

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166SV2
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-16
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164d-16f20f-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet, V1.2, Aug. 2006

XC164D-16F/16R XC164D-8F/8R

16-Bit Single-Chip Microcontroller with C166SV2 Core

Microcontrollers

Never stop thinking

Table of Contents

Table of Contents

1	Summary of Features	4
2 2.1 2.2	General Device Information Introduction Pin Configuration and Definition	7 7 8
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17	Functional Description Amemory Subsystem and Organization External Bus Controller External Bus Controller Central Processing Unit (CPU) Interrupt System Interrupt System On-Chip Debug Support (OCDS) Capture/Compare Units (CAPCOM1/2) Z The Capture/Compare Unit (CAPCOM6) General Purpose Timer Unit (GPT12E) Real Time Clock Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) High Speed Synchronous Serial Channels (SSC0/SSC1) Z TwinCAN Module Z Watchdog Timer Z Clock Generation Z Parallel Ports Z Power Management Z Instruction Set Summary Z	18922299233790134467
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Electrical Parameters 8 General Parameters 8 DC Parameters 8 AC Parameters 8 Definition of Internal Timing 8 On-chip Flash Operation 8 External Clock Drive XTAL1 8 Testing Waveforms 8 External Bus Timing 8	50 50 53 58 58 58 58 58 52 53 53 54 55
5 5.1 5.2	Package and Reliability Packaging Packaging Packaging Flash Memory Parameters Packaging	70 70 73

Summary of Features

Derivative ¹⁾	Temp. Range	Program Memory	On-Chip RAM	Inter- faces	Clock		
SAF-XC164D-16F40F	-40 °C to 85 °C	128 Kbytes Flash	2 Kbytes DPRAM, 4 Kbytes DSRAM,	ASC0, ASC1,	40 MHz		
SAF-XC164D-16F20F	-40 °C to 85 °C		2 Kbytes PSRAM	SSC0, SSC1,	20 MHz		
SAF-XC164D-8F40F	-40 °C to 85 °C	64 Kbytes Flash	2 Kbytes DPRAM, 2 Kbytes DSRAM,	CANU, CAN1, CC6	40 MHz		
SAF-XC164D-8F20F	-40 °C to 85 °C	-	2 Kbytes PSRAM		20 MHz		
SAF-XC164D-16R40F	-40 °C to 85 °C	128 Kbytes ROM	2 Kbytes DPRAM, 4 Kbytes DSRAM,		40 MHz		
SAF-XC164D-16R20F	-40 °C to 85 °C		2 Kbytes PSRAM		20 MHz		
SAF-XC164D-8R40F	-40 °C to 85 °C	64 Kbytes ROM	2 Kbytes DPRAM, 2 Kbytes DSRAM,		40 MHz		
SAF-XC164D-8R20F	-40 °C to 85 °C		2 Kbytes PSRAM		20 MHz		

Table 1 XC164D Derivative Synopsis

1) This Data Sheet is valid for devices starting with and including design step BB.

