbiter Mode Select Bits

These read/write bits select the mode of the arbiter module as shown in Table 13-11.

Table 13-11. ESCI Arbiter Selectable Modes

AM[1:0]	ESCI Arbiter Mode			
0 0	Idle / counter reset			
0 1	Bit time measurement			
1 0	Bus arbitration			
1 1	Reserved / do not use			

ALOST — Arbitration Lost Flag

This read-only bit indicates loss of arbitration. Clear ALOST by writing a 0 to AM1.

ACLK — Arbiter Counter Clock Select Bit

This read/write bit selects the arbiter counter clock source.

1 = Arbiter counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler

0 = Arbiter counter is clocked with the bus clock divided by four

NOTE

For ACLK = 1, the arbiter input clock is driven from the ESCI prescaler. The prescaler can be clocked by either the bus clock or BUSCLKX4 depending on the state of the ESCIBDSRC bit in configuration register.

AFIN— Arbiter Bit Time Measurement Finish Flag

This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to SCIACTL.

1 = Bit time measurement has finished

0 = Bit time measurement not yet finished

System Integration Module (SIM)

Figure 14-1. SIM Block Diagram

14.3 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 14-2.

Figure 14-2. SIM Clock Signals

Serial Peripheral Interface (SPI) Module

15.8.3 SPI Data Register

The SPI data register consists of the read-only receive data register and the write-only transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate registers that can contain different values. See Figure 15-2.

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	R7	R6	R5	R4	R3	R2	R1	R0
Write:	T7	T6	T5	T4	T3	T2	T1	Т0
Reset:	Unaffected by reset							

Figure 15-15. SPI Data Register (SPDR)

R7–R0/T7–T0 — Receive/Transmit Data Bits

NOTE

Do not use read-modify-write instructions on the SPI data register because the register read is not the same as the register written.

Timer Interface Module (TIM)

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.

NOTE

In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

16.3.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the TCH2 pin. The TIM channel registers of the linked pair alternately control the output.

Setting the MS2B bit in TIM channel 2 status and control register (TSC2) links channel 2 and channel 3. The TIM channel 2 registers initially control the pulse width on the TCH2 pin. Writing to the TIM channel 3 registers enables the TIM channel 3 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (2 or 3) that control the pulse width are the ones written to last. TSC2 controls and monitors the buffered PWM function, and TIM channel 3 status and control register (TSC3) is unused. While the MS2B bit is set, the channel 3 pin, TCH3, is available as a general-purpose I/O pin.

NOTE

In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.

Writing a 1 to CHxF has no effect.

1 = Input capture or output compare on channel x

0 = No input capture or output compare on channel x

CHxIE — Channel x Interrupt Enable Bit

This read/write bit enables TIM interrupt service requests on channel x.

1 = Channel x interrupt requests enabled

0 = Channel x interrupt requests disabled

MSxB — Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TSC0 and TSC2 registers.

Setting MS0B causes the contents of TSC1 to be ignored by the TIM and reverts TCH1 to general-purpose I/O.

Setting MS2B causes the contents of TSC3 to be ignored by the TIM and reverts TCH3 to general-purpose I/O.

1 = Buffered output compare/PWM operation enabled

0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 16-2.

1 = Unbuffered output compare/PWM operation

0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 16-2).

1 = Initial output level low

0 = Initial output level high

NOTE

Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).

MSxB	MSxA	ELSxB	ELSxA	Mode	Configuration
х	0	0	0		Pin under port control; initial output level high
х	1	0	0	Output preset	Pin under port control; initial output level low
0	0	0	1		Capture on rising edge only
0	0	1	0	Input capture	Capture on falling edge only
0	0	1	1		Capture on rising or falling edge
0	1	0	0		Software compare only
0	1	0	1	Output compare	Toggle output on compare
0	1	1	0	or PWM	Clear output on compare
0	1	1	1		Set output on compare
1	Х	0	1	Buffered output	Toggle output on compare
1	Х	1	0	compare or	Clear output on compare
1	Х	1	1	buffered PWM	Set output on compare

Table 16-2. Mode, Edge, and Level Selection

18.12 Supply Current Characteristics

Characteristic ⁽¹⁾	Voltage	Bus Frequency (MHz)	Symbol	Typ ⁽²⁾	Max	Unit
Run mode V _{DD} supply current ⁽³⁾	5.0 3.0	3.2 3.2	RI _{DD}	7.25 3.1	8.5 3.8	mA
Wait mode V _{DD} supply current ⁽⁴⁾	5.0 3.0	3.2 3.2	WI _{DD}	1.0 0.67	2.0 1.2	mA
Stop mode V _{DD} supply current ⁽⁵⁾ -40 to 85°C -40 to 105°C -40 to 125°C 25°C with auto wake-up enabled ⁽⁶⁾ Incremental current with LVI enabled	5.0		q	0.26 — — 12 125	1.0 2.0 5.0 —	μA
Stop mode V _{DD} supply current ⁽⁴⁾ -40 to 85°C -40 to 105°C -40 to 125°C 25°C with auto wake-up enabled ⁽⁶⁾ Incremental current with LVI enabled	3.0		JDD	0.23 — 2 100	0.8 1.0 4.0 —	μA

1. $V_{SS} = 0$ Vdc, $T_A = T_L$ to T_H , unless otherwise noted. 2. Typical values reflect average measurements, 25•C only. Typical values are for reference only and are not tested in production.

3. Run (operating) I_{DD} measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

5. Stop I_{DD} measured with all pins configured as inputs and tied to 0.2 V from rail.

6. Values are based on characterization results, not tested in production.