

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, SmartCard, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	121
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2g36h0agv2000a

Email: info@E-XFL.COM

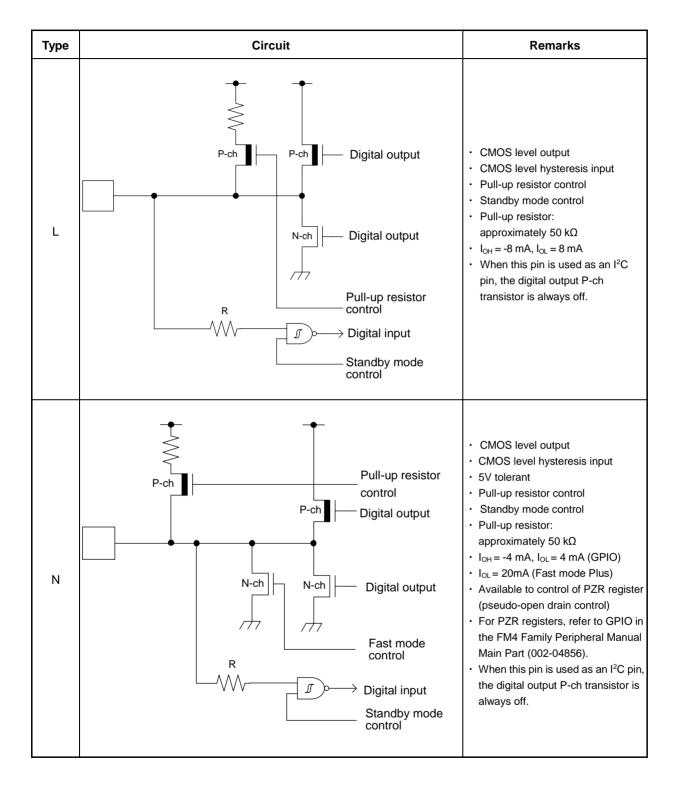
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin N	umber	-	1/0	Pin State		
LQFP-176	LQFP-144	Pin Name	Circuit Type	Туре		
		PAD				
		SCK3_0				
18	15	(SCL3_0)	N	I.		
	-	TIOB9_0	_			
		MADATA13_0				
	-	PAE	_			
	-	ADTG_0 SOT3_0	_			
19	16	(SDA3_0)	Ν	I.		
	ŀ	TIOB10_0	_			
		MADATA14_0				
		PAF				
		SIN3_0				
20	17	TIOB11_0	I	К		
		INT16_0				
		MADATA15_0				
		P08				
21	18	TIOB12_0	E	к		
21	10	INT17_0	_			
		MDQM0_0				
	19	P09				
22		TIOB13_0	E	к		
		INT18_0				
		MDQM1_0				
		P0A		I		
23	20	ADTG_1	L			
		MCLKOUT_0				
		P30	_			
		MI2SWS1_1				
24	-	RX0_1	Е	ĸ		
		TIOB11_2				
		INT01_2				
		P31				
25		MI2SMCK1_1	Е	1		
20	-	TX0_1	E	'		
		TIOA12_2				
		P32				
26	21	INT19_0	L	K		
		S_DATA1_0				
		P33				
27	22	FRCK0_0	L	I.		
		S_DATA0_0				

Pin N	umber	D . 11	.I/O	Pin State	
LQFP-176	LQFP-144	Pin Name	Circuit Type	Туре	
		P92			
		SOT5_1			
		(SDA5_1)			
141	-	RTO12_1 (PPG12_1)	E	К	
		TIOB2_1			
		INT14_1			
		IC0_VPEN_1			
		P93			
		SCK5_1			
		(SCL5_1)	_		
142	-	RTO13_1	Е	к	
		(PPG13_1)			
		TIOB3_1	_		
		INT15_1	_		
		IC0_RST_1			
		P94	_		
	-	CTS5_1	_		
143		RTO14_1 (PPG14_1)	E	I.	
		TIOB4_1			
		IC0_DATA_1	_		
		P95			
		RTS5_1			
		DT015_1			
144	-	(PPG15_1)	E	I	
		TIOB5_1			
		IC0_CIN_1			
4 4 5	44.5	PC0	IZ.	N/	
145	115	E_RXER	K	V	
		PC1			
146	116	TIOB6_0	К	V	
		E_RX03			
		PC2			
147	117	TIOA6_0	К	V	
		E_RX02			
		PC3			
148	118	TIOB7_0	К	V	
		E_RX01	1		
		PC4			
149	119	TIOA7_0	К	V	
		E_RX00	1	ľ	
		PC5			
150	120	TIOB14_0	К	V	
		E_RXDV	1	, i	

	Dia Maria	Frenchise	Pin Number				
Module	Pin Name	Function	LQFP 176	LQFP 144			
	TIOA0_0		46	38			
	TIOA0_1	Base Timer ch 0 TIOA pin	35	30			
Base Timer	TIOA0_2		94	78			
0	TIOB0_0		69	59			
	TIOB0_1	Base Timer ch 0 TIOB pin	139	-			
	TIOB0_2		95	79			
	TIOA1_0		47	39			
	TIOA1_1	Base Timer ch 1 TIOA pin	36	31			
Base Timer	TIOA1_2		96	80			
1	TIOB1_0		70	60			
	TIOB1_1	Base Timer ch 1 TIOB pin	140	-			
	TIOB1_2		97	81			
	TIOA2_0		48	40			
	TIOA2_1	Base Timer ch 2 TIOA pin	37	32			
Base Timer	TIOA2_2	-	98	82			
2	TIOB2_0		71	61			
	TIOB2_1	Base Timer ch 2 TIOB pin	141	-			
	TIOB2_2	-	99	83			
	TIOA3_0		49	41			
	TIOA3_1	Base Timer ch 3 TIOA pin	38	33			
Base Timer	TIOA3_2		106	86			
3	TIOB3_0		72	62			
	TIOB3_1	Base Timer ch 3 TIOB pin	142	-			
	TIOB3_2		107	87			
	TIOA4_0		50	42			
	TIOA4_1	Base Timer ch 4 TIOA pin	39	34			
Base Timer	TIOA4_2		108	88			
4	TIOB4_0		73	63			
	TIOB4_1	Base Timer ch 4 TIOB pin	143	-			
	TIOB4_2	-	109	89			
	TIOA5_0		51	43			
	TIOA5_1	Base Timer ch 5 TIOA pin	40	35			
Base Timer	TIOA5_2	1	114	90			
5	TIOB5_0		74	64			
	TIOB5_1	Base Timer ch 5 TIOB pin	144	-			
	TIOB5_2	1	115	91			
	TIOA6_0		147	117			
	TIOA6_1	Base Timer ch 6 TIOA pin	78	-			
Base Timer	TIOA6_2	1	122	98			
6	TIOB6_0		146	116			
	TIOB6_1	Base Timer ch 6 TIOB pin	79	-			
	TIOB6_2	1	123	99			

Module	Pin Name	Function	Pin Number			
wodule	Pin Name	Function	LQFP 176	LQFP 144		
	MADATA00_0		2	2		
	MADATA01_0		3	3		
	MADATA02_0		4	4		
	MADATA03_0		5	5		
	MADATA04_0		6	6		
	MADATA05_0		7	7		
	MADATA06_0		8	8		
	MADATA07_0		9	9		
	MADATA08_0	(address/data multiplex bus)	13	10		
	MADATA09_0		14	11		
	MADATA10_0		15	12		
	MADATA11_0		16	13		
	MADATA12_0		17	14		
	MADATA13_0		18	15		
	MADATA14_0		19	16		
	MADATA15_0		20	17		
	MDQM0_0	External bus interface byte mask signal	21	18		
	MDQM1_0	output pin	22	19		
	MALE_0	External bus interface address latch enable output signal for multiplex	171	139		
External bus	MRDY_0	External bus interface external RDY input signal	68	58		
545	MCLKOUT_0	External bus interface external clock output pin	23	20		
	MNALE_0	External bus interface ALE signal to control NAND flash output pin	97	81		
	MNCLE_0	External bus interface CLE signal to control NAND flash output pin	96	80		
	MNREX_0	External bus interface read enable signal to control NAND flash	94	78		
	MNWEX_0	External bus interface write enable signal to control NAND flash	95	79		
	MOEX_0	External bus interface read enable signal for SRAM	169	137		
	MWEX_0	External bus interface write enable signal for SRAM	170	138		
	MSDCLK_0	SDRAM interface SDRAM clock output pin	65	55		
	MSDCKE_0	SDRAM interface SDRAM clock enable pin	64	54		
	MRASX_0	SDRAM interface SDRAM row active strobe pin	60	50		
	MCASX_0	SDRAM interface SDRAM column active strobe pin	61	51		
	MSDWEX_0	SDRAM interface SDRAM write enable pin	62	52		



Madula	Dia Mara	Franction	Pin Number			
Module	Pin Name	Function	LQFP 176	LQFP 144		
	SIN5_0	Multi-function serial interface ch 5 input	121	97		
	SIN5_1	pin	140	-		
	SOT5_0 (SDA5_0)	Multi-function serial interface ch 5 output pin	120	96		
Multi-	SOT5_1 (SDA5_1)	This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I ² C (operation mode 4).	141	-		
Function Serial	SCK5_0 (SCL5_0)	Multi-function serial interface ch 5 clock I/O pin	119	95		
5	SCK5_1 (SCL5_1)	This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an I ² C (operation mode 4).	142	-		
	CTS5_0	Multi-function serial interface ch 5 CTS	118	94		
	CTS5_1	input pin	143	-		
	RTS5_0	Multi-function serial interface ch 5 RTS	117	93		
	RTS5_1	output pin	144	-		
	SIN6_0	Multi-function serial interface ch 6 input	73	63		
	SIN6_1	pin	100	84		
	SOT6_0 (SDA6_0)	Multi-function serial interface ch 6 output pin	74	64		
	SOT6_1 (SDA6_1)	This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I ² C (operation mode 4).	101	85		
	SCK6_0 (SCL6_0)	Multi-function serial interface ch 6 clock I/O pin	75	65		
Multi- Function Serial 6	SCK6_1 (SCL6_1)	This pin operates as SCK6 when it is used in a CSIO (operation mode 2) and as SCL6 when it is used in an I ² C (operation mode 4).	102	-		
	SCS60_0	Multi-function serial interface ch 6 chip	76	66		
	SCS60_1	select 0 input/output pin	103	-		
	SCS61_0	Multi-function serial interface ch 6 chip	77	67		
	SCS61_1	select1 input/output pin	104	-		
	SCS62_0	Multi-function serial interface ch 6 chip	78	-		
	SCS62_1	select2 input/output pin	105	-		
	SCS63_0	Multi-function serial interface ch 6 chip	79	-		
	SCS63_1	select3 input/output pin	110	-		

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

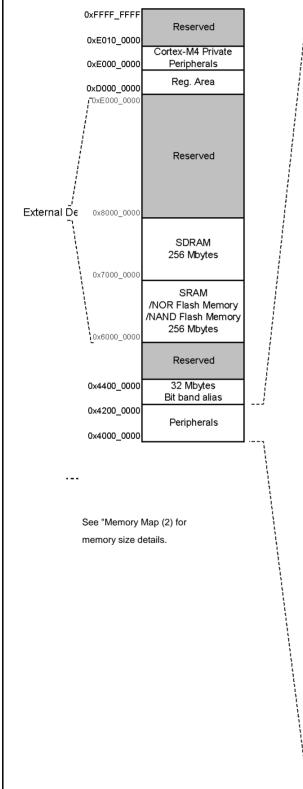
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent this, do the following:

- 1. Avoid exposure to rapid temperature changes, which can cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
- 3. When Dry Packages are opened, it is recommended to have humidity between 40% and 70%.
- 4. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in these aluminum laminate bags for storage.
- 5. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h


Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons, and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, and the use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.

10. Memory Map Memory Map (1)

		Peripherals Area
_	0x41FF_FFFF	
Ţ	-	Reserved
Į.	0x4007_0000	
	0x4006_F000	
i -	0x4006_E000	SD-Card I/F
	0x4006_C000	
		Reserved
	0x4006_7000	
	0x4006_6000	
	0x4006_4000	Ether-MAC ch.0
	0x4006_3000	Reserved
	0x4006_2000	CAN ch.0
	0x4006_1000	DSTC
	0x4006_0000	DMAC
	0x4005_0000	USB ch.1
	0x4004_0000	USB ch.0
	0x4003_F000	EXT-bus I/F
	0x4003_E000	Reserved
	0x4003_CB00	Reserved
	0x4003_CA00	
	0x4003_C900	
	0x4003_C800	Reserved
		Peripheral Clock Gating
		Low Speed CR Prescaler
	0x4003_B000	RTC/Port Ctrl
	0x4003_A000	Watch Counter
	0x4003_9000	CRC
	0x4003_8000	MFS
	0x4003_7000	CAN prescaler
	0x4003_6000	USB Clock ctrl
	0x4003_5000	LVD/DS mode
	0x4003_4000	Beconvod
	0x4003_3000 0x4003_2000	Reserved
		Int Deg Bead
	0x4003_1000	Int-Req.Read EXTI
	0x4003_0000 0x4002 F000	
	0x4002_F000 0x4002_E000	Reserved CR Trim
	0x4002_2000	Reserved
	0x4002_8000 0x4002_7000	A/DC
	0x4002_7000 0x4002_6000	
	0x4002_6000 0x4002_5000	Base Timer
	0x4002_4000	
	0x4002_3000	
	0x4002_2000	Reserved
	0x4002_1000	MFT Unit1
	0x4002_0000	MFT Unit0
	0x4001_6000	Reserved
	0x4001_5000	Dual Timer
	0x4001_3000	Reserved
	0x4001_2000	SW WDT
ţ	0x4001_1000	HW WDT
ł.	0x4001_0000	Clock/Reset
	0 4000 4000	Reserved
ł	0x4000_1000	Moin Elech 1/E
i	_0x4000_0000	MainFlash I/F

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings:

■ INITX = 0

This is the period when the INITX pin is at the L level.

■ INITX = 1

This is the period when the INITX pin is at the H level.

■ SPL = 0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.

■ SPL = 1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.

Input enabled

Indicates that the input function can be used.

Internal input fixed at 0

This is the status that the input function cannot be used. Internal input is fixed at L.

■ Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled

Indicates that the setting is disabled.

Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

Analog input is enabled

Indicates that the analog input is enabled.

Trace output

Indicates that the trace function can be used.

GPIO selected

In Deep standby mode, pins switch to the general-purpose I/O port.

Setting prohibition

Prohibition of a setting by specification limitation

		Pin			- *4	Va	lue		D I.	
Parameter	neter Symbol I		Conditions		Frequency*4	Typ*1	Max* ²	Unit	Remarks	
				*5	180 MHz	82	140	mA		
					160 MHz	74	132	mA		
					144 MHz	68	126	mA		
					120 MHz	58	116	mA		
l I					100 MHz	49	107	mA	*3	
				*6	80 MHz	40	98	mA	When all peripheral	
				0	60 MHz	31	89	mA	clocks are on	
					40 MHz	22	80	mA		
		Icc VCC			20 MHz	13	71	mA		
				Normal operation		8 MHz	7.5	65	mA	
Power					operation 4 MHz 5.6	5.6	63	mA		
supply current	ICC			*5	180 MHz	48	106	mA		
			(1 LL)		160 MHz	44	102	mA		
					144 MHz	41	99	mA		
					120 MHz	35	93	mA		
					100 MHz	30	88	mA	*3	
				*6	80 MHz	25	83	mA	When all peripheral	
				*6	60 MHz	20	78	mA	clocks are off	
l I					40 MHz	14	72	mA		
					20 MHz	8.7	66	mA		
1					8 MHz	5.6	63	mA		
1					4 MHz	4.5	62	mA		

Table 12-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled)

1: T_A = +25 °C, V_{CC} = 3.3 V

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK

5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 0)

6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0)

7: With data access to a MainFlash memory.

8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

Demonster	0. militad	Pin			- *4	Va	alue	11	Demerke
Parameter	Symbol	Name			Frequency*4	Typ*1	Max* ²	Unit	Remarks
			Normal operation *6, *7	*5	4 MHz	4.3	62	mA	*3 When all peripheral clocks are on
			(main oscillation)	-		3.7	61	mA	*3 When all peripheral clocks are off
			N1 1						*3
			Normal operation *6 (built-in High-speed CR)	*5	4 MHz	3.5	61	mA	When all peripheral clocks are on
		Icc VCC				2.9			*3
Power supply	lcc						60	mA	When all peripheral clocks are off
current			Normal operation		32 kHz	0.47	58		*3
				*5				mA	When all peripheral clocks are on
			*6, *8 (sub	5	JZ KIIZ				*3
			oscillation)			0.46	58	mA	When all peripheral clocks are off
			Normal						*3
			operation	*5	100 kHz	0.51	58	mA	When all peripheral clocks are on
				5	100 kHz				*3
						0.50	58	mA	When all peripheral clocks are off

Table 12-4 Typical and Maximum Current Consumption in Normal Operation (Other than PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)

1: T_A = +25 °C, V_{CC} = 3.3 V

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2

5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)

6: With data access to a MainFlash memory.

7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

8: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)

Devenueter	Cumphel	Pin	Conditions	F *4	Va	alue	Unit	Remarks			
Parameter	neter Symbol N	Name	Conditions	Frequency*4	Typ*1	Max* ²	Unit	Remarks			
			Sleep		2.6	60	mA	*3 When all peripheral clocks are on			
			operation ^{*5} (main oscillation)	4 MHz	2.0	60	mA	*3 When all peripheral clocks are off			
			Sleep operation		2.0	60	mA	*3 When all peripheral clocks are on			
Power	Power	Iccs VCC Sleep operation ^{*6} (sub oscillation	(built-in High-speed CR)	4 MHz	1.3	59	mA	*3 When all peripheral clocks are off			
supply current	Iccs			00111	0.46	58	mA	*3 When all peripheral clocks are on			
	(sub oscillation) 0.45						32 KHZ	0.45	58	mA	*3 When all peripheral clocks are off
			•		0.47	58	mA	*3 When all peripheral clocks are on			
		(built-in	, built-in	, built-in	0.46	58	mA	*3 When all peripheral clocks are off			

Table 12-7 Typical and Maximum Current Consumption in Sleep Operation (Other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2

1: T_A = +25 °C, V_{CC} = 3.3 V

2: T_J = +125 °C, V_{CC} = 5.5 V

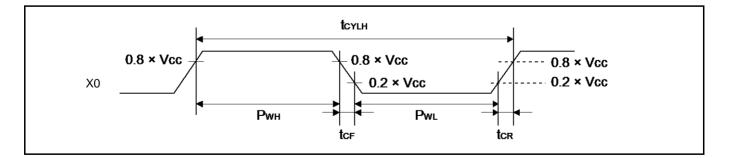
3: When all ports are input and are fixed at 0.

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2

5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)

12.4 AC Characteristics


12.4.1 Main Clock Input Characteristics

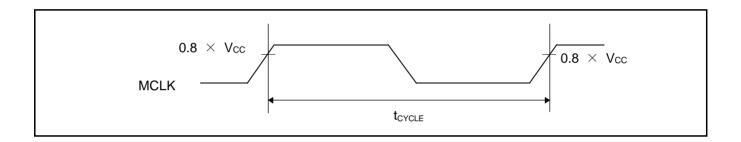
_		Pin		Va	lue			
Parameter	Symbol	Name	Conditions	Min	Max	Unit	Remarks	
			$V_{CC} \ge 4.5 \text{ V}$	4	48		When crystal oscillator is	
			V _{CC} < 4.5 V	4	20	MHz	connected	
Input frequency	fсн		V _{CC} ≥4.5 V	4	48			
			$V_{\rm CC}$ < 4.5 V	4	20	MHz	When using external clock	
la mot ele ele evele		X0, X1	V _{CC} ≥4.5 V	20.83	250			
Input clock cycle	t _{CYLH}		V _{CC} < 4.5 V	50	250	ns	When using external clock	
Input clock pulse width	-		Рwн/tcylн, Pwl/tcylн	45	55	%	When using external clock	
Input clock rise time and fall time	tcF, tcR		-	-	5	ns	When using external clock	
	fcc	-	-	-	180	MHz	Base clock (HCLK/FCLK)	
Internal operating clock *1	f _{CP0}	-	-	-	90	MHz	APB0bus clock *2	
frequency	f _{CP1}	-	-	-	180	MHz	APB1bus clock *2	
	f _{CP2}	-	-	-	90	MHz	APB2bus clock *2	
	tcycc	-	-	5.56	-	ns	Base clock (HCLK/FCLK)	
Internal operating clock *1	tcycp0	-	-	11.1	-	ns	APB0bus clock *2	
cycle time	t _{CYCP1}	-	-	5.56	-	ns	APB1bus clock *2	
	t _{CYCP2}	-	-	11.1	-	ns	APB2bus clock *2	

(Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, $T_A = -40^{\circ}C$ to +105°C)

1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856).

2: For more about each APB bus to which each peripheral is connected, see 1. S6E2G Series Block Diagram in this data sheet.

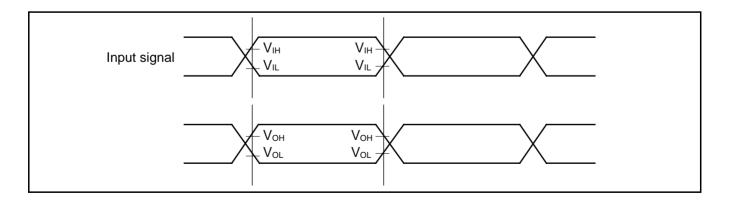
12.4.10 External Bus Timing


External Bus Clock Output Characteristics

Deremeter	neter Symbol Pin Name		Conditions	Va	lue	l Init	Domorko
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
Output frequency	t CYCLE	MCLKOUT *1		-	50 ^{*2}	MHz	

1: The external bus clock (MCLKOUT) is a divided clock of HCLK.

For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral Manual Main Part (002-04856).

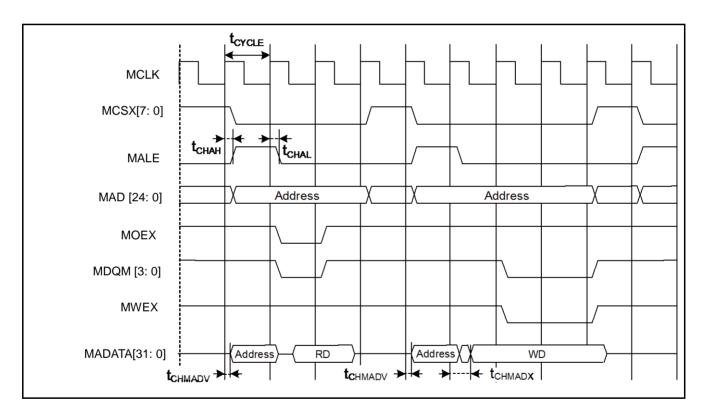

2: Generate MCLKOUT at setting more than four divisions when the AHB bus clock exceeds 100 MHz.

External Bus Signal I/O Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	Value	Unit	Remarks
Signal input characteristics	Vih		0.8 × Vcc	V	
	VIL		0.2 × V _{CC}	V	
	V _{OH}	-	0.8 × V _{CC}	V	
Signal output characteristics	V _{OL}		0.2 × V _{CC}	V	

Multiplexed Bus Access Synchronous SRAM Mode

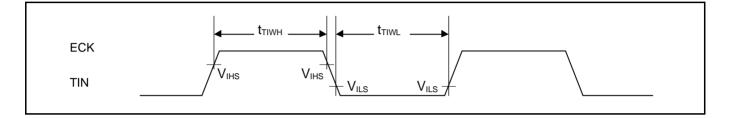

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Devenuetor	Querra ha a l	Pin Name	Conditions -	Val	l lmit	Domorko	
Parameter	Symbol			Min	Max	Unit	Remarks
	t _{CHAL}	MCLK,	-	1	9		
MALE delay time	t _{CHAH}	MALE	-	1	9		
MCLK ↑ →Multiplexed address delay time	tchmad∨	MCLK,	-	1	top	ns	
MCLK ↑ →Multiplexed data output time	tchmadx.	MADATA[31: 0]	-	1	top	ns	

Note:

_

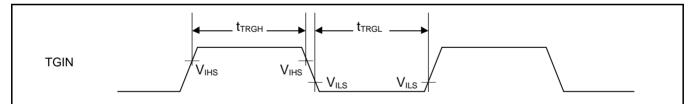
When the external load capacitance $C_L = 30 \ pF$



12.4.11 Base Timer Input Timing

Timer Input Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Parameter Symbol		Pin Name Con		Va	lue	l lm it	Remarks	
			ons	Min	Max	Unit	Rellidiks	
Input pulse width	tтıwн, tтıw∟	TIOAn/TIOBn (when using as ECK, TIN)	-	2tcycp	-	ns		

Trigger Input Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Deremeter	Symbol	Pin Name	Conditi V		Value		Domorko
Parameter	Symbol	Pin Name	ons	Min	Max	Unit	Remarks
Input pulse width	t _{тrgн} , t _{trgl}	TIOAn/TIOBn (when using as TGIN)	-	2t _{CYCP}	-	ns	

Note:

_

tcyce indicates the APB bus clock cycle time. For more information about the APB bus number to which the base timer is connected, see 1. S6E2G Series Block Diagram in this data sheet.

When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	VCC <	: 4.5 V	VCC ≥	Units		
Parameter	Symbol	Conditions	Min	Max	Min	Мах	Units	
SCS ↑ → SCK ↑ setup time	tcssi		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns	
$SCK \downarrow \rightarrow SCS \downarrow hold time$	tсsні	Internal shift clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns	
SCS deselect time	tcsDI	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{СҮСР}	ns	
SCS ↑ \rightarrow SCK ↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns	
$SCK \downarrow \rightarrow SCS \downarrow hold time$	tcshe	F ()	0	-	0	-	ns	
SCS deselect time	tcsde	External shift clock	3tcycp+30	-	3tcycp+30	-	ns	
SCS ↑ →SOT delay time	tDSE	operation	-	40	-	40	ns	
SCS ↓ →SOT delay time	tdee		0	-	0	-	ns	

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

- t_{CYCP} indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance $C_L = 30 \text{ pF}$.

12.8 MainFlash Memory Write/Erase Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V)$

Parameter		Value			110:4	Bomorko
		Min	Тур	Max	Unit	Remarks
	Large Sector	-	0.7	3.7	s	Includes write time prior to internal
Sector erase time	Small Sector	-	0.3	1.1	S	erase
Half word (16-bit)	Write cycles < 100 times		10	100		Not including system-level overhead
write time	Write cycles > 100 times	-	12	200	μs	time
Chip erase time*		-	13.6	68	S	Includes write time prior to internal erase

 $\ensuremath{^*\!:}$ It indicates the chip erase time of 1MB MainFlash memory

For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required.

See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for the detail.

Write Cycles and Data Retention Time

Erase/Write Cycles (Cycle)	Data Retention Time (Year)
1,000	20*
10,000	10*
100,000	5*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C).

Revision	ECN	Orig. of Change	Submission Date	Description of Change
				S6E2GM6JHAGV20000, S6E2GM8H0AGV20000, S6E2GM8HHAGV20000,
				S6E2GM8J0AGV20000, S6E2GM8JHAGV20000
				Added MPNs below to "13. Ordering Information" (Page 185)
				S6E2G26H0AGV2000A, S6E2G26HHAGV2000A, S6E2G26J0AGV2000A,
				S6E2G26JHAGV2000A, S6E2G28H0AGV2000A, S6E2G28HHAGV2000A,
				S6E2G28J0AGV2000A, S6E2G28JHAGV2000A, S6E2G36H0AGV2000A,
				S6E2G36J0AGV2000A, S6E2G38H0AGV2000A, S6E2G38J0AGV2000A,
				S6E2GH6H0AGV2000A, S6E2GH6J0AGV2000A, S6E2GH8H0AGV2000A,
				S6E2GH8J0AGV2000A, S6E2GK6H0AGV2000A, S6E2GK6HHAGV2000A,
				S6E2GK6J0AGV2000A, S6E2GK6JHAGV2000A, S6E2GK8H0AGV2000A,
				S6E2GK8HHAGV2000A, S6E2GK8J0AGV2000A, S6E2GK8JHAGV2000A,
				S6E2GM6H0AGV2000A, S6E2GM6HHAGV2000A, S6E2GM6J0AGV2000A,
				S6E2GM6JHAGV2000A, S6E2GM8H0AGV2000A, S6E2GM8HHAGV2000A,
				S6E2GM8J0AGV2000A, S6E2GM8JHAGV2000A
				Modified typo about the munber of QPRC channels(from 4ch to 2ch) (Page 1,6,10) Modified the expression of the "Built-in CR" in "2. Product Lineup"(Page 6).