General Device Information

Table 2	Pi	n Definit	tions and Fu	unctions (cont'd)
Symbol	Pin Num.	Input Outp.	Function	
P3		10	Port 3 is a	14-bit bidirectional I/O port. Each pin can be
			programme	ed for input (output driver in high-impedance
			state) or ou	Itput (configurable as push/pull or open drain
			ariver). The	e input threshold of Port 3 is selectable (standard
			The followi	na Port 2 pipe alco convo for alternato functions:
D2 1	30	0		GPT2 Timor T6 Togglo Latch Output
FJ.I	39			ASC1 Data Input (Async) or Inp. (Outp. (Sync))
		1/0		East External Interrupt 1 Input (alternate nin A)
			TCK	Debug System: ITAG Clock Input
P3 2	40			GPT2 Register CAPREL Capture Input
10.2	-10			Debug System: JTAG Data In
P3 3	41	0	T3OUT	GPT1 Timer T3 Toggle Latch Output
1 0.0		0	TDO	Debug System: JTAG Data Out
P3.4	42	I	T3EUD	GPT1 Timer T3 External Up/Down Control Input.
			TMS	Debug System: JTAG Test Mode Selection
P3.5	43	1	T4IN	GPT1 Timer T4 Count/Gate/Reload/Capture Inp
		0	TxD1	ASC0 Clock/Data Output (Async./Sync.),
		0	BRKOUT	Debug System: Break Out
P3.6	44	1	T3IN	GPT1 Timer T3 Count/Gate Input
P3.7	45	1	T2IN	GPT1 Timer T2 Count/Gate/Reload/Capture Inp
		1	BRKIN	Debug System: Break In
P3.8	46	I/O	MRST0	SSC0 Master-Receive/Slave-Transmit In/Out.
P3.9	47	I/O	MTSR0	SSC0 Master-Transmit/Slave-Receive Out/In.
P3.10	48	0	TxD0	ASC0 Clock/Data Output (Async./Sync.),
		1	EX2IN	Fast External Interrupt 2 Input (alternate pin B)
P3.11	49	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.),
		1	EX2IN	Fast External Interrupt 2 Input (alternate pin A)
P3.12	50	0	BHE	External Memory High Byte Enable Signal,
		0	WRH	External Memory High Byte Write Strobe,
			EX3IN	Fast External Interrupt 3 Input (alternate pin B)
P3.13	51	1/0	SCLK0	SSC0 Master Clock Output / Slave Clock Input.,
D0 (-			EX3IN	Fast External Interrupt 3 Input (alternate pin A)
P3.15	52	0	CLKOUT	System Clock Output (= CPU Clock),
		0	FOUT	Programmable Frequency Output

General Device Information

Table 2	Pin Definitions and Functions (cont'd)				
Symbol	Pin Num.	Input Outp.	Function		
P20		10	Port 20 is a programme state) or ou (standard o The followi	a 5-bit bidirectional I/O port. Each pin can be ed for input (output driver in high-impedance utput. The input threshold of Port 20 is selectable or special).	
P20.0	63	0	RD	External Memory Read Strobe, activated for every external instruction or data read access.	
P20.1	64	0	WR/WRL	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.	
P20.4	65	0	ALE	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes	
P20.5	66	1	ĒĀ	 External Access Enable pin. A low level at this pin during and after Reset forces the XC164D to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the XC164D to latch the configuration from pins RD, ALE, and WR, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'. 	
P20.12	2	0	RSTOUT	Internal Reset Indication Output. Is activated asynchronously with an external hardware reset. It may also be activated (selectable) synchronously with an internal software or watchdog reset. Is deactivated upon the execution of the EINIT instruction, optionally at the end of reset, or at any time (before EINIT) via user software. 20 pins may input configuration values (see EA).	

General Device Information

Table 2	Pi	n Definit	tions and Fu	unctions (cont'd)
Symbol	Pin Num.	Input Outp.	Function	
PORT1		IO	continue	d
(cont'd)				
P1H.0	89	1	CC6POS0	CAPCOM6: Position 0 Input,
		1	EX0IN	Fast External Interrupt 0 Input (default pin),
		I/O	CC23IO	CAPCOM2: CC23 Capture Inp./Compare Outp.
P1H.1	90	1	CC6POS1	CAPCOM6: Position 1 Input,
		1	EX1IN	Fast External Interrupt 1 Input (default pin),
		I/O	MRST1	SSC1 Master-Receive/Slave-Transmit In/Out.
P1H.2	91	1	CC6POS2	CAPCOM6: Position 2 Input,
		1	EX2IN	Fast External Interrupt 2 Input (default pin),
		I/O	MTSR1	SSC1 Master-Transmit/Slave-Receive Out/Inp.
P1H.3	92	1	T7IN	CAPCOM2: Timer T7 Count Input,
		I/O	SCLK1	SSC1 Master Clock Output / Slave Clock Input,
		1	EX3IN	Fast External Interrupt 3 Input (default pin),
		1	EX0IN	Fast External Interrupt 0 Input (alternate pin A)
P1H.4	93	I/O	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.,
			EX4IN	Fast External Interrupt 4 Input (default pin)
P1H.5	94	I/O	CC25IO	CAPCOM2: CC25 Capture Inp./Compare Outp.,
			EX5IN	Fast External Interrupt 5 Input (default pin)
P1H.6	95	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.,
			EX6IN	Fast External Interrupt 6 Input (default pin)
P1H.7	96	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.,
			EX7IN	Fast External Interrupt 7 Input (default pin)
XTAL2	99	0	XTAL2:	Output of the oscillator amplifier circuit
XTAL1	100	1	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator
			To clock the	e device from an external source, drive XTAL1,
			while leavir	ng XTAL2 unconnected. Minimum and maximum
			high/low an	d rise/fall times specified in the AC
			Characteris	stics must be observed.
			Note: Input	pin XTAL1 belongs to the core voltage domain.
			Ther defin	efore, input voltages must be within the range ed for V_{DDI} .
res	28	 _	Pin is reser	rved and should be connected to V_{DDP} or V_{SSP}
res	29	_	Pin is reser	ved and should be connected to V_{SSP}

