

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4F                                                             |
| Core Size                  | 32-Bit Single-Core                                                           |
| Speed                      | 180MHz                                                                       |
| Connectivity               | CSIO, EBI/EMI, I <sup>2</sup> C, LINbus, SD, SmartCard, SPI, UART/USART, USB |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                                    |
| Number of I/O              | 121                                                                          |
| Program Memory Size        | 512KB (512K × 8)                                                             |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 128K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                  |
| Data Converters            | A/D 24x12b                                                                   |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 144-LQFP                                                                     |
| Supplier Device Package    | 144-LQFP (20x20)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/s6e2gk6hhagv2000a |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1. S6E2G Series Block Diagram





|                                             |                              |             |                    | Product Name          |                    |                    |                    |  |  |  |  |  |
|---------------------------------------------|------------------------------|-------------|--------------------|-----------------------|--------------------|--------------------|--------------------|--|--|--|--|--|
|                                             | Desci                        | ription     | S6E2GM6<br>S6E2GM8 | S6E2GK6<br>S6E2GK8    | S6E2GH6<br>S6E2GH8 | S6E2G36<br>S6E2G38 | S6E2G26<br>S6E2G28 |  |  |  |  |  |
| Base timer<br>(PWC/Reload<br>timer/PWM/PPG) |                              |             |                    |                       | 16 ch (Max)        |                    |                    |  |  |  |  |  |
|                                             | A/D<br>activatior<br>compare | n 6 ch      |                    |                       |                    |                    |                    |  |  |  |  |  |
|                                             | Input<br>capture             | 4 ch        |                    |                       |                    |                    |                    |  |  |  |  |  |
| F timer                                     | Free-run<br>timer            | 3 ch        |                    | 2 units (Max)         |                    |                    |                    |  |  |  |  |  |
| Σ                                           | Output<br>compare            | 6 ch        |                    |                       |                    |                    |                    |  |  |  |  |  |
|                                             | Wavefori<br>generato         | n<br>r 3 ch |                    |                       |                    |                    |                    |  |  |  |  |  |
|                                             | PPG                          | 3 ch        |                    |                       |                    |                    |                    |  |  |  |  |  |
| Sm                                          | artcard (I                   | SO7816)     |                    |                       | 2 ch (Max)         |                    |                    |  |  |  |  |  |
| QPI                                         | RC                           |             | 2 ch (Max)         |                       |                    |                    |                    |  |  |  |  |  |
| Dua                                         | al timer                     |             | 1 unit             |                       |                    |                    |                    |  |  |  |  |  |
| Rea                                         | al-time clo                  | ock         | 1 unit             |                       |                    |                    |                    |  |  |  |  |  |
| Wat                                         | tch count                    | er          |                    |                       | 1 unit             |                    |                    |  |  |  |  |  |
| CR                                          | C acceler                    | ator        |                    | Yes (fixed)           |                    |                    |                    |  |  |  |  |  |
| Wat                                         | tchdog tir                   | ner         |                    | 1 ch (SW) + 1 ch (HW) |                    |                    |                    |  |  |  |  |  |
| Exte                                        | ernal inte                   | rrupts      |                    |                       | 32 pins (Max)+ NMI | × 1                |                    |  |  |  |  |  |
| CSV (clock supervisor) Yes                  |                              |             |                    |                       |                    |                    |                    |  |  |  |  |  |
| LVD (low-voltage<br>detector)               |                              |             | 2 ch               |                       |                    |                    |                    |  |  |  |  |  |
| <b>р</b>                                    |                              | High-speed  |                    |                       | 4 MHz              |                    |                    |  |  |  |  |  |
| Duli                                        |                              | Low-speed   |                    |                       | 100 kHz            |                    |                    |  |  |  |  |  |
| Deb                                         | oug functi                   | on          |                    |                       | SWJ-DP/ETM/HTM     | Л                  |                    |  |  |  |  |  |
| Uni                                         | Unique ID Yes                |             |                    |                       |                    |                    |                    |  |  |  |  |  |

\*1: Crypto Assist Function is built in following products. S6E2GM6HHA, S6E2GM8HHA, S6E2GM6JHA, S6E2GM8JHA

## Notes:

Because of package pin limitations, not all functions within the device can be brought out to external pins. You must carefully
work out the pin allocation needed for your design.

You must use the port relocate function of the I/O port according to your function use.

- See 12.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR.





| Pin Number |          | Dia Nama             | I/O  | Pin State |  |
|------------|----------|----------------------|------|-----------|--|
| LQFP-176   | LQFP-144 | Pin Name             | Туре | Туре      |  |
|            |          | P21                  |      |           |  |
|            |          | ADTG_4               |      |           |  |
| 127        | 103      | SIN0_0               | l I  | K         |  |
|            |          | INT27_0              |      |           |  |
|            |          | CROUT_0              |      |           |  |
|            |          | P20                  |      |           |  |
| 128        | 104      | NMIX                 | l I  | F         |  |
|            |          | WKUP0                |      |           |  |
| 129        | 105      | USBVCC1              | -    | -         |  |
| 400        | 400      | P82                  |      | P         |  |
| 130        | 106      | UDM1                 | н    | R         |  |
| 101        | 107      | P83                  | Ц    | P         |  |
| 131        | 107      | UDP1                 | п    | ĸ         |  |
| 132        | 108      | VSS                  | -    | -         |  |
| 133        | 109      | VCC                  | -    | -         |  |
| 40.4       | 44.0     | P00                  | -    | 0         |  |
| 134        | 110      | TRSTX                | E    | G         |  |
|            | 111      | P01                  |      |           |  |
| 135        |          | ТСК                  | Е    | G         |  |
|            |          | SWCLK                |      |           |  |
| 400        | 44.0     | P02                  | F    | 6         |  |
| 136        | 112      | TDI                  | E    | G         |  |
|            |          | P03                  |      |           |  |
| 137        | 113      | TMS                  | E    | G         |  |
|            |          | SWDIO                |      |           |  |
|            |          | P04                  |      |           |  |
| 138        | 114      | TDO                  | E    | G         |  |
|            |          | SWO                  |      |           |  |
|            |          | P90                  |      |           |  |
|            |          | RTO10_1<br>(PPG10_1) |      |           |  |
| 139        | -        |                      | E    | K         |  |
|            |          | INT12_1              |      |           |  |
|            |          |                      | 1    |           |  |
|            |          | P91                  |      |           |  |
|            |          | SIN5_1               | 1    |           |  |
|            |          | RTO11_1              |      |           |  |
| 140        | -        |                      | E    | К         |  |
|            |          |                      |      |           |  |
|            |          |                      |      |           |  |
|            |          |                      |      |           |  |





| Pin Number |          | Din Nome             | I/O<br>Circovit | Pin State |  |
|------------|----------|----------------------|-----------------|-----------|--|
| LQFP-176   | LQFP-144 | Pin Name             | Туре            | Туре      |  |
|            |          | P92                  |                 |           |  |
|            |          | SOT5_1               |                 |           |  |
|            |          | (SDA5_1)             | -               |           |  |
| 141        | -        | RTO12_1<br>(PPG12_1) | Е               | К         |  |
|            |          | TIOB2 1              | -               |           |  |
|            |          | INT14_1              |                 |           |  |
|            |          | IC0 VPEN 1           |                 |           |  |
|            |          | P93                  |                 |           |  |
|            |          | SCK5 1               | -               |           |  |
|            |          | (SCL5_1)             |                 |           |  |
| 140        |          | RTO13_1              | _               | K         |  |
| 142        | -        | (PPG13_1)            |                 | IX.       |  |
|            |          | TIOB3_1              |                 |           |  |
|            |          | INT15_1              |                 |           |  |
|            |          | IC0_RST_1            |                 |           |  |
|            |          | P94                  |                 | I         |  |
|            |          | CTS5_1               |                 |           |  |
| 143        | -        | RTO14_1              | Е               |           |  |
|            |          |                      |                 |           |  |
|            |          |                      | -               |           |  |
|            |          | P95                  |                 |           |  |
|            |          | RTS5 1               |                 |           |  |
|            |          | RT015_1              | _               |           |  |
| 144        | -        | - (PPG15_1) E        |                 | E         |  |
|            |          | TIOB5_1              |                 |           |  |
|            |          | IC0_CIN_1            |                 |           |  |
| 145        | 115      | PC0                  | K               | N/        |  |
| 145        | 115      | E_RXER               | Ň               | v         |  |
|            |          | PC1                  |                 |           |  |
| 146        | 116      | TIOB6_0              | K               | V         |  |
|            |          | E_RX03               |                 |           |  |
|            |          | PC2                  |                 |           |  |
| 147        | 117      | TIOA6_0              | K               | V         |  |
|            |          | E_RX02               |                 |           |  |
|            |          | PC3                  | 4               |           |  |
| 148        | 118      | TIOB7_0              | K               | V         |  |
|            |          | E_RX01               | ļ               |           |  |
|            |          | PC4                  | 1               |           |  |
| 149        | 119      | TIOA7_0              | K               | V         |  |
|            |          | E_RX00               | ļ               |           |  |
|            |          | PC5                  | 4               |           |  |
| 150        | 120      | TIOB14_0             | K               | V         |  |
|            |          | E_RXDV               |                 |           |  |



# 7. I/O Circuit Type





| Туре | Circuit             | Remarks                                                                    |
|------|---------------------|----------------------------------------------------------------------------|
| С    | N-ch Digital output | <ul> <li>Open drain output</li> <li>CMOS level hysteresis input</li> </ul> |



# **Using an External Clock**

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.



# Handling When Using Multi-Function Serial Pin as I<sup>2</sup>C Pin

If the application uses the multi-function serial pin as an I<sup>2</sup>C pin, the P-channel transistor of the digital output must be disabled. I<sup>2</sup>C pins need to conform to electrical limitations like other pins, however, and avoid connecting to live external systems with the MCU power off.

## C Pin

Devices in this series contain a regulator. Be sure to connect a smoothing capacitor ( $C_S$ ) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. Some laminated ceramic capacitors have a large capacitance variation due to thermal fluctuation. Please select a capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of the device. A smoothing capacitor of about 4.7  $\mu$ F would be recommended for this series.



## Mode Pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, the distance between the mode pins and VCC pins or VSS pins is as short as possible, and the connection impedance is low when the pins are pulled up/down such as for switching the pin level and rewriting the flash memory data. This is important to prevent the device from erroneously switching to test mode as a result of noise.



# 11. Pin Status in Each CPU State

The terms used for pin status have the following meanings:

■ INITX = 0

This is the period when the INITX pin is at the L level.

■ INITX = 1

This is the period when the INITX pin is at the H level.

■ SPL = 0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB\_CTL) is set to 0.

■ SPL = 1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB\_CTL) is set to 1.

Input enabled

Indicates that the input function can be used.

Internal input fixed at 0

This is the status that the input function cannot be used. Internal input is fixed at L.

Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled

Indicates that the setting is disabled.

Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

Analog input is enabled

Indicates that the analog input is enabled.

Trace output

Indicates that the trace function can be used.

GPIO selected

In Deep standby mode, pins switch to the general-purpose I/O port.

Setting prohibition

Prohibition of a setting by specification limitation



Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices.

| Package        | Printed                   | Thermal<br>Resistance | Maximum Permissible Power<br>(mW) |                          |  |  |
|----------------|---------------------------|-----------------------|-----------------------------------|--------------------------|--|--|
| i donago       | Circuit Board             | θja<br>(°C/W)         | T <sub>A</sub> = +85 °C           | T <sub>A</sub> = +105 °C |  |  |
| LQS144         | Single-layered both sides | 48                    | 833                               | 417                      |  |  |
| (0.5-mm pitch) | 4 layers                  | 33                    | 1212                              | 606                      |  |  |
| LQP176         | Single-layered both sides | 45                    | 889                               | 444                      |  |  |
| (0.5-mm pitch) | 4 layers                  | 31                    | 1290                              | 645                      |  |  |

#### Table for Package Thermal Resistance and Maximum Permissible Power

### WARNING:

- The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
  of the device's electrical characteristics are warranted when the device is operated within these ranges.
  Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
  adversely affect reliability and could result in device failure.
- No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.





# 12.3 DC Characteristics

#### 12.3.1 Current Rating

| Deveneter         | Currente e l | Pin  | Conditions                            |            | <b>F</b> *4 | Va                | lue               | 11   | Demerke             |  |
|-------------------|--------------|------|---------------------------------------|------------|-------------|-------------------|-------------------|------|---------------------|--|
| Parameter         | Symbol       | Name | Conditions                            | Conditions |             | Typ* <sup>1</sup> | Max* <sup>2</sup> | Unit | itemarks            |  |
|                   |              |      |                                       | *5         | 180 MHz     | 73                | 131               | mA   |                     |  |
|                   |              |      |                                       |            | 160 MHz     | 65                | 123               | mA   |                     |  |
|                   |              |      |                                       |            | 144 MHz     | 59                | 117               | mA   |                     |  |
|                   |              |      |                                       |            | 120 MHz     | 50                | 108               | mA   |                     |  |
|                   |              |      |                                       |            | 100 MHz     | 43                | 101               | mA   | *3                  |  |
|                   |              |      |                                       | *6         | 80 MHz      | 35                | 93                | mA   | When all peripheral |  |
|                   |              |      |                                       | 0          | 60 MHz      | 27                | 85                | mA   | CIOCKS are on       |  |
|                   |              |      |                                       |            | 40 MHz      | 19                | 77                | mA   |                     |  |
|                   |              | VCC  | Normal<br>operation<br>*7,*8<br>(PLL) |            | 20 MHz      | 11                | 69                | mA   | -                   |  |
|                   |              |      |                                       |            | 8 MHz       | 6.9               | 64                | mA   |                     |  |
| Power             | laa          |      |                                       |            | 4 MHz       | 5.3               | 63                | mA   |                     |  |
| supply<br>current | ICC          |      |                                       | *5         | 180 MHz     | 44                | 102               | mA   | -                   |  |
|                   |              |      |                                       |            | 160 MHz     | 40                | 98                | mA   |                     |  |
|                   |              |      |                                       |            | 144 MHz     | 36                | 94                | mA   |                     |  |
|                   |              |      |                                       |            | 120 MHz     | 31                | 89                | mA   |                     |  |
|                   |              |      |                                       |            | 100 MHz     | 27                | 85                | mA   | *3                  |  |
|                   |              |      |                                       | *6         | 80 MHz      | 22                | 80                | mA   | When all peripheral |  |
|                   |              |      |                                       | 0          | 60 MHz      | 17                | 75                | mA   | CIOCKS are off      |  |
|                   |              |      |                                       |            | 40 MHz      | 13                | 71                | mA   |                     |  |
|                   |              |      |                                       |            | 20 MHz      | 7.9               | 65                | mA   |                     |  |
|                   |              |      |                                       |            | 8 MHz       | 5.2               | 63                | mA   |                     |  |
|                   |              |      |                                       |            | 4 MHz       | 4.3               | 62                | mA   |                     |  |

 Table 12-1 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled)

1:  $T_A = +25 \text{ °C}, V_{CC} = 3.3 \text{ V}$ 

2:  $T_J$  = +125 °C,  $V_{CC}$  = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2

5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1)

6: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)

7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory."

8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)





| Parameter                 | Symbol      | Pin Name                                                                             | Conditions                                                                                                                                  | Value   |    |     | Unit | Remarks                    |
|---------------------------|-------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|----|-----|------|----------------------------|
|                           |             |                                                                                      | Conditions                                                                                                                                  | Min Typ |    | Max | onne | Remarks                    |
|                           |             |                                                                                      | $\label{eq:VCC} \begin{array}{l} V_{CC} \geq 4.5 \ \text{V}, \\ I_{OL} = 4 \ \text{mA} \end{array}$                                         | V       |    | 0.4 | N    |                            |
|                           |             | 4 0 - 4                                                                              | $V_{\rm CC}$ < 4.5 V,<br>I <sub>OL</sub> = 2 mA                                                                                             | VSS     | -  | 0.4 | V    |                            |
|                           |             | 4 та туре                                                                            | $\begin{array}{l} \text{ETHV}_{\text{CC}} \geq 4.5 \text{ V}, \\ I_{\text{OL}} = 4 \text{ mA} \end{array} \end{array} \label{eq:electropy}$ |         |    | 0.4 |      |                            |
|                           |             |                                                                                      | $\begin{array}{l} \text{RTHV}_{\text{CC}} < 4.5 \text{ V}, \\ \text{I}_{\text{OL}} = 2 \text{ mA} \end{array}$                              | VSS     | -  | 0.4 | V    |                            |
|                           |             |                                                                                      | $\label{eq:V_CC} \begin{array}{l} V_{CC} \geq 4.5 \ \text{V}, \\ I_{OL} = 8 \ \text{mA} \end{array}$                                        | Mar     |    | 0.4 | N    |                            |
|                           |             | 8 m                                                                                  | V <sub>CC</sub> < 4.5 V,<br>I <sub>OL</sub> = 4 mA                                                                                          | VSS     | -  | 0.4 | v    |                            |
|                           |             | o ma type                                                                            | $\begin{array}{l} \text{ETHV}_{\rm CC} \geq 4.5 \text{ V,} \\ I_{\rm OL} = 8 \text{ mA} \end{array} \end{array} \label{eq:electropy}$       | Mag     |    | 0.4 | V    |                            |
| L level output<br>voltage | $V_{OL}$    |                                                                                      | $\begin{array}{l} \text{RTHV}_{\text{CC}} < 4.5 \text{ V,} \\ \text{I}_{\text{OL}} = 4 \text{ mA} \end{array}$                              | VSS     | -  | 0.4 | v    |                            |
|                           |             | 12 mA type<br>The pin doubled<br>as USB I/O                                          | $\label{eq:V_CC} \begin{array}{l} \geq 4.5 \text{ V}, \\ I_{\rm OL} = 12 \text{ mA} \end{array}$                                            | V       |    | 0.4 | V    |                            |
|                           |             |                                                                                      | $V_{\rm CC}$ < 4.5 V,<br>$I_{\rm OL}$ = 8 mA                                                                                                | VSS     | -  | 0.4 |      |                            |
|                           |             |                                                                                      | $\label{eq:USBV} \begin{array}{l} USBV_{\rm CC} \geq 4.5 \ \text{V}, \\ I_{\rm OL} = 18.5 \ \text{mA} \end{array}$                          | Mag     |    | 0.4 | V    | *1                         |
|                           |             |                                                                                      | $\label{eq:USBV} \begin{array}{l} USBV_{\rm CC} < 4.5 \text{ V}, \\ I_{\rm OL} = 10.5 \text{ mA} \end{array}$                               | VSS     | -  | 0.4 | v    | I                          |
|                           |             |                                                                                      | $\label{eq:VCC} \begin{array}{l} V_{CC} \geq 4.5 \ \text{V}, \\ I_{OL} = 4 \ \text{mA} \end{array}$                                         |         |    |     |      |                            |
|                           |             | The pin doubled<br>as I <sup>2</sup> C Fm+                                           | V <sub>CC</sub> < 4.5 V,<br>I <sub>OL</sub> = 3 mA                                                                                          | Vss     | -  | 0.4 | V    | AI GPIO                    |
|                           |             |                                                                                      | $V_{CC} \leq 4.5 \text{ V},$ $I_{OL} = 20 \text{ mA}$                                                                                       |         |    |     |      | At I <sup>2</sup> C<br>Fm+ |
| Input leak<br>current     | IIL         | -                                                                                    | -                                                                                                                                           | - 5     | -  | + 5 | μA   |                            |
| Pull-up                   | Р           | Dull up nin                                                                          | $V_{CC} \geq 4.5 \ V$                                                                                                                       | 25      | 50 | 100 | 10   |                            |
| resistor value            | <b>R</b> PU | Pull-up pin                                                                          | $V_{\rm CC}$ < 4.5 V                                                                                                                        | 30      | 80 | 200 | K12  |                            |
| Input<br>capacitance      | Cin         | Other than<br>VCC,<br>USBVCC0,<br>USBVCC1,<br>ETHVCC,<br>VSS,<br>AVCC, AVSS,<br>AVRH | -                                                                                                                                           | -       | 5  | 15  | pF   |                            |

1: USBV<sub>CC</sub>0 and USBV<sub>CC</sub>1 are described as USBV<sub>CC</sub>.









# When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$ 

| Deremeter             | Symbol            | Conditions              | Vcc <                          | 4.5 V                          | V <sub>cc</sub> ≥              | Unit                           |      |
|-----------------------|-------------------|-------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------|
| Falameter             | Symbol            | Conditions              | Min                            | Max                            | Min                            | Max                            | Unit |
| SCS↓→SCK↓ setup time  | t <sub>CSSI</sub> |                         | (*1)-50                        | (*1)+0                         | (*1)-50                        | (*1)+0                         | ns   |
| SCK↑→SCS↑ hold time   | t <sub>CSHI</sub> | Internal shift<br>clock | (*2)+0                         | (*2)+50                        | (*2)+0                         | (*2)+50                        | ns   |
| SCS deselect time     | t <sub>CSDI</sub> | operation               | (*3)-50<br>+5t <sub>CYCP</sub> | (*3)+50<br>+5t <sub>СҮСР</sub> | (*3)-50<br>+5t <sub>СҮСР</sub> | (*3)+50<br>+5t <sub>СҮСР</sub> | ns   |
| SCS↓→SCK↓ setup time  | tcsse             |                         | 3tcycp+30                      | -                              | 3tcycp+30                      | -                              | ns   |
| SCK↑→SCS↑ hold time   | tcshe             |                         | 0                              | -                              | 0                              | -                              | ns   |
| SCS deselect time     | t <sub>CSDE</sub> | External shift<br>clock | 3t <sub>CYCP</sub> +30         | -                              | 3t <sub>CYCP</sub> +30         | -                              | ns   |
| SCS ↓ →SOT delay time | tdse              | operation               | -                              | 40                             | -                              | 40                             | ns   |
| SCS ↑ →SOT delay time | tDEE              |                         | 0                              | -                              | 0                              | -                              | ns   |

(\*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(\*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(\*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

#### Notes:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance  $C_L = 30 \text{ pF}$ .









# 12.4.13 External Input Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$ 

| Deremeter   | Sympol      | Din Nome                | Conditions | Value                                  |     | 110:4 | Bomarka                     |  |
|-------------|-------------|-------------------------|------------|----------------------------------------|-----|-------|-----------------------------|--|
| Parameter   | Symbol      | Pin Name                | Conditions | Min                                    | Max | Unit  | Remarks                     |  |
|             |             | ADTGx                   |            |                                        |     |       | A/D converter trigger input |  |
|             |             | FRCKx                   | -          | 2t <sub>CYCP</sub> *1                  | -   | ns    | Free-run timer input clock  |  |
|             |             | lcxx                    |            |                                        |     |       | Input capture               |  |
| Input pulse | Input pulse | DTTIxX                  | -          | 2t <sub>CYCP</sub> *1                  | -   | ns    | Waveform generator          |  |
| width       |             | INT00 to INT31,<br>NMIX |            | 2t <sub>CYCP</sub> + 100 <sup>*1</sup> | -   | ns    | External interrupt,         |  |
|             |             |                         |            | 500 <sup>*2</sup>                      | -   | ns    | NMI                         |  |
|             |             | WKUPx                   | -          | 500 <sup>*3</sup>                      | -   | ns    | Deep standby wake up        |  |

1: t<sub>CYCP</sub> indicates the APB bus clock cycle time except stop when in Stop mode, in Timer mode. For more information about the APB bus number to which the A/D converter, multi-function timer, and external interrupt are connected, see 1. S6E2G Series Block Diagram in this data sheet.

2: When in Stop mode, in Timer mode

3: When in Deep Standby RTC mode, in Deep Standby Stop mode











# 12.8 MainFlash Memory Write/Erase Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V)$ 

| Parameter          |                          | Value |      |     | Unit | Domorika                                    |  |
|--------------------|--------------------------|-------|------|-----|------|---------------------------------------------|--|
|                    |                          | Min   | Тур  | Мах | Unit | Remarks                                     |  |
| Contax areas time  | Large Sector             | -     | 0.7  | 3.7 | s    | Includes write time prior to internal       |  |
| Sector erase time  | Small Sector             | -     | 0.3  | 1.1 | S    | erase                                       |  |
| Half word (16-bit) | Write cycles < 100 times |       | 12   | 100 |      | Not including system-level overhead         |  |
| write time         | Write cycles > 100 times | -     |      | 200 | μs   | time                                        |  |
| Chip erase time*   |                          | -     | 13.6 | 68  | S    | Includes write time prior to internal erase |  |

 $\ensuremath{^*\!:}$  It indicates the chip erase time of 1MB MainFlash memory

For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required.

See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for the detail.

# Write Cycles and Data Retention Time

| Erase/Write Cycles (Cycle) | Data Retention Time (Year) |
|----------------------------|----------------------------|
| 1,000                      | 20*                        |
| 10,000                     | 10*                        |
| 100,000                    | 5*                         |

\*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C).



# 12.9 Standby Recovery Time

### 12.9.1 Recovery Cause: Interrupt/WKUP

The time from the interrupt occurring to the time of program operation start is shown.

# **Recovery Count Time**

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$ 

| Parameter                                                                             | Symbol | Value  |      | 1114 | Demarka               |
|---------------------------------------------------------------------------------------|--------|--------|------|------|-----------------------|
|                                                                                       |        | Тур    | Max* | Unit | Remarks               |
| Sleep mode                                                                            |        | HCLK×1 |      | μs   |                       |
| High-speed CR Timer mode<br>Main Timer mode<br>PLL Timer mode                         | ticnt  | 40     | 80   | μs   |                       |
| Low-speed CR Timer mode                                                               |        | 450    | 900  | μs   |                       |
| Sub Timer mode                                                                        |        | 896    | 1136 | μs   |                       |
| RTC mode<br>Stop mode<br>(High-speed CR/Main/PLL Run mode return)                     |        | 316    | 581  | μs   |                       |
| RTC mode<br>Stop mode<br>(Low-speed CR/sub Run mode return)                           |        | 270    | 540  | μs   |                       |
| Deep Standby RTC mode with RAM retention<br>Deep Standby Stop mode with RAM retention |        | 365    | 667  | μs   | without RAM retention |
|                                                                                       |        | 365    | 667  | μs   | with RAM retention    |

\*: The maximum value depends on the built-in CR accuracy.

# Example of Standby Recovery Operation (when in External Interrupt Recovery\*)



<sup>\*:</sup> External interrupt is set to detecting fall edge.





### Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery\*)

\*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.

#### Notes:

- The return factor is different in each low-power consumption mode. See Chapter 6: Low Power Consumption mode and Operations of Standby modes in FM4 Family Peripheral Manual Main Part (002-04856).
- The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (002-04856).



# 14. Package Dimensions

