

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, SmartCard, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	153
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2g38h0agv2000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Quadrature Position/Revolution Counter (QPRC; Max two channels)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. It is also possible to use up/down counter.

- The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers

Dual Timer (32-/16-bit Down Counter)

The dual timer consists of two programmable 32-/16-bit down counters.

Operation mode is selectable from the following for each channel:

- Free-running
- Periodic (= Reload)
- One shot

Watch Counter

The watch counter is used for wake up from low-power consumption mode. It is possible to select the main clock, sub clock, built-in High-speed CR clock, or built-in low-speed CR clock as the clock source.

Interval timer: up to 64 s (max) with a sub clock of 32.768 kHz

External Interrupt Controller Unit

- External interrupt input pin: Max 32 pins
 Both edges(Rise edge and Fall edge) detect
- Include one non-maskable interrupt (NMI)

Watchdog Timer (Two channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs: a "hardware" watchdog and a "software" watchdog.

The hardware watchdog timer is clocked by low-speed internal CR oscillator. The hardware watchdog is thus active in any power saving mode except RTC mode and Stop mode.

Cyclic Redundancy Check (CRC) Accelerator

The CRC accelerator helps to verify data transmission or storage integrity.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

- CCITT CRC16 generator polynomial: 0x1021
- IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7

SD Card Interface Available on S6E2GM, S6E2GH, and S6E2GK Devices Only

It is possible to use the SD card that conforms to the following standards.

- Part 1 Physical Layer Specification version 3.01
- Part E1 SDIO Specification version 3.00
- Part A2 SD Host Controller Standard Specification version 3.00
- 1-bit or 4-bit data bus

Ethernet-MAC Available on S6E2GM, S6E2GK, and S6E2G2 Devices only

- Compliant with IEEE802.3 specification
- 10 Mbps/100 Mbps data transfer rates supported
- MII/RMII for external PHY device supported.
- MII: Max one channel
- RMII: Max one channel
- Full-duplex and half-duplex mode supported.
- Wake-ON-LAN supported
- Built-in dedicated descriptor-system DMAC
- Built-in 2 Kbytes transmit FIFO and 2 Kbytes receive FIFO.
- Compliant IEEE1558-2008 (PTP)

Smartcard Interface (Max 2 channels)

- Compliant with ISO7816-3 specification
- Card Reader only/B class card only
- Available protocols
 Transmitter: 8E2, 8O2, 8N2
 Receiver: 8E1, 8O1, 8N2, 8N1, 9N1
 Inverse mode
- TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)

Clock and Reset

Clocks

Five clock sources (two external oscillators, two internal CR oscillators, and Main PLL) that are dynamically selectable.

□ Main clock: 4 MHz to 48 MHz
 □ Sub clock: 30 kHz to 100 kHz
 □ High-speed internal CR clock: 4 MHz
 □ Low-speed internal CR clock: 100 kHz
 □ Main PLL Clock

6. Pin Descriptions

List of Pin Functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel.

Use the extended port function register (EPFR) to select the pin.

Pin Number		Dia Norra	I/O	Pin State
LQFP-176	LQFP-144		Туре	Туре
1	1	VCC	-	-
		PA0		
		RTO00_1 (PPG00_1)		
2	2	TIOA8_0	Е	к
		INT00_0		
		MADATA00_0		
		IC0_CIN_0		
		PA1		
		RTO01_1 (PPG01_1)	_	
3	3	TIOA9_0	E	1
		MADATA01_0	-	
		IC0_DATA_0		
	4	PA2		
4		RTO02_1 (PPG02_1)	Е	
		TIOA10_0		I.
		MADATA02_0		
		IC0_RST_0		
		PA3		
_	_	RTO03_1 (PPG03_1)	_	
5	5	TIOA11_0	E	I
		MADATA03_0		
		IC0_VPEN_0		
		PA4		
		RTO04_1 (PPG04_1)	_	
6	6	TIOA12_0	E	1
		MADATA04_0		
		IC0_VCC_0		
		PA5		
		RTO05_1 (PPG05_1)		
7	7	TIOA13_0	Е	к
		INT01_0		
		MADATA05_0		
		IC0_CLK_0		

Pin Number			.i/o	Pin State	
LQFP-176	LQFP-144	Pin Name	Type	Туре	
		P34			
28	23	IC03_0		ĸ	
20	23	INT00_1	L	IX IX	
		S_CLK_0			
29	24	VCC	-	-	
30	25	VSS	-	-	
		P35			
31	26	IC02_0		к	
0.		INT01_1	_		
		S_CMD_0			
		P36			
22	27	IC01_0		K	
52	21	INT02_1	L	IX.	
		S_DATA3_0			
		P37			
		IC00 0			
33	28		L	K	
		J_DATA2_U			
		F 30			
34	29	ADTG_2	E	I	
		DTTI0X_0			
		S_WP_0			
		P39			
		RTO00_0			
		(FFG00_0) TIOA0_1			
35	30	AIN1_0	G	K	
		INT16_1			
		S CD 0			
		MAD24 0			
		P3A			
		RTO01_0			
		(PPG01_0)			
36	31	TIOA1_1	G	K	
		BIN1_0			
		INT17_1			
		MAD23_0			
		P3B			
		RTO02_0 (PPG02_0)			
37	32	TIOA2_1	G	K	
		ZIN1_0			
		INT18_1			
		MAD22_0			

Pin Number		Din Nome	I/O	Pin State
LQFP-176	LQFP-144	Pin Name	Туре	Туре
		P78		
		SCK6_0		
75	65	(SCL6_0)	L	I
		AINU_1		
		MAD06_0		
		P79		
76	66			K
76	00	BINU_1		n
		IN122_0	_	
		P7A	_	
77	67	30361_0		K
//	67			n
		INTU7_2	_	
		MAD08_0		
		PF2	_	
70			-	
78	-			
	-		E	К
79				
		PF4		
		IC10_1	_	
80	_		F	ĸ
00	-	INT06_1		N
		IC1 VPFN 1	1	
		PF5		
		SIN3 1	1	
		IC11_1		
81	-	TIOB7_1	E	K
		INT07_1		
		IC1 RST 1	1	
		PF6		
		SOT3 1	1	
		(SDA3_1)		
82	-	IC12_1	Е	К
		TIOA14_1		
		INT20_1		
		IC1_DATA_1		

Pin Number		Dia Norra	1/O	Pin State
LQFP-176	LQFP-144	Pin Name	Туре	Туре
		PB6		
		AN22	-	
112	-	SOT8_1 (SDA8_1)	F	Ν
		TIOA12_1		
		BIN1_2		
		TRACED14		
		PB7		
		AN23		
110		SCK8_1 (SCL8_1)	-	N
113	-	TIOB12_1	F	IN
		ZIN1_2		
		TRACED15		
		P1C		
		AN12		
114	90	SCK0_1 (SCL0_1)	F	Ν
		TIOA5 2		
		TRACECLK	1	
		P1D		
		AN13	-	
115	91	SOT0_1 (SDA0_1)	F	L
		MAD09_0		
		P1E		
		AN14	-	
		SIN0 1	-	
116	92	TIOA8 1	F	Μ
		 INT26_1	-	
		 MAD10_0	-	
		P1F		
		AN15	-	
	~~	RTS5_0	_	
117	93	TIOB8_1	F	Μ
		INT27_1		
		MAD11_0	1	
		P2A		
		AN24		
118	94	CTS5_0	F	М
		INT08_2		
		MAD12_0		

Modulo	Bin Namo	Eunction	Pin Number		
wodule	FIII Name	Function	LQFP 176	LQFP 144	
	TIOA7_0		149	119	
	TIOA7_1	Base Timer ch 7 TIOA pin	80	-	
Base Timer	TIOA7_2		171	139	
7	TIOB7_0		148	118	
	TIOB7_1	Base Timer ch 7 TIOB pin	81	-	
	TIOB7_2		170	138	
	TIOA8_0		2	2	
	TIOA8_1	Base Timer ch 8 TIOA pin	116	92	
Base Timer	TIOA8_2		10	-	
8	TIOB8_0		17	14	
	TIOB8_1	Base Timer ch 8 TIOB pin	117	93	
	TIOB8_2		11	-	
	TIOA9_0		3	3	
_	TIOA9_1	Base Timer ch 9 TIOA pin	102	-	
Base Timer	TIOA9_2		12	-	
3	TIOB9_0	Base Timer ch & TIOB pin	18	15	
	TIOB9_1	base filler cit 9 flOB pill	103	-	
Base Timer 10	TIOA10_0	Ross Timor of 10 TIOA nin	4	4	
	TIOA10_1	Base filler cit to filoa pili	104	-	
	TIOB10_0	Base Timor ch 10 TIOB nin	19	16	
	TIOB10_1	base filler cit to trob pill	105	-	
	TIOA11_0	Base Timer ch 11 TIOA nin	5	5	
	TIOA11_1	Base filler cit ti ti OA pili	110	-	
Base Timer	TIOB11_0		20	17	
	TIOB11_1	Base Timer ch 11 TIOB pin	111	-	
	TIOB11_2		24	-	
	TIOA12_0		6	6	
	TIOA12_1	Base Timer ch 12 TIOA pin	112	-	
Base Timer	TIOA12_2		25	-	
12	TIOB12_0		21	18	
	TIOB12_1	Base Timer ch 12 TIOB pin	113	-	
	TIOB12_2		41	-	
	TIOA13_0		7	7	
	TIOA13_1	Base Timer ch 13 TIOA pin	124	100	
Base Timer	TIOA13_2		42	-	
13	TIOB13_0		22	19	
	TIOB13_1	Base Timer ch 13 TIOB pin	125	101	
	TIOB13_2		43	-	
	TIOA14_0	Base Timer ch 14 TIOA sin	151	121	
Base Timer	TIOA14_1		82	-	
14	TIOB14_0	Base Timer ch 14 TIOB nin	150	120	
	TIOB14_1		83	-	

Madula	Din Nama	Function	Pin Name Function Pin Number		
Module	Pin Name	Function	LQFP 176	LQFP 144	
	MAD00_0		69	59	
	MAD01_0		70	60	
	MAD02_0		71	61	
	MAD03_0		72	62	
	MAD04_0		73	63	
	MAD05_0		74	64	
	MAD06_0		75	65	
	MAD07_0		76	66	
	MAD08_0		77	67	
	MAD09_0		115	91	
	MAD10_0		116	92	
	MAD11_0		117	93	
	MAD12_0	External bus interface address bus	118	94	
	MAD13_0		119	95	
	MAD14_0		120	96	
	MAD15_0		121	97	
External	MAD16_0		122	98	
bus	MAD17_0		123	99	
	MAD18_0		124	100	
	MAD19_0		40	35	
	MAD20_0		39	34	
	MAD21_0		38	33	
	MAD22_0		37	32	
	MAD23_0		36	31	
	MAD24_0		35	30	
	MCSX0_0		67	57	
	MCSX1_0		66	56	
	MCSX2_0		51	43	
	MCSX3_0		50	42	
	MCSX4_0	External bus interface chip select	49	41	
	MCSX5_0		48	40	
	MCSX6_0		47	39	
	MCSX7_0]	46	38	
	MCSX8_0		63	53	

Module	Pin Name	Eurotion	Pin Number		
Woulle	Fill Name	Function	LQFP 176	LQFP 144	
	MADATA00_0		2	2	
	MADATA01_0		3	3	
	MADATA02_0		4	4	
	MADATA03_0		5	5	
	MADATA04_0		6	6	
	MADATA05_0		7	7	
	MADATA06_0		8	8	
	MADATA07_0	External bus interface data bus	9	9	
	MADATA08_0	(address/data multiplex bus)	13	10	
	MADATA09_0		14	11	
	MADATA10_0		15	12	
	MADATA11_0		16	13	
	MADATA12_0		17	14	
	MADATA13_0		18	15	
	MADATA14_0		19	16	
	MADATA15_0		20	17	
	MDQM0_0	External bus interface byte mask signal	21	18	
	MDQM1_0	output pin	22	19	
	MALE_0	External bus interface address latch enable output signal for multiplex	171	139	
External	MRDY_0	External bus interface external RDY input signal	68	58	
503	MCLKOUT_0	External bus interface external clock output pin	23	20	
	MNALE_0	External bus interface ALE signal to control NAND flash output pin	97	81	
	MNCLE_0	External bus interface CLE signal to control NAND flash output pin	96	80	
	MNREX_0	External bus interface read enable signal to control NAND flash	94	78	
	MNWEX_0	External bus interface write enable signal to control NAND flash	95	79	
	MOEX_0	External bus interface read enable signal for SRAM	169	137	
	MWEX_0	External bus interface write enable signal for SRAM	170	138	
	MSDCLK_0	SDRAM interface SDRAM clock output pin	65	55	
	MSDCKE_0	SDRAM interface SDRAM clock enable pin	64	54	
	MRASX_0	SDRAM interface SDRAM row active strobe pin	60	50	
	MCASX_0	SDRAM interface SDRAM column active strobe pin	61	51	
	MSDWEX_0	SDRAM interface SDRAM write enable pin	62	52	

7. I/O Circuit Type

Latch-Up

Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

8.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

tatus Type	Function Group	Power-On Reset or Low- Voltage Detection State	INITX Input State	Device Internal Reset State	Run mode or Sleep mode State	Timer RTC n Stop me	r mode, node, or ode State	Deep Sta mode or Do Stop mo	ndby RTC eep Standby ode State	Return from Deep Standby mode State	
Pin S		Power Supply Unstable	Power Sta	Supply ble	Power Supply Stable	Power Sta	Supply able	Power Sta	Supply able	Power Supply Stable	
		-	INITX=0	INITX=1	INITX=1	INI	ΓX=1	INI	ГХ=1	INITX=1	
		-	-	-	-	SPL=0	SPL=1	SPL=0	SPL=1	-	
	Analog output selected					*2	*3				
J	External interrupt enable selected	Hi-Z	Hi-Z/ input	Hi-Z/ input	Maintain previous		Maintain previous state	GPIO selected, internal input	Hi-Z/internal input fixed	GPIO selected	
	Resource other than above selected		enabled	enabled	enabled state Maintain previous state Hi-Z/inte input fix at 0	Hi-Z/internal input fixed at 0	fixed at 0 solution				
	GPIO selected							ui o			
	External interrupt enable selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO			
к	Resource other than above selected	Hi-Z	Hi-Z/ input	Hi-Z/ input	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed	selected, internal input fixed at 0	Hi-Z/internal input fixed at 0	GPIO selected	
	GPIO selected		enabled	enabled			at 0				
L	Analog input selected	Hi-Z	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	Hi-Z/ internal input fixed at 0/ analog input enabled	
	Resource other than above selected GPIO	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	GPIO selected, internal input fixed at 0	Hi-Z/internal input fixed at 0	GPIO selected	
	selected										

- 2: Vcc must not drop below Vss 0.5 V.
- 3: USBV_{CC}0, USBV_{CC}1 must not drop below V_{SS} 0.5 V.
- 4: ETHV_{CC} must not drop below V_{SS} 0.5 V.
- 5: Ensure that the voltage does not exceed V_{CC} + 0.5V, for example, when the power is turned on.
- 6: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- 7: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100-ms period.
- 8: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100-ms period.

WARNING:

_

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

Calculation Method of Power Dissipation (Pd)

The power dissipation is shown in the following formula.

$$Pd = V_{CC} \times I_{CC} + \Sigma (I_{OL} \times V_{OL}) + \Sigma ((V_{CC}-V_{OH}) \times (-I_{OH}))$$

Iol:	L level output current
Іон:	H level output current
Vol:	L level output voltage
Vон:	H level output voltage

Icc is the current drawn by the device. It can be analyzed as follows.

 $I_{CC} = I_{CC} (INT) + \Sigma I_{CC} (IO)$

I_{CC} (INT): Current drawn by internal logic and memory, etc. through the regulator

 ΣI_{CC} (IO): Sum of current (I/O switching current) drawn by the output pin

For I_{CC} (INT), it can be anticipated by "(1) Current Rating" in "12.3. DC Characteristics" (This rating value does not include I_{CC} (IO) for a value at pin fixed).

For $I_{\mbox{\scriptsize CC}}$ (IO), it depends on system used by customers.

The calculation formula is shown below.

 $I_{CC}(IO) = (C_{INT} + C_{EXT}) \times V_{CC} \times f_{SW}$

CINT: Pin internal load capacitance

C_{EXT}: External load capacitance of output pin

fsw: Pin switching frequency

Parameter	Symbol	Conditions	Capacitance Value
		4 mA type	1.93 pF
Pin internal load capacitance	Cint	8 mA type	3.45 pF
		12 mA type	3.42 pF

Calculate Icc (Max) as follows when the power dissipation can be evaluated by yourself:

Measure current value I_{CC} (Typ) at normal temperature (+25°C).

Add maximum leakage current value I_{CC} (leak_max) at operating on a value in (1).

Icc(Max) = Icc (Typ) + Icc (leak_max)

Parameter	Symbol	Conditions	Current Value
		T _J = +125 °C	53.6 mA
Maximum leakage current at operating	I _{CC} (leak_max)	T _J = +105 °C	26.6 mA
		T _J = +85 °C	17.5 mA

12.3 DC Characteristics

12.3.1 Current Rating

Deveneter	Cumula al	Pin	Conditions		F *4	Value		11	Domorko	
Parameter	Symbol	Name			Frequency*	Typ* ¹	Max* ²	Unit	Remarks	
Power supply			Normal operation *7,*8 (PLL)	*5	180 MHz	73	131	mA		
				*6	160 MHz	65	123	mA		
		VCC			144 MHz	59	117	mA		
					120 MHz	50	108	mA		
					100 MHz	43	101	mA	*3	
	Icc				80 MHz	35	93	mA	When all peripheral	
					60 MHz	27	85	mA	CIOCKS are on	
					40 MHz	19	77	mA		
					20 MHz	11	69	mA		
					8 MHz	6.9	64	mA		
					4 MHz	5.3	63	mA		
				*5	180 MHz	44	102	mA		
				*6 -	160 MHz	40	98	mA		
					144 MHz	36	94	mA		
					120 MHz	31	89	mA		
					100 MHz	27	85	mA	*3	
					80 MHz	22	80	mA	When all peripheral	
					60 MHz	17	75	mA	CIOCKS are off	
					40 MHz	13	71	mA		
					20 MHz	7.9	65	mA		
					8 MHz	5.2	63	mA		
					4 MHz	4.3	62	mA		

 Table 12-1 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled)

1: $T_A = +25 \text{ °C}, V_{CC} = 3.3 \text{ V}$

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2

5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1)

6: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)

7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory."

8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

Separate Bus Access Synchronous SRAM Mode

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Desemptor	Symphol	Din Nama	Conditions	Va	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min Max			Unit
Address delay time	t _{AV}	MCLK, MAD[24: 0]	-	1	9	ns	
MOOV datas times	tcs∟	MCLK,	-	1	9	ns	
NCSX delay time	t _{CSH}	MCSX[7: 0]	-	1	9	ns	
	t _{REL}	MCLK,	-	1	9	ns	
MOEX delay time	t _{REH}	MOEX	-	1	9	ns	
Data set up →MCLK ↑ time	t _{DS}	MCLK, MADATA[31: 0]	-	19	-	ns	
MCLK ↑ → Data hold time	t _{DH}	MCLK, MADATA[31: 0]	-	0	-	ns	
MWEX delay time	twel	MCLK,	-	1	9	ns	
	t _{WEH}	MWEX	-	1	9	ns	
MDQM[1: 0] delay time	t DQML	MCLK,	-	1	9	ns	
	t _{DQMH}	MDQM[3: 0]	-	1	9	ns	
MCLK ↑ → Data output time	t _{ODS}	MCLK, MADATA[31: 0]	-	MCLK+1	MCLK+18	ns	
MCLK ↑ → Data hold time	top	MCLK, MADATA[31: 0]	-	1	18	ns	

Note:

- When the external load capacitance $C_L = 30 \, pF$

When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Poromotor	Symbol	Conditions	Vcc <	4.5 V	V _{cc} ≥	l In it	
Falameter	Symbol	Conditions	Min	Max	Min	Max	Unit
SCS↓→SCK↓ setup time	t _{CSSI}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↑→SCS↑ hold time	t _{CSHI}	Internal shift clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{СҮСР}	(*3)+50 +5t _{СҮСР}	ns
SCS↓→SCK↓ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK↑→SCS↑ hold time	t CSHE		0	-	0	-	ns
SCS deselect time	t _{CSDE}	External shift clock	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↓→SOT delay time	tdse	operation	-	40	-	40	ns
SCS ↑ →SOT delay time	tDEE		0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance $C_L = 30 \text{ pF}$.

12.4.18 JTAG Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Deremeter	Symbol	Din Nama	Conditions	Va	lue	11:::	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	
TMS, TDI setup time	t _{JTAGS}	TCK, TMS, TDI	V _{CC} ≥ 4.5 V	15	-	ns	
			V_{CC} <4.5 V				
TMS TDI hold time	t _{JTAGH}	TCK, TMS, TDI	V _{CC} ≥ 4.5 V	15	-	ns	
			V_{CC} <4.5 V				
		TCK, TDO	V _{CC} ≥ 4.5 V	-	25		
TDO delay time	tjtagd		V_{CC} <4.5 V	-	45	ns	

Note:

- When the external load capacitance $C_L = 30 \text{ pF}$.

Internal Resource RST Internal RST RST Active tront CPU Operation Start

Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)

*: Depending on the low-power consumption mode, the reset issue from the internal resource is not included in the recovery cause.

Notes:

- The return factor is different in each low power consumption mode.
 See Chapter 6: Low Power Consumption mode and Operations of Standby modes in "FM4 Family Peripheral Manual Main Part (002-04856).
- The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (002-04856).
- When the power-on reset/low-voltage detection reset, they are not included in the return factor. See 12.4.8 Power-On Reset Timing.
- In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation stabilization wait time of Main PLL clock.
- Internal resource reset indicates Watchdog reset and CSV reset.