

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3923 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j93-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, Omniscient Code Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC18F87J93 FAMILY

64/80-Pin, High-Performance Microcontrollers with LCD Driver, 12-Bit A/D and nanoWatt Technology

LCD Driver and Keypad Interface Features:

- Direct LCD Panel Drive Capability:
 Can drive LCD panel while in Sleep mode
- Up to 48 Segments and 192 Pixels, Software Selectable
- Programmable LCD Timing module:
 - Multiple LCD timing sources available
 - Up to four commons: static, 1/2, 1/3 or 1/4 multiplex
 - Static, 1/2 or 1/3 bias configuration
- On-Chip LCD Boost Voltage Regulator for Contrast Control
- Charge Time Measurement Unit (CTMU) for Capacitive Touch Sensing
- ADC for Resistive Touch Sensing

Low-Power Features:

- Power-Managed modes:
 - Run: CPU On, Peripherals On
 - Idle: CPU Off, Peripherals On
 - Sleep: CPU Off, Peripherals Off
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Two Crystal modes, 4-25 MHz
- Two External Clock modes, up to 48 MHz
- 4x Phase Lock Loop (PLL)
- Internal Oscillator Block with PLL:
 - Eight user-selectable frequencies from 31.25 kHz to 8 MHz
- Secondary Oscillator using Timer1 at 32 kHz
- Fail-Safe Clock Monitor (FSCM):
 - Allows for safe shutdown if peripheral clock fails

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25 mA (PORTB and PORTC)
- Up to Four External Interrupts
- Four 8-Bit/16-Bit Timer/Counter modules
- Two Capture/Compare/PWM (CCP) modules
- Master Synchronous Serial Port (MSSP) module with Two Modes of Operation:
 - 3-Wire/4-Wire SPI (supports all four SPI modes)
- I²C[™] Master and Slave mode
- One Addressable USART module
- One Enhanced Addressable USART module:
 - LIN/J2602 support
 - Auto-wake-up on Start bit and Break character
 - Auto-Baud Detect (ABD)
- 12-Bit, up to 12-Channel A/D Converter:
 - Auto-acquisition
 - Conversion available during Sleep
- Two Analog Comparators
- Programmable Reference Voltage for Comparators
- Hardware Real-Time Clock and Calendar (RTCC) with Clock, Calendar and Alarm Functions
- Charge Time Measurement Unit (CTMU):
 - Capacitance measurement
 - Time measurement with 1 ns typical resolution

Note: This document is supplemented by the "PIC18F87J90 Family Data Sheet" (DS39933). See Section 1.0 "Device Overview".

	Flash	SRAM			it o		N	ISSP	μĿ	/D (si	tors	ę		
Device	Program Memory (Bytes)	Data Memory (Bytes)	I/O	LCD (Pixels)	Timers 8/16-B	ССР	SPI	Master I ² C™	EUSAR AUSAR	12-Bit A (Channe	Compara	BOR/LV	ктсс	CTMU
PIC18F66J93	64K	3,923	51	132	1/3	2	Yes	Yes	1/1	12	2	Yes	Yes	Yes
PIC18F67J93	128K	3,923	51	132	1/3	2	Yes	Yes	1/1	12	2	Yes	Yes	Yes
PIC18F86J93	64K	3,923	67	192	1/3	2	Yes	Yes	1/1	12	2	Yes	Yes	Yes
PIC18F87J93	128K	3,923	67	192	1/3	2	Yes	Yes	1/1	12	2	Yes	Yes	Yes

Pin Namo	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/SEG30 RB0 INT0 SEG30	48	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 0. SEG30 output for LCD.
RB1/INT1/SEG8 RB1 INT1 SEG8	47	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.
RB2/INT2/SEG9/CTED1 RB2 INT2 SEG9 CTED1	46	I/O I O I	TTL ST Analog ST	Digital I/O. External Interrupt 2. SEG9 output for LCD. CTMU Edge 1 input.
RB3/INT3/SEG10/CTED2 RB3 INT3 SEG10 CTED2	45	I/O I O I	TTL ST Analog ST	Digital I/O. External Interrupt 3. SEG10 output for LCD. CTMU Edge 2 input.
RB4/KBI0/SEG11 RB4 KBI0 SEG11	44	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.
RB5/KBI1/SEG29 RB5 KBI1 SEG29	43	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG29 output for LCD.
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	mpatible input t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XJ93 (64-PIN DEVICE) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Pin Name	Pin Number	Pin	Buffer	Description
Fill Naille	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/SEG32 RC1 T1OSI CCP2 ⁽¹⁾ SEG32	29	I/O I I/O O	ST CMOS ST Analog	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output. SEG32 output for LCD.
RC2/CCP1/SEG13 RC2 CCP1 SEG13	33	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.
RC3/SCK/SCL/SEG17 RC3 SCK SCL SEG17	34	I/O I/O I/O O	ST ST ST Analog	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode. SEG17 output for LCD.
RC4/SDI/SDA/SEG16 RC4 SDI SDA SEG16	35	I/O I I/O O	ST ST ST Analog	Digital I/O. SPI data in. I ² C data I/O. SEG16 output for LCD.
RC5/SDO/SEG12 RC5 SDO SEG12	36	I/O O O	ST Analog	Digital I/O. SPI data out. SEG12 output for LCD.
RC6/TX1/CK1/SEG27 RC6 TX1 CK1 SEG27	31	I/O O I/O O	ST — ST Analog	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1). SEG27 output for LCD.
RC7/RX1/DT1/SEG28 RC7 RX1 DT1 SEG28	32	I/O I I/O O	ST ST ST Analog	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1). SEG28 output for LCD.
Legend: TTL = TTL co ST = Schmit I = Input P = Power Note 1: Default assignm	ompatible input t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) MX Configuration bit is set

TABLE 1-3: PIC18F6XJ93 (64-PIN DEVICE) PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/SEG0/CTPLS RD0 SEG0 CTPLS	58	I/O O O	ST Analog —	Digital I/O. SEG0 output for LCD. CTMU pulse generator output.
RD1/SEG1 RD1 SEG1	55	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.
RD2/SEG2 RD2 SEG2	54	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.
RD3/SEG3 RD3 SEG3	53	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.
RD4/SEG4 RD4 SEG4	52	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.
RD5/SEG5 RD5 SEG5	51	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.
RD6/SEG6 RD6 SEG6	50	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.
RD7/SEG7 RD7 SEG7	49	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	ompatible input t Trigger input	with Cl	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XJ93 (64-PIN DEVICE) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Din Nama	Pin Number	Pin	Buffer	Description		
	TQFP	Туре	Туре	Description		
				PORTE is a bidirectional I/O port.		
RE0/LCDBIAS1 RE0 LCDBIAS1	4	I/O I	ST Analog	Digital I/O. BIAS1 input for LCD.		
RE1/LCDBIAS2 RE1 LCDBIAS2	3	I/O I	ST Analog	Digital I/O. BIAS2 input for LCD.		
LCDBIAS3	78	I	Analog	BIAS3 input for LCD.		
RE3/COM0 RE3 COM0	77	I/O O	ST Analog	Digital I/O. COM0 output for LCD.		
RE4/COM1 RE4 COM1	76	I/O O	ST Analog	Digital I/O. COM1 output for LCD.		
RE5/COM2 RE5 COM2	75	I/O O	ST Analog	Digital I/O. COM2 output for LCD.		
RE6/COM3 RE6 COM3	74	I/O O	ST Analog	Digital I/O. COM3 output for LCD.		
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	73	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.		
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	ompatible input tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-4: PIC18F8XJ93 (80-PIN DEVICE) PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Pin Nama	Pin Number	Pin	Buffer	Description	
	TQFP	Туре	Туре	Description	
				PORTF is a bidirectional I/O port.	
RF1/AN6/C2OUT/SEG19 RF1 AN6 C2OUT SEG19	23	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 6. Comparator 2 output. SEG19 output for LCD.	
RF2/AN7/C1OUT/SEG20 RF2 AN7 C1OUT SEG20	18	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 7. Comparator 1 output. SEG20 output for LCD.	
RF3/AN8/SEG21/C2INB RF3 AN8 SEG21 C2INB	17	I/O I O I	ST Analog Analog Analog	Digital I/O. Analog Input 8. SEG21 output for LCD. Comparator 2 input B.	
RF4/AN9/SEG22/C2INA RF4 AN9 SEG22 C2INA	16	I/O I O I	ST Analog Analog Analog	Digital I/O. Analog Input 9. SEG22 output for LCD. Comparator 2 input A.	
RF5/AN10/CVREF/ SEG23/C1INB RF5 AN10 CVREF SEG23 C1INB	15	I/O I O I	ST Analog Analog Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output. SEG23 output for LCD. Comparator 1 input B.	
RF6/AN11/SEG24/C1INA RF6 AN11 SEG24 C1INA	14	I/O I O I	ST Analog Analog Analog	Digital I/O. Analog Input 11. SEG24 output for LCD. Comparator 1 input A.	
RF7/AN5/SS/SEG25 RF7 AN5 SS SEG25	13	I/O O I O	ST Analog TTL Analog	Digital I/O. Analog Input 5. SPI slave select input. SEG25 output for LCD.	
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels L = Input CMOS = CMOS compatible input or output Analog = Analog input Q = Output					

TABLE 1-4: PIC18F8XJ93 (80-PIN DEVICE) PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power OD = Open-Drain (no P diode to VDD) **Note 1:** Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 12 inputs for all PIC18F87J93 family devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has these registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 2-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCAL	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:											
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'							
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
DIT /	ADCAL:	A/D Calibration bit									
	1 = Calib 0 = Norn	nation is performed on next A nal A/D converter operation (A/D conversion no calibration is performed)								
bit 6	Unimple	mented: Read as '0'									
bit 5-2	CHS<3:0	>: Analog Channel Select bi	its								
	0000 = 0	Channel 00 (AN0)									
	0001 = 0	0001 = Channel 01 (AN1)									
	0010 = 0	0010 = Channel 02 (AN2)									
	0011 = 0	0011 = Channel 03 (AN3)									
	0100 = (Channel 04 (AN4)									
	0101 = 0	Channel 05 (AN5)									
	0110 = 0	Channel 06 (AN6)									
	0111 = 0	Channel 07 (AN7)									
	1000 = 0	Channel 08 (AN8)									
	1001 = 0	Channel 09 (AN9)									
	1010 = 0	Channel 10 (AN10)									
	1011 = 0	Channel 11 (AN11)									
	11xx = l	Jnused									
bit 1	GO/DON	IE: A/D Conversion Status bi	t								
	When AI	<u>DON = 1:</u>									
	1 = A/D	conversion in progress									
	0 = A/D	Idle									
bit 0	ADON: A	VD On bit									
	1 = A/D	converter module is enabled									
	0 = A/D d	converter module is disabled									

The ADCON0 register, shown in Register 2-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 2-2, configures the functions of the port pins. The ADCON2 register, shown in Register 2-3, configures the A/D clock source, programmed acquisition time and justification.

PIC18F87J93 FAMILY

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF- pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the

FIGURE 2-1: A/D BLOCK DIAGRAM^(1,2)

A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 2-1.

Note 1: Channels AN15 through AN12 are not available on PIC18F6XJ93 devices.2: I/O pins have diode protection to VDD and Vss.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear ADIF bit, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.

2.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048)$

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048)$ µs -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) µs 1.05 µs
TACQ	=	$0.2 \ \mu s + 1 \ \mu s + 1.2 \ \mu s$ 2.4 \ \ \ \ \ \ u s

2.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD.

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	ADCS<2:0>	Device Frequency
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	40.0 MHz
64 Tosc	110	40.0 MHz
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

2.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

2.5 A/D Conversions

Figure 2-3 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-4 shows the operation of the A/D converter after the GO/DONE bit has been set; the ACQT<2:0> bits are set to '010' and a 4 TAD acquisition time is selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

2.6 Use of the CCP2 Trigger

An A/D conversion can be started by the "Special Event Trigger" of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

FIGURE 2-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.7 A/D Converter Calibration

The A/D converter in the PIC18F87J93 family of devices includes a self-calibration feature which compensates for any offset generated within the module. The calibration process is automated and is initiated by setting the ADCAL bit (ADCON0<7>). The next time the GO/DONE bit is set, the module will perform a "dummy" conversion (which means it is reading none of the input channels) and store the resulting value internally to compensated.

The calibration process assumes that the device is in a relatively steady-state operating condition. If A/D calibration is used, it should be performed after each device Reset or if there are other major changes in operating conditions.

2.8 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the power-managed mode clock that will be used. After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding power-managed Idle mode during the conversion.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D RC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN and SCSx bits in the OSCCON register must have already been cleared prior to starting the conversion.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	2
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	—	TMR2IF	TMR1IF	2
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE	—	TMR2IE	TMR1IE	2
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	—	TMR2IP	TMR1IP	2
PIR3	—	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	2
PIE3	—	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	2
IPR3	—	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	2
ADRESH	A/D Result	t Register Hi	gh Byte						2
ADRESL	A/D Result	t Register Lo	w Byte						2
ADCON0	ADCAL	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	2
ADCON1	TRIGSEL	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	2
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	2
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	2
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	2
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	2
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	2
TRISF	TRISF5	TRISF4	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_	2

TABLE 2-2: SUMMARY OF A/D REGISTERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

2: For these Reset values, see Section 4.0 "Reset" of the "PIC18F87J90 Family Data Sheet" (DS39933).

PIC18F87J93 FAMILY

NOTES:

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F87J93 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:	Legend:							
R = Read-only bit								
bit 7-5	DEV<2:0>: Device ID bits							
	111 = PIC18F87J93							
	110 = PIC18F86J93							

 010 = PIC18F66J93

 bit 4-0
 REV<4:0>: Revision ID bits

 These bits are used to indicate the device revision.

011 = PIC18F67J93

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F87J93 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:	
R = Read-only bit	
,	

bit 7-0 **DEV<10:3>:** Device ID bits⁽¹⁾ These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number. 0101 0000 = PIC18F87J93 family devices

Note 1: The values for DEV<10:3> may be shared with other device families. The specific device is always identified by using the entire DEV<10:0> bit sequence.

4.0 ELECTRICAL CHARACTERISTICS

Note: Other than some basic data, this section documents only the PIC18F87J93 family devices' specifications that differ from those of the PIC18F87J90 family devices. For detailed information on the electrical specifications shared by the PIC18F87J93 family and PIC18F87J90 family devices, see the "PIC18F87J90 Family Data Sheet" (DS39933).

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +100°C
Storage temperature	65°C to +150°C
Voltage on any digital only I/O pin or MCLR with respect to Vss (except VDD)	0.3V to 6.0V
Voltage on any combined digital and analog pin with respect to Vss (except VDD and $\overline{\text{MCLR}}$)	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	0.3V to 3.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sunk by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum current sunk by all ports combined	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC18F87J93 FAMILY

FIGURE 4-2: VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL)⁽¹⁾

Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	_	-	12	bit	$\Delta V \text{Ref} \ge 3.0 \text{V}$
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	$\Delta V \text{Ref} \ge 3.0 \text{V}$
A04	Edl	Differential Linearity Error		<±1	±1.5	LSB	$\Delta V \text{Ref} \geq 3.0 V$
A06	EOFF	Offset Error	_	<±1	±5	LSB	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	_	<±1	±3	LSB	$\Delta V \text{Ref} \ge 3.0 \text{V}$
A10	—	Monotonicity	Gu	uarantee	d(1)	_	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3		Vdd - Vss	V	For 12-bit resolution
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	Vdd + 0.3V	V	For 12-bit resolution
A22	Vrefl	Reference Voltage Low	Vss-0.3V	_	Vdd - 3.0V	V	For 12-bit resolution
A25	VAIN	Analog Input Voltage	Vrefl	_	Vrefh	V	Note 2
A30	ZAIN	Recommended Impedance of Analog Voltage Source		_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾			5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F87J93 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

APPENDIX A: REVISION HISTORY

Revision A (June 2009)

APPENDIX B: DEVICE DIFFERENCES

Original data sheet for PIC18F87J93 family devices.

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: PIC18F87J93 FAMILY DEVICE DIFFERENCES

Features	PIC18F66J93	PIC18F67J93	PIC18F86J93	PIC18F87J93
Program Memory (Bytes)	64K	128K	64K	128K
Program Memory (Instructions)	32768	65536	32768	65536
Interrupt Sources	28	28	29	29
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Capture/Compare/PWM Modules	2	2	2	2
Enhanced Capture/Compare/PWM Modules	3	3	3	3
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP