

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, CSIO, EBI/EMI, Ethernet, I ² C, LINbus, SD, SmartCard, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	153
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2gm8j0agv2000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin N	umber	D . N	!/O	Pin State	
LQFP-176	LQFP-144	Pin Name	Circuit Type	Туре	
		P21			
		ADTG_4			
127	103	SIN0_0	I	K	
		INT27_0			
		CROUT_0			
		P20			
128	104	NMIX	I	F	
		WKUP0			
129	105	USBVCC1	-	-	
130	106	P82	н	R	
130	100	UDM1	11	N	
131	107	P83	н	R	
151	107	UDP1		IX	
132	108	VSS	-	-	
133	109	VCC	-	-	
134	110	P00	E	G	
134	110	TRSTX	L	9	
		P01			
135	111	TCK	E	G	
		SWCLK			
136	112	P02	E	G	
130	112	TDI	L	0	
		P03			
137	113	TMS	E	G	
		SWDIO			
		P04	_		
138	114	TDO	E	G	
		SWO			
		P90	_		
		RTO10_1			
139		(PPG10_1)	E	к	
		TIOB0_1	-		
		INT12_1			
		IC0_CLK_1	-		
		P91	-		
		SIN5_1	-		
140	-	RTO11_1 (PPG11_1)	Е	к	
		TIOB1_1			
	[INT13_1			
		IC0_VCC_1			

Madula	Din Nome	Function	Pin N	umber
Module	Pin Name	Function	LQFP 176	LQFP 144
	DTTI0X_0	Input signal controlling waveform	34	29
	DTTI0X_1	generator outputs RTO00 to RTO05 of Multi-Function Timer 0.	8	8
	FRCK0_0	16-bit free-run timer ch 0 external	27	22
	FRCK0_1	clock input pin	13	10
	IC00_0		33	28
	IC00_1		9	9
	IC01_0		32	27
	IC01_1	16-bit input capture input pin of Multi-Function Timer 0.	10	-
	IC02_0	ICxx describes channel number.	31	26
	IC02_1		11	-
	IC03_0		28	23
	IC03_1		12	-
	RTO00_0 (PPG00_0)	Waveform generator output pin of Multi-Function Timer 0.	35	30
	RTO00_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output modes.	2	2
Multi- Function Timer 0	RTO01_0 (PPG00_0)	Waveform generator output pin of Multi-Function Timer 0.	36	31
	RTO01_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output modes.	3	3
	RTO02_0 (PPG02_0)	Waveform generator output pin of Multi-Function Timer 0.	37	32
	RTO02_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output modes.	4	4
	RTO03_0 (PPG02_0)	Waveform generator output pin of Multi-Function Timer 0.	38	33
	RTO03_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output modes.	5	5
	RTO04_0 (PPG04_0)	Waveform generator output pin of Multi-Function Timer 0.	39	34
	RTO04_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output modes.	6	6
	RTO05_0 (PPG04_0)	Waveform generator output pin of Multi-Function Timer 0.	40	35
	RTO05_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output modes.	7	7

9. Handling Devices

Power-Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. All of these pins should be connected externally to the power supply or ground lines, however, in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Be sure to connect the current-supply source with the power pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μ F be connected as a bypass capacitor between VCC and VSS near this device.

A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1V/µs at a momentary fluctuation such as switching the power supply.

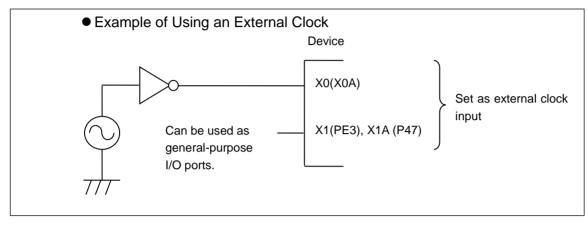
Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane, as this is expected to produce stable operation.

Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board.

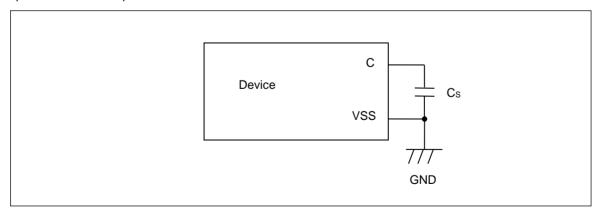
Sub Crystal Oscillator


The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize the oscillation, Cypress recommends a crystal oscillator that meets the following conditions:

- Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: approximately 6 pF to 7 pF
- Lead type Load capacitance: approximately 6 pF to 7 pF

Using an External Clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.



Handling When Using Multi-Function Serial Pin as I²C Pin

If the application uses the multi-function serial pin as an I²C pin, the P-channel transistor of the digital output must be disabled. I²C pins need to conform to electrical limitations like other pins, however, and avoid connecting to live external systems with the MCU power off.

C Pin

Devices in this series contain a regulator. Be sure to connect a smoothing capacitor (Cs) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. Some laminated ceramic capacitors have a large capacitance variation due to thermal fluctuation. Please select a capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of the device. A smoothing capacitor of about 4.7 μ F would be recommended for this series.

Mode Pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, the distance between the mode pins and VCC pins or VSS pins is as short as possible, and the connection impedance is low when the pins are pulled up/down such as for switching the pin level and rewriting the flash memory data. This is important to prevent the device from erroneously switching to test mode as a result of noise.

List of Pin Behavior by Mode State

Pin Status Type	Function Group	Power-On Reset or Low- Voltage Detection State	INITX Input State	Device Internal Reset State	Run mode or Sleep mode State	RTC mode, or		Deep Standby RTC mode or Deep Standby Stop mode State		Return from Deep Standby mode State
Pin St		Power Supply Unstable		Supply ble	Power Supply Stable	Power Supply Stable			Supply able	Power Supply Stable
		-	INITX=0	INITX=1	INITX=1	INI	TX=1	INITX=1		INITX=1
		-	-	-	-	SPL=0	SPL=1	SPL=0	SPL=1	-
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	GPIO selected, internal input fixed at 0	Hi-Z/internal input fixed at 0	GPIO selected
A	Main crystal oscillator input pin/ external main clock input selected	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled			Input enabled	Input Enabled
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	previous input fixed		Hi-Z/internal input fixed at 0	GPIO selected
в	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/internal input fixed at 0	Maintain previous state	Hi-Z/internal input fixed at 0	Maintain previous State
	Main crystal oscillator output pin	Hi-Z/ internal input fixed at 0/ or input enabled	Hi-Z/ internal input fixed at 0	Hi-Z/ internal input fixed at 0			ain previous sta hen oscillation s Internal in			
с	INITX input pin	Pull-up/ input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ input enabled	GPIO selected	Hi-Z/ input enabled	GPIO selected

- 1: Oscillation is stopped at Sub Timer mode, sub CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.
- 2: Maintain previous state at Timer mode. GPIO selected internal input fixed at 0 at RTC mode, Stop mode.
- 3: Maintain previous state at Timer mode. Hi-Z/internal input fixed at 0 at RTC mode, Stop mode.4: It shows the case selected by EPFR14.E_SPLC register.

Demonster	O mark at	Pin	O a malliti a m	_	F *4	Va	lue	Unit	Dementer
Parameter	Symbol	Name	Conditions		Frequency*4	Typ*1	Max* ²	Unit	Remarks
				72 MHz	54	112	mA		
					60 MHz	47	105	mA	
				48 MHz	39	97	mA		
				*5	36 MHz	31	89	mA	*3
				*5	24 MHz	23	81	mA	When all peripheral clocks are on
				12 MHz	14	72	mA		
		VCC	Normal operation		8 MHz	11	69	mA	
Power					4 MHz	7.2	65	mA	
supply current	Icc		(PLL)		72 MHz	37	95	mA	
ounon			(FLL)		60 MHz	33	91	mA	
					48 MHz	28	86	mA	
					36 MHz	23	81	mA	*3
				*5	24 MHz	17	75	mA	When all peripheral clocks are off
					12 MHz	11	69	mA	
					8 MHz	8.3	66	mA	
					4 MHz	5.9	63	mA]

Table 12-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)

1: $T_A = +25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$

2: T_J = +125 °C, V_{CC} = 5.5 V

3: When all ports are input and are fixed at 0

4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK

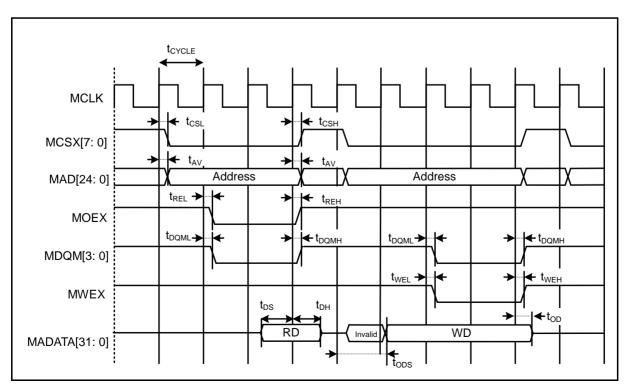
5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)

6: With data access to a MainFlash memory.

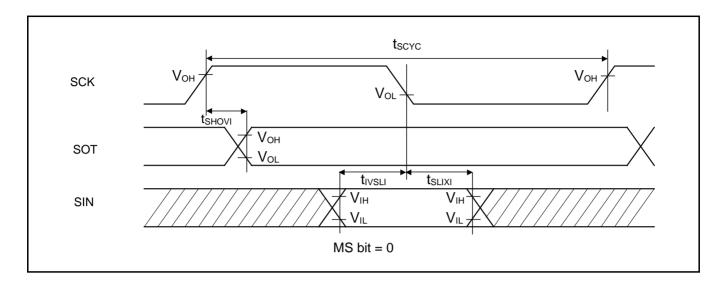
7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

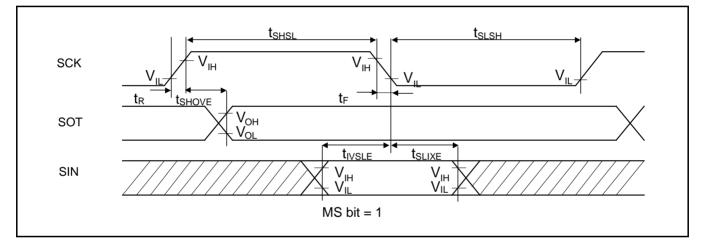
12.3.2 Pin Characteristics

	-		JSBV _{CC} 0 = USBV		Value			
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
		CMOS hysteresis input pin,		V _{CC} ×0.8	-	V _{CC} + 0.3	V	
		MD0, MD1	-	ETHV _{CC} ×0.8	-	ETHV _{CC} + 0.3	V	
H level input voltage (hysteresis	V _{IHS}	MADATAxx	$\label{eq:VCC} \begin{array}{l} V_{CC} > \textbf{3.0 V,} \\ V_{CC} \leq \textbf{3.6 V,} \end{array}$	2.4	-	V _{CC} + 0.3	V	At External Bus
input)		5V tolerant input pin	-	V _{CC} ×0.8	-	V _{SS} + 5.5	V	
		Input pin doubled as I ² C Fm+	-	V _{CC} ×0.7	-	V _{ss} + 5.5	V	
		TTL Schmitt input pin	-	2.0	-	ETHV _{CC} +0.3	V	
		CMOS hysteresis input pin,		V _{SS} - 0.3	-	V _{CC} ×0.2	V	
L level input		MD0, MD1	-	V _{ss} - 0.3	-	ETHV _{CC} ×0.2	V	
voltage (hysteresis	VILS	5V tolerant input pin	-	V _{SS} - 0.3	-	V _{CC} ×0.2	V	
input)		Input pin doubled as I ² C Fm+	-	Vss	-	V _{CC} ×0.3	V	
		TTL Schmitt input pin	-	V _{SS} - 0.3	-	0.8	V	
			$\label{eq:Vcc} \begin{array}{l} V_{\rm CC} \geq 4.5 \ \text{V}, \\ I_{\rm OH} = - \ 4 \ \text{mA} \end{array}$	V _{CC} - 0.5		V _{cc}	V	
			$V_{\rm CC}$ < 4.5 V, $I_{\rm OH}$ = - 2 mA	VCC - 0.5	-	VCC	v	
		4 mA type	$\begin{array}{l} \text{ETHV}_{\text{CC}} \geq 4.5 \text{ V}, \\ \text{I}_{\text{OH}} = \text{-} 4 \text{ mA} \end{array}$	V _{CC} - 0.5	_	ETHVcc	V	
			$\begin{array}{l} \text{ETHV}_{\rm CC} < 4.5 \text{ V}, \\ I_{\rm OH} = \text{-} 2 \text{ mA} \end{array}$					
		8 mA type	$\label{eq:VCC} \begin{array}{l} V_{\rm CC} \geq 4.5 \ \text{V}, \\ I_{\rm OH} = \text{-} \ 8 \ \text{mA} \end{array}$	V _{CC} - 0.5	-	Vcc	V	
			V _{CC} < 4.5 V, I _{OH} = - 4 mA	V((- 0.0	_	Vit	v	
H level output	V _{OH}		$\begin{array}{l} \text{ETHV}_{\text{CC}} \geq 4.5 \text{ V}, \\ \text{I}_{\text{OH}} = \text{- 8 mA} \end{array}$	ETHVcc - 0.5	-	ETHVcc	V	
voltage	V OH		ETHV _{CC} < 4.5 V, І _{ОН} = - 4 mA					
		12 mA type	$\label{eq:VCC} \begin{array}{l} V_{\rm CC} \geq 4.5 \ \text{V}, \\ I_{\rm OH} = \text{-} \ 12 \ \text{mA} \end{array}$	V _{CC} - 0.5	-	Vcc	V	
			V _{CC} < 4.5 V, I _{OH} = - 8 mA	Vec - 0.5	-	Vtt	v	
		The pin	$\begin{array}{l} USBV_{CC} \geq 4.5 \text{ V}, \\ I_{OH} = \text{-} 20.5 \text{ mA} \end{array}$	USBVcc - 0.4		USBVcc	V	*1
		doubled as USB I/O	$\begin{array}{l} USBV_{\rm CC} < 4.5 \text{ V}, \\ I_{\rm OH} = - \ 13.0 \text{ mA} \end{array}$	000 VCC - 0.4	-	USBVCC	v	
		The pip doubled as ¹² C Free	$\label{eq:Vcc} \begin{array}{l} V_{\rm CC} \geq 4.5 \ \text{V}, \\ I_{\rm OH} = - \ 4 \ \text{mA} \end{array}$			V	\ <i>\</i>	
		The pin doubled as I ² C Fm+	V _{CC} < 4.5V, I _{OH} = - 3 mA	V _{CC} - 0.5	-	Vcc	V	At GPIO

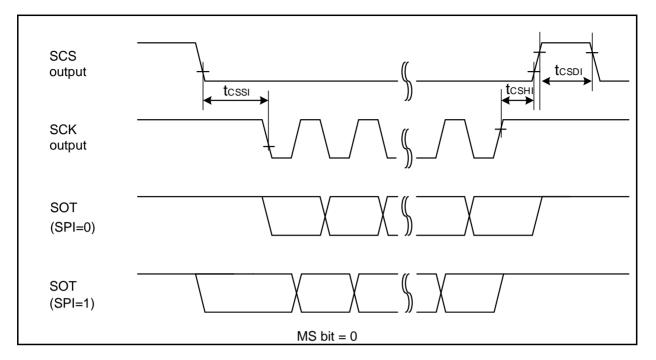

Separate Bus Access Synchronous SRAM Mode

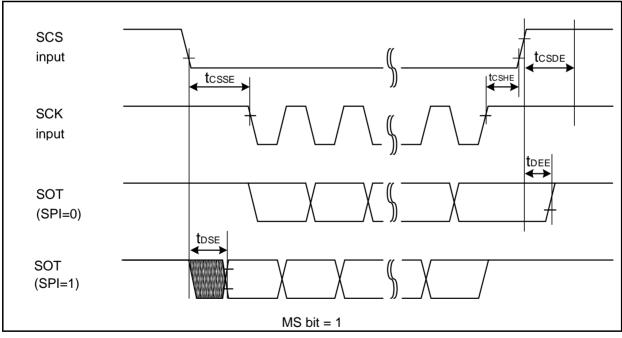
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Devenueter	Cumula al	Din Nama	Conditions	Va	lue	11	Domorko
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
Address delay time	t _{AV}	MCLK, MAD[24: 0]	-	1	9	ns	
	tcs∟	MCLK,	-	1	9	ns	
MCSX delay time	t _{сsн}	MCSX[7: 0]	-	1	9	ns	
MOEV dolou time	t _{REL}	MCLK,	-	1	9	ns	
MOEX delay time	t _{REH}	MOEX	-	1	9	ns	
Data set up →MCLK ↑ time	t _{DS}	MCLK, MADATA[31: 0]	-	19	-	ns	
MCLK ↑ → Data hold time	t _{DH}	MCLK, MADATA[31: 0]	-	0	-	ns	
	twel	MCLK,	-	1	9	ns	
MWEX delay time	t _{WEH}	MWEX	-	1	9	ns	
MDQM[1: 0]	t DQML	MCLK,	-	1	9	ns	
delay time	t _{DQMH}	MDQM[3: 0]	-	1	9	ns	
MCLK ↑ → Data output time	t _{ODS}	MCLK, MADATA[31: 0]	-	MCLK+1	MCLK+18	ns	
MCLK ↑ → Data hold time	top	MCLK, MADATA[31: 0]	-	1	18	ns	


Note:

- When the external load capacitance $C_L = 30 \, pF$



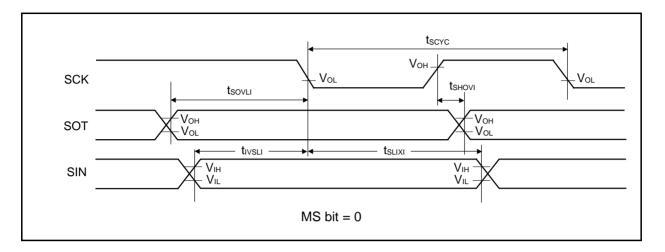


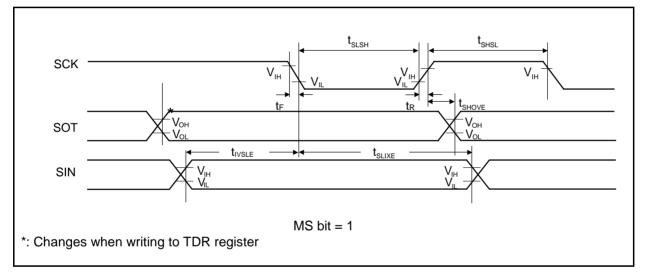
When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Devementer	Cumhal	Conditions	Vcc <	4.5 V	V _{cc} ≥	Unit		
Parameter	Symbol	Conditions	Min	Мах	Min	Мах	onit	
SCS↑→SCK↓ setup time	tcssi		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns	
SCK↑→SCS↓ hold time	tcsнi	Internal shift clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns	
SCS deselect time	tcsDI	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{СҮСР}	(*3)+50 +5t _{CYCP}	ns	
SCS↑→SCK↓ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns	
SCK↑→SCS↓ hold time	tcshe		0	-	0	-	ns	
SCS deselect time	tcsde	External shift clock	3tcycp+30	-	3tcycp+30	-	ns	
SCS∱→SOT delay time	tDSE	operation	-	40	-	40	ns	
SCS↓→SOT delay time	t DEE		0	-	0	-	ns	

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]


(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]


(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance $C_L = 30 \text{ pF}$.

High-Speed Synchronous Serial (SPI = 1, SCINV = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Demonster	0. mili al	Pin	O an all the set	V cc <	4.5 V	V _{CC} ≥	4.5 V	11
Parameter	Symbol	Name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4t _{CYCP}	-	ns
SCK↓→SOT delay time	tslovi	SCKx, SOTx		- 10	+ 10	- 10	+ 10	ns
SIN→SCK↑ setup time	tı∨sнı	SCKx,	Internal shift	14		12.5		ns
	UVSHI	SINx	clock operation	12.5*	-	12.5	-	115
SCK↑→SIN hold time	t _{SHIXI}	SCKx, SINx		5	-	5	-	ns
SOT→SCK↑ delay time	tsovнı	SCKx, SOTx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 5	-	2t _{CYCP} - 5	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK↓→SOT delay time	t SLOVE	SCKx, SOTx		-	15	-	15	ns
SIN→SCK↑ setup time	tivshe	SCKx, SINx	External shift clock operation	5	-	5	-	ns
SCK↑→SIN hold time	t _{SHIXE}	SCKx, SINx		5	-	5	-	ns
SCK fall time	t⊧	SCKx]	-	5	-	5	ns
SCK rise time	t _R	SCKx		-	5	-	5	ns

Notes:

The above characteristics apply to CLK synchronous mode.

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- These characteristics only guarantee the following pins:

No chip select: SIN4_0, SOT4_0, SCK4_0

Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0

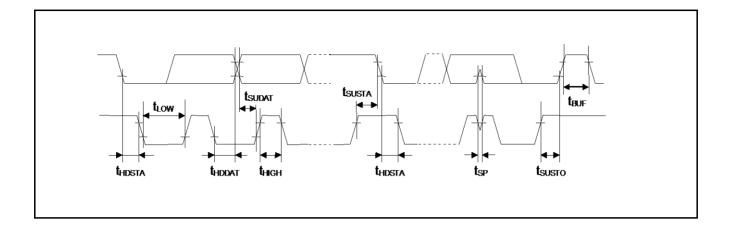
- When the external load capacitance $C_L = 30 \text{ pF}$. (for *, when $C_L = 10 \text{ pF}$)

When Using High-Speed Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0)

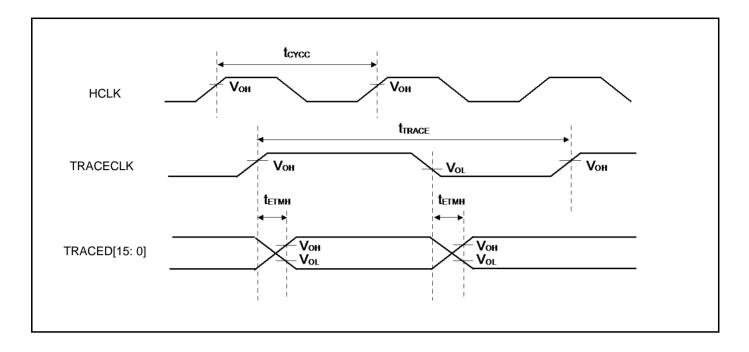
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Denemator	Complete	Conditions	Vcc <	4.5 V	V _{cc} ≥	Unit	
Parameter	Symbol	Conditions	Min	Мах	Min	Мах	Unit
SCS↓→SCK↓ setup time	tcssi		(*1)-20	(*1)+0	(*1)-20	(*1)+0	ns
SCK↑→SCS↓ hold time	tсsні	Internal shift clock	(*2)+0	(*2)+20	(*2)+0	(*2)+20	ns
SCS deselect time	tcsdi	operation	(*3)-20 +5t _{CYCP}	(*3)+20 +5t _{CYCP}	(*3)-20 +5t _{СҮСР}	(*3)+20 +5t _{СҮСР}	ns
SCS↑→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +15	-	3t _{CYCP} +15	-	ns
SCK↓→SCS↓ hold time	tcshe		0	-	0	-	ns
SCS deselect time	tcsde	External shift clock	3tcycp+15	-	3tcycp+15	-	ns
SCS∱→SOT delay time	tDSE	operation	-	40	-	40	ns
SCS↓→SOT delay time	tdee		0	-	0	-	ns

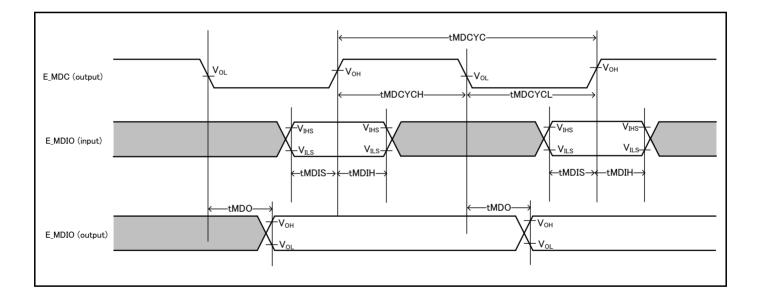
(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]


(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

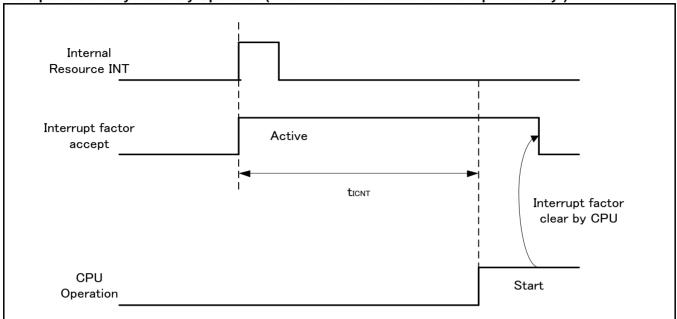
(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]


Notes:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.
- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).
- When the external load capacitance $C_L = 30 \text{ pF}$.



Management Interface


Deservation	0. militad	Dia Nama	Osmalitisms	Va	Unit	
Parameter	Symbol	Pin Name	Conditions	Min	Min Max	
Management clock cycle time*	tмdсүс	E_MDC	-	400	-	ns
Management clock High pulse width duty cycle	tмdсүсн	E_MDC	tмdсүсн/tмdсүс	35	65	%
Management clock Low pulse width duty cycle	t _{MDCYCL}	E_MDC	tмdсүсL/tмdсүс	35	65	%
MDC ↓ → MDIO Delay time	t _{MDO}	E_MDIO	-	-	60	ns
$\begin{array}{l} MDIO \to MDC \uparrow \\ Setup time \end{array}$	t _{MDIS}	E_MDIO	-	20	-	ns
MDC ↑ → MDIO Hold time	tмdiн	E_MDIO	-	0	-	ns

(ETHV_{CC} = 3.0V to 3.6V, 4.5V to 5.5V, V_{SS} = 0V, C_L = 25 pF)

*: The clock time should be set to a value greater than the minimum value by setting the Ethernet-MAC setting register.

Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*)

*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.

Notes:

- The return factor is different in each low-power consumption mode. See Chapter 6: Low Power Consumption mode and Operations of Standby modes in FM4 Family Peripheral Manual Main Part (002-04856).
- The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (002-04856).

13. Ordering Information

Part Number	Flash	RAM	CAN	Ethernet	SD Card	Crypto	Package
S6E2GM6H0AGV2000A	512 KB	128 KB	\checkmark	~	✓		
S6E2GM8H0AGV2000A	1 MB	192 KB	✓	~	✓		Plastic LQFP (0.5 mm pitch),
S6E2GM6HHAGV2000A	512 KB	128 KB	\checkmark	~	✓	\checkmark	144 pin (LQS144)
S6E2GM8HHAGV2000A	1 MB	192 KB	\checkmark	~	~	✓	
S6E2GM6J0AGV2000A	512 KB	128 KB	✓	~	✓		
S6E2GM8J0AGV2000A	1 MB	192 KB	✓	~	✓		Plastic LQFP (0.5 mm pitch), 176 pin
S6E2GM6JHAGV2000A	512 KB	128 KB	\checkmark	~	~	\checkmark	(LQP176)
S6E2GM8JHAGV2000A	1 MB	192 KB	\checkmark	✓	✓	✓	
S6E2GK6H0AGV2000A	512 KB	128 KB		~	~		
S6E2GK8H0AGV2000A	1 MB	192 KB		~	\checkmark		Plastic LQFP (0.5 mm pitch), 144 pin
S6E2GK6HHAGV2000A	512 KB	128 KB		~	\checkmark	~	(LQS144)
S6E2GK8HHAGV2000A	1 MB	192 KB		~	✓	~	
S6E2GK6J0AGV2000A	512 KB	128 KB		~	✓		
S6E2GK8J0AGV2000A	1 MB	192 KB		~	~		Plastic LQFP (0.5 mm pitch),
S6E2GK6JHAGV2000A	512 KB	128 KB		~	~	✓	176 pin (LQP176)
S6E2GK8JHAGV2000A	1 MB	192 KB		~	~	√	
S6E2GH6H0AGV2000A	512 KB	128 KB	\checkmark		~		Plastic LQFP (0.5 mm pitch),
S6E2GH8H0AGV2000A	1 MB	192 KB	\checkmark		~		144 pin (LQS144)
S6E2GH6J0AGV2000A	512 KB	128 KB	\checkmark		~		Plastic LQFP (0.5 mm pitch),
S6E2GH8J0AGV2000A	1 MB	192 KB	\checkmark		~		176 pin (LQP176)
S6E2G36H0AGV2000A	512 KB	128 KB					Plastic LQFP (0.5 mm pitch),
S6E2G38H0AGV2000A	1 MB	192 KB					144 pin (LQS144)
S6E2G36J0AGV2000A	512 KB	128 KB					Plastic LQFP (0.5 mm pitch),
S6E2G38J0AGV2000A	1 MB	192 KB					176 pin (LQP176)
S6E2G26H0AGV2000A	512 KB	128 KB		~			
S6E2G28H0AGV2000A	1 MB	192 KB		~			Plastic LQFP (0.5 mm pitch),
S6E2G26HHAGV2000A	512 KB	128 KB		~		~	144 pin (LQS144)
S6E2G28HHAGV2000A	1 MB	192 KB		~		~	
S6E2G26J0AGV2000A	512 KB	128 KB		~			
S6E2G28J0AGV2000A	1 MB	192 KB		~			Plastic LQFP (0.5 mm pitch),
S6E2G26JHAGV2000A	512 KB	128 KB		~		~	176 pin (LQP176)
S6E2G28JHAGV2000A	1 MB	192 KB		~		~	