Table 4XC164D Interrupt Nodes

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 0	CC1_CC0IC	xx'0040 _H	10 _H / 16 _D
CAPCOM Register 1	CC1_CC1IC	xx'0044 _H	11 _H / 17 _D
CAPCOM Register 2	CC1_CC2IC	xx'0048 _H	12 _H / 18 _D
CAPCOM Register 3	CC1_CC3IC	xx'004C _H	13 _H / 19 _D
CAPCOM Register 4	CC1_CC4IC	xx'0050 _H	14 _H / 20 _D
CAPCOM Register 5	CC1_CC5IC	xx'0054 _H	15 _H / 21 _D
CAPCOM Register 6	CC1_CC6IC	xx'0058 _H	16 _H / 22 _D
CAPCOM Register 7	CC1_CC7IC	xx'005C _H	17 _H / 23 _D
CAPCOM Register 8	CC1_CC8IC	xx'0060 _H	18 _H / 24 _D
CAPCOM Register 9	CC1_CC9IC	xx'0064 _H	19 _H / 25 _D
CAPCOM Register 10	CC1_CC10IC	xx'0068 _H	1A _H / 26 _D
CAPCOM Register 11	CC1_CC11IC	xx'006C _H	1B _H / 27 _D
CAPCOM Register 12	CC1_CC12IC	xx'0070 _H	1C _H / 28 _D
CAPCOM Register 13	CC1_CC13IC	xx'0074 _H	1D _H / 29 _D
CAPCOM Register 14	CC1_CC14IC	xx'0078 _H	1E _H / 30 _D
CAPCOM Register 15	CC1_CC15IC	xx'007C _H	1F _H / 31 _D
CAPCOM Register 16	CC2_CC16IC	xx'00C0 _H	30 _H / 48 _D
CAPCOM Register 17	CC2_CC17IC	xx'00C4 _H	31 _H / 49 _D
CAPCOM Register 18	CC2_CC18IC	xx'00C8 _H	32 _H / 50 _D
CAPCOM Register 19	CC2_CC19IC	xx'00CC _H	33 _H / 51 _D
CAPCOM Register 20	CC2_CC20IC	xx'00D0 _H	34 _H / 52 _D
CAPCOM Register 21	CC2_CC21IC	xx'00D4 _H	35 _H / 53 _D
CAPCOM Register 22	CC2_CC22IC	xx'00D8 _H	36 _H / 54 _D
CAPCOM Register 23	CC2_CC23IC	xx'00DC _H	37 _H / 55 _D
CAPCOM Register 24	CC2_CC24IC	xx'00E0 _H	38 _H / 56 _D
CAPCOM Register 25	CC2_CC25IC	xx'00E4 _H	39 _H / 57 _D
CAPCOM Register 26	CC2_CC26IC	xx'00E8 _H	3A _H / 58 _D
CAPCOM Register 27	CC2_CC27IC	xx'00EC _H	3B _H / 59 _D
CAPCOM Register 28	CC2_CC28IC	xx'00F0 _H	3C _H / 60 _D

3.8 General Purpose Timer Unit (GPT12E)

The GPT12E unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM1/2 timers, and to cause a reload from the CAPREL register.

The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows the XC164D to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

3.10 Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)

The Asynchronous/Synchronous Serial Interfaces ASC0/ASC1 (USARTs) provide serial communication with other microcontrollers, processors, terminals or external peripheral components. They are upward compatible with the serial ports of the Infineon 8-bit microcontroller families and support full-duplex asynchronous communication and half-duplex synchronous communication. A dedicated baud rate generator with a fractional divider precisely generates all standard baud rates without oscillator tuning. For transmission, reception, error handling, and baudrate detection 5 separate interrupt vectors are provided.

In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to 115.2 kbit/s with fixed or programmable IrDA pulse width are supported.

In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift clock which is generated by the ASC0/1. The LSB is always shifted first.

In both modes, transmission and reception of data is FIFO-buffered. An autobaud detection unit allows to detect asynchronous data frames with its baudrate and mode with automatic initialization of the baudrate generator and the mode control bits.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

Summary of Features

- Full-duplex asynchronous operating modes
 - 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
 - Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
 - Multiprocessor mode for automatic address/data byte detection
 - Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
 - Loop-back capability
 - Auto baudrate detection
- Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
- Buffered transmitter/receiver with FIFO support (8 entries per direction)
- Loop-back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, last bit transmitted condition, receive buffer full condition, error condition (frame, parity, overrun error), start and end of an autobaud detection

Summary of Features

- CAN functionality according to CAN specification V2.0 B active.
- Data transfer rate up to 1 Mbit/s
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality and Basic CAN functionality for each message object
- 32 flexible message objects
 - Assignment to one of the two CAN nodes
 - Configuration as transmit object or receive object
 - Concatenation to a 2-, 4-, 8-, 16-, or 32-message buffer with FIFO algorithm
 - Handling of frames with 11-bit or 29-bit identifiers
 - Individual programmable acceptance mask register for filtering for each object
 - Monitoring via a frame counter
 - Configuration for Remote Monitoring Mode
- Up to eight individually programmable interrupt nodes can be used
- CAN Analyzer Mode for bus monitoring is implemented
- Note: When a CAN node has the interface lines assigned to Port 4, the segment address output on Port 4 must be limited. CS lines can be used to increase the total amount of addressable external memory.

Table 7Summary of the XC164D's Parallel Ports				
Port	Control	Alternate Functions		
PORT0	Pad drivers	Address/Data lines or data lines ¹⁾		
PORT1	Pad drivers	Address lines ²⁾		
		Capture inputs or compare outputs, Serial interface lines, Fast external interrupt inputs		
Port 3	Pad drivers, Open drain, Input threshold	Timer control signals, serial interface lines, Optional bus control signal BHE/WRH, System clock output CLKOUT (or FOUT), Debug interface lines		
Port 4	Pad drivers, Open drain, Input threshold	Segment address lines ³⁾		
		Optional chip select signals		
		CAN interface lines ⁴⁾		
Port 5	-	Timer control signals		
Port 9	Pad drivers,	Capture inputs or compare outputs		
	Open drain, Input threshold	CAN interface lines ⁴⁾		
Port 20	Pad drivers, Open drain	Bus control signals RD, WR/WRL, ALE, External access enable pin EA, Reset indication output RSTOUT		

1) For multiplexed bus cycles.

2) For demultiplexed bus cycles.

3) For more than 64 Kbytes of external resources.

4) Can be assigned by software.

3.16 **Power Management**

The XC164D provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the XC164D into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

• **Clock Generation Management** controls the distribution and the frequency of internal and external clock signals. While the clock signals for currently inactive parts of logic are disabled automatically, the user can reduce the XC164D's CPU clock frequency which drastically reduces the consumed power.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3). Each peripheral can separately be disabled/enabled.

The on-chip RTC supports intermittent operation of the XC164D by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.

3.17 Instruction Set Summary

 Table 8 lists the instructions of the XC164D in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 8 Instruction Set Summary

Table 8Instruction Set Summary (cont'd)				
Mnemonic	Description	Bytes		
NOP	Null operation	2		
CoMUL/CoMAC	Multiply (and accumulate)	4		
CoADD/CoSUB	Add/Subtract	4		
Co(A)SHR	(Arithmetic) Shift right	4		
CoSHL	Shift left	4		
CoLOAD/STORE	Load accumulator/Store MAC register	4		
CoCMP	Compare	4		
CoMAX/MIN	Maximum/Minimum	4		
CoABS/CoRND	Absolute value/Round accumulator	4		
CoMOV	Data move	4		
CoNEG/NOP	Negate accumulator/Null operation	4		

Electrical Parameters

Table 11	DC Characteristics (Operating	Conditions	apply) ¹⁾	(cont'd)
----------	----------------------	-----------	------------	----------------------	----------

Parameter	Symbol		Limit Values		Unit	Test Condition	
			Min.	Max.			
Level inactive hold current ¹³⁾	<i>I</i> _{LHI} ¹⁰⁾		-	-10	μA	$V_{\rm OUT}$ = 0.5 × $V_{\rm DDP}$	
Level active hold current ¹³⁾	$I_{\text{LHA}}^{(11)}$		-100	-	μA	V _{OUT} = 0.45 V	
XTAL1 input current	I _{IL}	CC	-	±20	μA	$0 V < V_{IN} < V_{DDI}$	
Pin capacitance ¹⁴⁾ (digital inputs/outputs)	C _{IO}	CC	-	10	pF	-	

1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

2) If XTAL1 is driven by a crystal, reaching an amplitude (peak to peak) of $0.4 \times V_{DDI}$ is sufficient.

3) This parameter is tested for P3, P4, P9.

4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

- 5) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are guaranteed.
- 6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- 7) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 8) The driver of P3.15 is designed for faster switching, because this pin can deliver the reference clock for the bus interface (CLKOUT). The maximum leakage current for P3.15 is, therefore, increased to 1 μ A.
- 9) This specification is valid during Reset for configuration on RD, WR, EA, PORTO
- 10) The maximum current may be drawn while the respective signal line remains inactive.
- 11) The minimum current must be drawn to drive the respective signal line active.
- 12) This specification is valid during Reset for configuration on ALE.
- 13) This specification is valid during Reset for pins P4.3-0, which can act as \overline{CS} outputs, and for P3.12.
- 14) Not subject to production test verified by design/characterization.

Port Output Driver Mode	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1)}$	Nominal Output Current (<i>I</i> _{OLnom} , - <i>I</i> _{OHnom})		
Strong driver	10 mA	2.5 mA		
Medium driver	4.0 mA	1.0 mA		
Weak driver	0.5 mA	0.1 mA		

Table 12 Current Limits for Port Output Drivers

Electrical Parameters

Variable Memory Cycles

External bus cycles of the XC164D are executed in five subsequent cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

This table provides a summary of the phases and the respective choices for their duration.

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 2 TCP) can be extended by 0 3 TCP if the address window is changed	tp _{AB}	1 2 (5)	TCP
Command delay phase	tp _C	03	TCP
Write Data setup/MUX Tristate phase	<i>tp</i> _D	0 1	TCP
Access phase	tp _E	1 32	TCP
Address/Write Data hold phase	tp _F	03	TCP

Table 19 Programmable Bus Cycle Phases (see timing diagrams)

Note: The bandwidth of a parameter (minimum and maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Electrical Parameters

Table 20 External Bus Cycle Timing (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit
			Min.	Max.	
Output valid delay for: RD, WR(L/H)	<i>tc</i> ₁₀	CC	1	13	ns
Output valid delay for: BHE, ALE	<i>tc</i> ₁₁	CC	-1	7	ns
Output valid delay for: A23 A16, A15 A0 (on PORT1)	<i>tc</i> ₁₂	СС	1	16	ns
Output valid delay for: A15 A0 (on PORT0)	<i>tc</i> ₁₃	СС	3	16	ns
Output valid delay for: CS	<i>tc</i> ₁₄	СС	1	14	ns
Output valid delay for: D15 … D0 (write data, MUX-mode)	<i>tc</i> ₁₅	СС	3	17	ns
Output valid delay for: D15 … D0 (write data, DEMUX-mode)	<i>tc</i> ₁₆	СС	3	17	ns
Output hold time for: RD, WR(L/H)	<i>tc</i> ₂₀	СС	-3	3	ns
Output hold time for: BHE, ALE	<i>tc</i> ₂₁	CC	0	8	ns
Output hold time for: A23 A16, A15 A0 (on PORT0)	<i>tc</i> ₂₃	CC	1	13	ns
Output hold time for: CS	<i>tc</i> ₂₄	CC	-3	3	ns
Output hold time for: D15 … D0 (write data)	<i>tc</i> ₂₅	СС	1	13	ns
Input setup time for: D15 … D0 (read data)	<i>tc</i> ₃₀	SR	24	-	ns
Input hold time D15 … D0 (read data) ¹⁾	<i>tc</i> ₃₁	SR	-5	-	ns

 Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD.

Note: The shaded parameters have been verified by characterization. They are not subject to production test.

Package and Reliability

Figure 23 P-TQFP-100-16 (Plastic Thin Quad Flat Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm