

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Broduct Status	Activo
	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, SD, SmartCard, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	121
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2gk8hhagv2000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- □ LIN break delimiter generation (can change to 1- to 4-bit length)
- Various error detect functions available (parity errors, framing errors, and overrun errors)
- I²C
 - □ Standard mode (Max 100 kbps)/Fast mode (Max 400 kbps) supported
 - \square Fast mode Plus (Fm+) (Max 1000 kbps, only for ch 3 = ch A and ch 7 = ch B) supported
- I²S

□ Using CSIO (SPI) (ch 1 only) and I²S clock generator □ Supports two transfer protocol: I²S and MSB-justified □ Master mode only

DMA Controller (Eight Channels)

DMA controller has an independent bus, so the CPU and DMA controller can process simultaneously.

- Eight independently configured and operated channels
- Transfer can be started by software or request from the built-in peripherals
- Transfer address area: 32-bit (4 GB)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- Transfer data type: bytes/half-word/word
- Transfer block count: 1 to 16
- Number of transfers: 1 to 65536

DSTC (Descriptor System Data Transfer Controller; 256 channels)

The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor system and, following the specified contents of the descriptor that has already been constructed on the memory, can access directly the memory/peripheral device and perform the data-transfer operation.

It supports the software activation, the hardware activation, and the chain activation functions.

A/D Converter (Max 32 Channels)

- 12-bit A/D Converter
 - □ Successive approximation type
 - Built-in three units
 - □ Conversion time: 0.5 µs at 5 V
 - □ Priority conversion available (priority at two levels)
 - □ Scanning conversion mode
 - Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: 4 steps)

Base Timer (Max 16 channels)

Operation mode is selected from the following for each channel:

16-bit PWM timer

- 16-bit PPG timer
- 16-/32-bit reload timer
- 16-/32-bit PWC timer
- Event counter mode (External clock mode)

General Purpose I/O Port

This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals; moreover, the port relocate function is built in. It can set the I/O port to which the peripheral function can be allocated.

- Capable of pull-up control per pin
- Capable of reading pin level directly
- Built-in port-relocate function
- Up to 121 high-speed general-purpose I/O ports in 144-pin package
- Some pins 5 V tolerant I/O. See 6. Pin Descriptions and 7. I/O Circuit Type for the corresponding pins.

Multi-function Timer (Max two units)

The multi-function timer is composed of the following blocks: Minimum resolution: 5.56 ns

- 16-bit free-run timer × 3 ch/unit
- Input capture × 4 ch/unit
- Output compare × 6 ch/unit
- A/D activation compare × 6 ch/unit
- Waveform generator × 3 ch/unit
- 16-bit PPG timer × 3 ch/unit

The following functions can be used to achieve the motor control:

- PWM signal output function
- DC chopper waveform output function
- Dead time function
- Input capture function
- A/D convertor activate function
- DTIF (motor emergency stop) interrupt function

Real-Time Clock (RTC)

The real-time clock can count year, month, day, hour, minute, second, or day of the week from 00 to 99.

- Interrupt function with specifying date and time (year/month/day/hour/minute) is available. This function is also available by specifying only year, month, day, hour, or minute.
- Timer interrupt function after set time or each set time.
- Capable of rewriting the time with continuing the time count.
- Leap year automatic count is available.

Resets

- □ Reset requests from INITX pin
- Power on reset
- □ Software reset
- Watchdog timer reset
- □ Low-voltage detector reset
- □ Clock supervisor reset

Clock Supervisor (CSV)

Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.

- External OSC clock failure (clock stop) is detected, reset is asserted.
- External OSC frequency anomaly is detected, interrupt or reset is asserted.

Low-Voltage Detector (LVD)

This Series include two-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, the low-voltage detector function generates an interrupt or reset.

- LVD1: error reporting via interrupt
- LVD2: auto-reset operation

Low-power Consumption Mode

Six low power consumption modes are supported.

- Sleep
- Timer
- RTC
- Stop
- Deep standby RTC (selectable from with/without RAM retention)
- Deep standby stop (selectable from with/without RAM retention)

Peripheral Clock Gating

The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used.

Crypto Assist Function

These features are enabled for the crypto assist function.

The dedicated middleware is necessary for this calculator operation.

PKA (Public Key Accelerator)

PKA (Public Key Accelerator) is modular exponentiation calculation accelerator used of RSA Public Key crypto and so on.

- □ Available bit length: Up to 2048-bit
- AES calculator
- AES (Advanced Encryption Standard) calculator is a AES common key crypto accelerator which is compliant with FIPS (Federal Information Processing Standard Publication)197.
- □ Available key length: 128/192/256-bit
- □ CBC mode and ECB mode support
- External Bus Data Scramble
 - □ It enables to scramble input/output data of External Bus Interface.

Debug

- Serial wire JTAG debug port (SWJ-DP)
- Embedded trace macrocells (ETM) provide comprehensive debug and trace facilities.
- AHB trace macrocells (HTM)

Unique ID

Unique value of the device (41-bit) is set.

Power Supply

- Four power supplies
 - \square Wide range voltage: VCC = 2.7 V to 5.5 V
 - Power supply for USB ch 0 I/O: USBVCC0
 = 3.0 V to 3.6 V (when USB is used)
 = 2.7 V to 5.5 V (when GPIO is used)
 - □ Power supply for USB ch 1 I/O: USBVCC1 = 3.0 V to 3.6 V (when USB is used) = 2.7 V to 5.5 V (when GPIO is used)
 - Power supply for Ethernet-MAC I/O: ETHVCC = 3.0 V to 5.5 V (when Ethernet is used.)

Pin Number		Din Nome	I/O Circuit	Pin State
LQFP-176	LQFP-144	Pin Name	Туре	Туре
		P6E		
		ADTG_5		
166	136	SCK4_1 (SCL4_1)	Е	W
		INT29_0		
		E_PPS		
407		P65	F	K
167	-	INT28_1	E	ĸ
		P64		
168	-	CTS4_0	l I	K
		INT29_1		
		P63		
		ADTG_3		
169	137	RTS4_0	L	K
		INT30_0		
		MOEX_0		
		P62		
		SCK4_0	L	
170	138	(SCL4_0)		l I
		TIOB7_2		
		MWEX_0		
		P61		
		UHCONX0		
		SOT4_0		
171	139	(SDA4_0)	L	I
		TIOA7_2		-
		MALE_0		
		RICCO_0		
		SUBOUT_0		
		P60		
172	140	SIN4_0	- I	Q
		IN131_0		
470		WKUP3		
1/3	141	USBVCC0	-	-
174	142	P80	н	R
		UDM0		
175	143	P81	н	R
470		UDP0		
176	144	VSS	-	-

Madula	Din Nama	Function	Pin Number			
wodule	Pin Name	Function	LQFP 176	LQFP 144		
	SIN7_0	Multi-function serial interface ch 7 input	13	10		
	SIN7_1	pin	46	38		
	SOT7_0 (SDA7_0)	Multi-function serial interface ch 7 output pin	14	11		
	SOT7_1 (SDA7_1)	This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I ² C (operation mode 4).	47	39		
	SCK7_0 (SCL7_0)	Multi-function serial interface ch 7 clock I/O pin	15	12		
Multi- Function Serial 7	SCK7_1 (SCL7_1)	This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an I ² C (operation mode 4).	48	40		
	SCS70_0	Multi-function serial interface ch 7 chip	16	13		
	SCS70_1	select 0 input/output pin	49	41		
	SCS71_0	Multi-function serial interface ch 7 chip	17	14		
	SCS71_1	select 1 input/output pin	50	42		
	SCS72_0	Multi-function serial interface ch 7 chip	10	-		
	SCS72_1	select 2 input/output pin	51	43		
	SCS73_0	Multi-function serial interface ch 7 chip	11	-		
	SCS73_1	select 3 input/output pin	58	-		
	SIN8_0	Multi-function serial interface ch 8 input	70	60		
	SIN8_1	pin	111	-		
	SOT8_0 (SDA8_0)	Multi-function serial interface ch 8 output pin	71	61		
Multi- Function Serial	SOT8_1 (SDA8_1)	I his pin operates as SO18 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA8 when it is used in an I ² C (operation mode 4).	112	-		
8	SCK8_0 (SCL8_0)	Multi-function serial interface ch 8 clock I/O pin	72	62		
	SCK8_1 (SCL8_1)	This pin operates as SCK8 when it is used in a CSIO (operation mode 2) and as SCL8 when it is used in an I ² C (operation mode 4).	113	-		
	SIN9_0	Multi-function serial interface ch 9 input	68	58		
	SIN9_1	pin	97	81		
	SOT9_0 (SDA9_0)	Multi-function serial interface ch 9 output pin	67	57		
Multi- Function Serial	SOT9_1 (SDA9_1)	This pin operates as SOT9 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA9 when it is used in an I ² C (operation mode 4).	98	82		
9	SCK9_0 (SCL9_0)	Multi-function serial interface ch 9 clock I/O pin	66	56		
	SCK9_1 (SCL9_1)	This pin operates as SCK9 when it is used in a CSIO (operation mode 2) and as SCL9 when it is used in an I ² C (operation mode 4).	99	83		

List of Pin Behavior by Mode State

tatus Type	Function Group	Action roup		Run mode Timer mode, Deep Standby RTC Deep or Sleep RTC mode, or mode or Deep Standby Standby mode State Stop mode State Stop mode State Stop mode State		Return from Deep Standby mode State					
Pin S		Power Supply Unstable	Power Supply Stable		Power Supply Stable	Power Sta	Power Supply Stable		Power Supply Stable		
		-	INITX=0	INITX=1	INITX=1	INI	TX=1	INITX=1		INITX=1	
		-	-	-	-	SPL=0	SPL=1	SPL=0	SPL=1	-	
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	GPIO selected, internal input fixed at 0	Hi-Z/internal input fixed at 0	GPIO selected	
A	Main crystal oscillator input pin/ external main clock input selected	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input Enabled	
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	GPIO selected, internal input fixed at 0	Hi-Z/internal input fixed at 0	GPIO selected	
в	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	Maintain previous state	Hi-Z/internal input fixed at 0	Maintain previous State	
	Main crystal oscillator output pin	Hi-Z/ internal input fixed at 0/ or input enabled	Hi-Z/ internal input fixed at 0	Hi-Z/ internal input fixed at 0	Maintain previous state while oscillator active/ When oscillation stops*1, it will be Hi-Z/ Internal input fixed at 0						
с	INITX input pin	Pull-up/ input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ input enabled	GPIO selected	Hi-Z/ input enabled	GPIO selected	

Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices.

Package	Printed	Thermal Resistance	Maximum Permissible Power (mW)			
l'achage	Circuit Board	θja (°C/W)	T _A = +85 °C	T _A = +105 °C		
LQS144 (0.5-mm pitch)	Single-layered both sides	48	833	417		
	4 layers	33	1212	606		
LQP176 (0.5-mm pitch)	Single-layered both sides	45	889	444		
	4 layers	31	1290	645		

Table for Package Thermal Resistance and Maximum Permissible Power

WARNING:

- The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
 of the device's electrical characteristics are warranted when the device is operated within these ranges.
 Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
 adversely affect reliability and could result in device failure.
- No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Current Explanation Diagram

Peromotor S		Pin	Conditions		- *4	Va	lue		Demerke	
Parameter	Symbol	Name	Conditions	Conditions Frequency ^{**}		Typ*1	Max* ²	Unit	Remarks	
					72 MHz	54	112	mA		
					60 MHz	47	105	mA		
					48 MHz	39	97	mA		
			* -	36 MHz	31	89	mA	*3		
			5	24 MHz	23	81	mA	When all peripheral clocks are on		
				12 MHz	14	72	mA			
				8 MHz	11	69	mA			
Power		VCC	Normal operation *6,*7 (PLL)		4 MHz	7.2	65	mA		
supply current	ICC	VCC		-	72 MHz	37	95	mA		
					60 MHz	33	91	mA		
					48 MHz	28	86	mA		
				*5	36 MHz	23	81	mA	*3	
				5	24 MHz	17	75	mA	When all peripheral clocks are off	
					12 MHz	11	69	mA		
					8 MHz	8.3	66	mA		
				4 MHz	5.9	63	mA			

Table 12-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)

1: $T_A = +25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK

5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)

6: With data access to a MainFlash memory.

7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

-			Pin Conditions	- +4	Va	alue		. .		
Parameter	Symbol	Name	Conditions	Frequency	Typ*1	Max* ²	Unit	Remarks		
				72 MHz	32	90	mA			
		60 MHz	27	85	mA					
		48 MHz	23	81	mA					
		36 MHz	18	76	mA	*3 When all paripheral clocks				
			24 MHz	13	71	mA	are on			
			12 MHz	8.5	66	mA	1			
			Sleep operation ^{*5} (PLL)	8 MHz	6.9	64	mA	-		
Power		V/00		4 MHz	5.3	63	mA			
current	Iccs	VCC		72 MHz	15	73	mA			
				60 MHz	13	71	mA]		
				48 MHz	11	69	mA			
				36 MHz	9.3	67	mA	*3		
				24 MHz	7.3	65	mA	are off		
			12 MHz	5.4	63	mA				
			8 MHz	4.7	62	mA				
				4 MHz	4.1	62	mA			

Table 12-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK

1: $T_A = +25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK

5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

12.4 AC Characteristics

12.4.1 Main Clock Input Characteristics

-				Va	lue			
Parameter	Symbol	Name	Conditions	Min	Мах	Unit	Remarks	
			$V_{CC} \ge 4.5 \text{ V}$	4	48		When crystal oscillator is	
			V _{CC} < 4.5 V	4	20	MHZ	connected	
Input frequency	fсн		V _{CC} ≥4.5 V	4	48			
			V _{CC} < 4.5 V	4	20	MHZ	When using external clock	
		X0, X1	V _{CC} ≥4.5 V	20.83	250		When using external clock	
прит сюск сусіе	I CYLH		V _{CC} < 4.5 V	50	250	ns		
Input clock pulse width	-		Рwн/tcylн, Pwl/tcylн	45	55	%	When using external clock	
Input clock rise time and fall time	tcF, tcR		-	-	5	ns	When using external clock	
	fcc	-	-	-	180	MHz	Base clock (HCLK/FCLK)	
Internal operating clock *1	f _{CP0}	-	-	-	90	MHz	APB0bus clock *2	
frequency	f _{CP1}	-	-	-	180	MHz	APB1bus clock *2	
	f _{CP2}	-	-	-	90	MHz	APB2bus clock *2	
	tcycc	-	-	5.56	-	ns	Base clock (HCLK/FCLK)	
Internal operating clock *1	tсусро	-	-	11.1	-	ns	APB0bus clock *2	
cycle time	t _{CYCP1}	-	-	5.56	-	ns	APB1bus clock *2	
	t _{CYCP2}	-	-	11.1	-	ns	APB2bus clock *2	

(Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, $T_A = -40^{\circ}C$ to +105°C)

1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856).

2: For more about each APB bus to which each peripheral is connected, see 1. S6E2G Series Block Diagram in this data sheet.

12.4.2 Sub Clock Input Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Pin Name	Conditions		Value		11	Bomarka
Parameter				Min	Тур	Max	Unit	Remarks
Input frequency	1/tcyll	X0A,	-	-	32.768	-	kHz	When crystal oscillator is connected *
			-	32	-	100	kHz	When using external clock
Input clock cycle	tcyll	X1A	-	10	-	31.25	μs	When using external clock
Input clock pulse width	-		Pwн/tcyll, Pwl/tcyll	45	-	55	%	When using external clock

*: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices.

12.4.3 Built-In CR Oscillation Characteristics

Built-In High-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions		Value		l lm it	Pomarka
		Conditions	Min	Тур	Max	Unit	Remarks
Clock frequency	fcrн	T _J = - 20°C to + 105°C	3.92	4	4.08		When trimmed *1
		T _J = - 40°C to + 125°C	3.88	4	4.12	MHz	
		T _J = - 40°C to + 125°C	2.9	4	5		When not trimmed
Frequency stabilization time	t _{CRWT}	-	-	-	30	μs	*2

1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming

2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is able to use the High-speed CR clock as a source clock.

Built-In Low-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	mbol Condition		Value			Pomarka
	Symbol	Condition	Min	Тур	Max	Unit	Remarks
Clock frequency	fcrl	-	50	100	150	kHz	

12.4.4	Operating Conditions of Main PLL (in the Case of Using Main Clock for Input Clock of PLL)	
--------	---	--

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Parameter	Symbol	Value			11		
		Min	Тур	Max	Unit	Remarks	
PLL oscillation stabilization wait time*1 (lock up time)	tlock	100	-	-	μs		
PLL input clock frequency	f _{PLLI}	4	-	16	MHz		
PLL multiplication rate	-	13	-	100	multiplier		
PLL macro oscillation clock frequency	fpllo	200	-	400	MHz		
Main PLL clock frequency*2	fclkpll	-	-	180	MHz		

1: Time from when the PLL starts operating until the oscillation stabilizes

2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856).

12.4.5 Operating Conditions of USB/Ethernet PLL (in the Case of Using Main Clock for Input Clock of PLL)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Devementer	Symbol	Value			110:4	Domorko	
		Min	Тур	Max	Unit	Remarks	
PLL oscillation stabilization wait time ^{*1} (lock up time)	t _{LOCK}	100	-	-	μs		
PLL input clock frequency	f _{PLLI}	4	-	16	MHz		
PLL multiplication rate	-	13	-	100	multiplier		
PLL macro oscillation clock frequency	fpllo	200	-	400	MHz	USB/Ethernet	
USB/Ethernet clock frequency *2	fclkpll	-	-	50	MHz	After the M frequency division	

1: Time from when the PLL starts operating until the oscillation stabilizes

2: For more information about USB/Ethernet clock, see Chapter 2-2: USB/Ethernet Clock Generation in FM4 Family Peripheral Manual Communication Macro Part (002-04862).

External Ready Input Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Devemeter	Symbol	Din Nomo	Conditions	Val	ue	l Init	Demerke
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
MCLK↑ MRDY input setup time	trdyi	MCLK, MRDY	-	19	-	ns	

When RDY is input

■ When RDY is released

When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Devenuetor	Cumula	Conditions	Vcc <	4.5 V	V _{cc} ≥	11	
Parameter	Symbol	Conditions	Min	Max	Min	Мах	Unit
SCS∱→SCK↓ setup time	tcssi		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↑→SCS↓ hold time	tcsнi	Internal shift clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	tcsDI	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{СҮСР}	ns
SCS∱→SCK↓ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCK↑→SCS↓ hold time	tcshe	F (1.1%)	0	-	0	-	ns
SCS deselect time	tcsde	External shift clock	3tcycp+30	-	3tcycp+30	-	ns
SCS∱→SOT delay time	tDSE	operation	-	40	-	40	ns
SCS↓→SOT delay time	tDEE		0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance $C_L = 30 \text{ pF}$.

12.4.19 Ethernet-MAC Timing

RMII Transmission (100 Mbps/10 Mbps)

(ETHV _{CC} = 3.0V to 3.6V, 4.5V to 5.5V ^{*1} , V _{SS} = 0V, C _L = 25							
Parameter	Cumhal	Din Nome	Conditions	Va	11		
	Symbol	Pin Name	Conditions	Min	Max	Unit	
Reference clock cycle time ^{*2}	trefcyc	E_RXCK_REFCK	20 ns (typical)	-	-	ns	
Reference clock High-pulse-width duty cycle	t _{REFCYCH}	E_RXCK_REFCK	trefcych/trefcyc	35	65	%	
Reference clock Low-pulse-width duty cycle	t _{REFCYCL}	E_RXCK_REFCK	trefcycl/trefcyc	35	65	%	
$\begin{array}{l} REFCK & \uparrow & \rightarrow & Transmitted \\ delay \\ time \end{array}$	trmiitx	E_TX03, E_RX02, E_TX01, E_TX00, E_TXEN	-	-	12	ns	

*1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current.

*2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device specifications.

MII Transmission (100 Mbps/10 Mbps)

(ETHV_{CC} = 3.0V to 3.6V, 4.5V to $5.5V^{*1}$, V_{SS} = 0V, C_L = 25 pF)

Deremeter	Symbol Pin Name		Conditions	Va	l lmit	
Parameter			Conditions	Min	Max	Unit
Transmission clock Cycle time*2			100 Mbps 40 ns (typical)	-	-	ns
	ТТХСҮС	E_TCK	100 Mbps 400 ns (typical)	-	-	ns
Transmission clock High-pulse-width duty cycle	tтхсүсн	E_TCK	tтхсүсн/tтхсүс	35	65	%
Transmission clock Low-pulse-width duty cycle	t⊤xcyc∟	E_TCK	tтхсүс⊔/tтхсүс	35	65	%
TXCK $\uparrow \rightarrow$ Transmitted data delay time	t _{митх}	E_TX03, E_TX02, E_TX01, E_TX00, E_TXEN	-	-	24	ns

1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current.

2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the PHY-device specifications.

 $(\sqrt{cc} - A)/cc - 2.7)/$ to 5.5)/ $\sqrt{cs} - A)/cs - A)/RI - 0)/)$

12.5 12-bit A/D Converter

Electrical Characteristics for the A/D Converter

			Value					
Parameter	Symbol	Pin Name	Min	Тур	Мах	Unit	Remarks	
Resolution	-	-	-	-	12	bit		
Integral nonlinearity	-	-	-	-	± 4.5	LSB		
Differential nonlinearity	-	-	-	-	± 2.5	LSB	AVRH	
Zero transition voltage	V _{ZT}	Anxx	-	± 2	± 7	LSB	= 2.7 V to 5.5 V	
Full-scale transition voltage	V _{FST}	Anxx	-	AVRH ± 2	AVRH ± 7	LSB	when used	
Total error	-	-	-	± 3	± 8	LSB		
Conversion time	-	-	0.5 ^{*1}	-	-	μs	AV _{CC} ≥ 4.5 V	
Compliantime *2			0.15	-	10		AV _{CC} ≥ 4.5 V	
Sampling time 2	ts	-	0.3	-	10	μs	AVcc < 4.5 V	
	t _{сск}		25	-	1000		AV _{CC} ≥ 4.5 V	
Compare clock cycle ³		-	50	-	1000	ns	AVcc < 4.5 V	
State transition time to operation permission	t _{STT}	-	-	-	1.0	μs		
Power supply current (analog +	-	AVCC	-	0.69	0.92	mA	A/D 1 unit operation	
digital)			-	1.3	22	μA	When A/D stop	
Reference power supply	-	AVRH	-	1.1	1.97	mA	A/D 1 unit operation AVRH = 5.5 V	
			-	0.3	6.3	μA	When A/D stop	
Analog input capacity	CAIN	-	-	-	12.05	pF		
	RAIN				1.2	1.0	AV _{CC} ≥ 4.5 V	
Analog Input resistance		-	-	-	1.8	KΩ	AV _{CC} < 4.5 V	
Interchannel disparity	-	-	-	-	4	LSB		
Analog port input leak current	-	Anxx	-	-	5	μA		
			AVss	-	AVRH	V		
Analog input voltage	-	Anxx	AVss	-	AVcc	V		
		AVRH	4.5	-	AVcc	, <i>.</i>	Tcck <50 ns	
Reference voltage	-		2.7	-	AVcc	V	Tcck ≥ 50 ns	
	-	AVRL	AVss	-	AVss	V		

1: The conversion time is the value of sampling time (ts) + compare time (tc).

The condition of the minimum conversion time is when the value of Ts = 150 ns and Tc = 350 ns (AV_{cc} \ge 4.5V). Ensure that it satisfies the value of sampling time (t_s) and compare clock cycle (t_{CCK}).

For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog Macro Part (002-04860). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information about the APB bus number to which the A/D converter is connected, see 1. S6E2G Series Block Diagram in this data sheet. The sampling clock and compare clock are set at base clock (HCLK).

2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1).

3: The compare time (t_c) is the value of (Equation 2).