

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3923 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j93t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

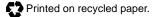
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

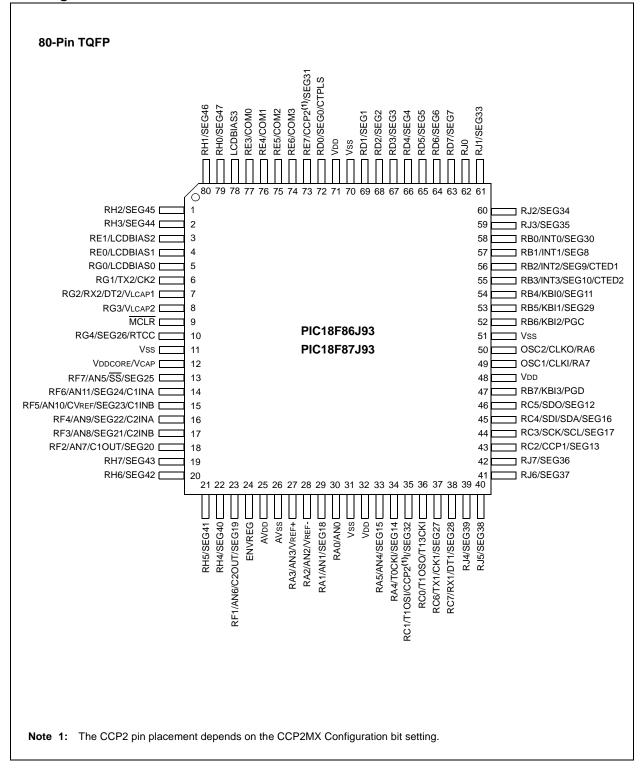
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, Omniscient Code Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002


Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Special Microcontroller Features:

- 10,000 Erase/Write Cycle Flash Program Memory, Typical
- Flash Retention 20 Years, Minimum
- Self-Programmable under Software Control
- Flash Program Memory has Word Write Capability for Data EEPROM Emulators
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s

- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug via Two Pins
- Operating Voltage Range: 2.0V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- Selectable Open-Drain Configuration for Serial Communication and CCP Pins for Driving Outputs up to 5V
- On-Chip 2.5V Regulator

Pin Diagrams – PIC18F8XJ93

Typ 30 I/O 30 I/O 29 I/O 1/O I 23 I/O 33 I/O	ST — ST ST CMOS ST Analog	Description PORTC is a bidirectional I/O port. Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input. Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output. SEG32 output for LCD.
29 1/0 1 1/0 1 1/0 0 33	— ST CMOS ST Analog	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input. Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
29 1/0 1 1/0 1 1/0 0 33	— ST CMOS ST Analog	Timer1 oscillator output. Timer1/Timer3 external clock input. Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
1/0 1 1/0 0 33	CMOS ST Analog	Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
I/O		
0	-	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.
	ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode. SEG17 output for LCD.
I/O I	ST	Digital I/O. SPI data in. I ² C data I/O. SEG16 output for LCD.
	ST Analog	Digital I/O. SPI data out. SEG12 output for LCD.
1/O O	—	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1). SEG27 output for LCD.
I/O I	ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1). SEG28 output for LCD.
	35 I/O 1/O 0 35 I/O 1 1/O 0 36 I/O 0 31 I/O 0 31 I/O 0 32 I/O 1 1/O 0 0 32 I/O 1 1/O 0 0 0 0 0 0 0 0 0 0 0 0 0	I/OSTI/OSTI/OSTOAnalogI/OSTI/OSTOAnalogI/OSTOAnalogI/OSTOAnalogI/OSTOAnalogI/OSTOAnalogI/OSTOAnalogI/OSTI/OSTI/OSTI/OSTI/OSTI/OSTOAnalog

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTE is a bidirectional I/O port.
RE0/LCDBIAS1 RE0 LCDBIAS1	2	I/O I	ST Analog	Digital I/O. BIAS1 input for LCD.
RE1/LCDBIAS2 RE1 LCDBIAS2	1	I/O I	ST Analog	Digital I/O. BIAS2 input for LCD.
LCDBIAS3	64	I	Analog	BIAS3 input for LCD.
RE3/COM0 RE3 COM0	63	I/O O	ST Analog	Digital I/O. COM0 output for LCD.
RE4/COM1 RE4 COM1	62	I/O O	ST Analog	Digital I/O. COM1 output for LCD.
RE5/COM2 RE5 COM2	61	I/O O	ST Analog	Digital I/O. COM2 output for LCD.
RE6/COM3 RE6 COM3	60	I/O O	ST Analog	Digital I/O. COM3 output for LCD.
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	59	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.
I = Input P = Power	tt Trigger input			CMOS = CMOS compatible input or output Is Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) MX Configuration bit is set

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Pin Name	Pin Number	Pin	Buffer	Description			
F III NAINE	TQFP	Туре	Туре	Description			
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/INT0/SEG30 RB0 INT0 SEG30	58	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 0. SEG30 output for LCD.			
RB1/INT1/SEG8 RB1 INT1 SEG8	57	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.			
RB2/INT2/SEG9/CTED1 RB2 INT2 SEG9 CTED1	56	I/O I O I	TTL ST Analog ST	Digital I/O. External Interrupt 2. SEG9 output for LCD. CTMU Edge 1 input.			
RB3/INT3/SEG10/ CTED2 RB3 INT3 SEG10 CTED2	55	I/O I O I	TTL ST Analog ST	Digital I/O. External Interrupt 3. SEG10 output for LCD. CTMU Edge 2 input.			
RB4/KBI0/SEG11 RB4 KBI0 SEG11	54	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.			
RB5/KBI1/SEG29 RB5 KBI1 SEG29	53	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG29 output for LCD.			
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin			
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			
PGD Legend: TTL = TTL cc ST = Schmi I = Input P = Power	tt Trigger input	I/O with C	ST MOS leve	In-Circuit Debugger and ICSP programming data pin. CMOS = CMOS compatible input or output			

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	36	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/SEG32 RC1 T1OSI CCP2 ⁽¹⁾ SEG32	35	I/O I I/O O	ST CMOS ST Analog	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output. SEG32 output for LCD.
RC2/CCP1/SEG13 RC2 CCP1 SEG13	43	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.
RC3/SCK/SCL/SEG17 RC3 SCK SCL SEG17	44	I/O I/O I/O O	ST ST ST Analog	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode. SEG17 output for LCD.
RC4/SDI/SDA/SEG16 RC4 SDI SDA SEG16	45	I/O I I/O O	ST ST ST Analog	Digital I/O. SPI data in. I ² C data I/O. SEG16 output for LCD.
RC5/SDO/SEG12 RC5 SDO SEG12	46	I/O O O	ST — Analog	Digital I/O. SPI data out. SEG12 output for LCD.
RC6/TX1/CK1/SEG27 RC6 TX1 CK1 SEG27	37	I/O O I/O O	ST — ST Analog	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1). SEG27 output for LCD.
RC7/RX1/DT1/SEG28 RC7 RX1 DT1 SEG28	38	I/O I I/O O	ST ST ST Analog	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1). SEG28 output for LCD.
	mpatible input t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

Pin Name	Pin Number	Pin	Buffer	Description			
	TQFP	Туре	Туре	Description			
				PORTD is a bidirectional I/O port.			
RD0/SEG0/CTPLS RD0 SEG0 CTPLS	72	I/O O O	ST Analog ST	Digital I/O. SEG0 output for LCD. CTMU pulse generator output.			
RD1/SEG1 RD1 SEG1	69	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.			
RD2/SEG2 RD2 SEG2	68	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.			
RD3/SEG3 RD3 SEG3	67	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.			
RD4/SEG4 RD4 SEG4	66	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.			
RD5/SEG5 RD5 SEG5	65	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.			
RD6/SEG6 RD6 SEG6	64	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.			
RD7/SEG7 RD7 SEG7	63	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.			
I = Input P = Power	tt Trigger input			CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) MX Configuration bit is set			

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Pin Name	Pin Number	Pin	Buffer	Description			
	TQFP	Туре	Туре	Description			
				PORTG is a bidirectional I/O port.			
RG0/LCDBIAS0 RG0 LCDBIAS0	5	I/O I	ST Analog	Digital I/O. BIAS0 input for LCD.			
RG1/TX2/CK2 RG1 TX2 CK2	6	I/O O I/O	ST — ST	Digital I/O. AUSART asynchronous transmit. AUSART synchronous clock (see related RX2/DT2).			
RG2/RX2/DT2/VLCAP1 RG2 RX2 DT2 VLCAP1	7	I/O I I/O I	ST ST ST Analog	Digital I/O. AUSART asynchronous receive. AUSART synchronous data (see related TX2/CK2). LCD charge pump capacitor input.			
RG3/VLCAP2 RG3 VLCAP2	8	I/O I	ST Analog	Digital I/O. LCD charge pump capacitor input.			
RG4/SEG26/RTCC RG4 SEG26 RTCC	10	I/O O O	ST Analog —	Digital I/O. SEG26 output for LCD. RTCC output.			
Legend:TTL=TTL compatible inputCMOS=CMOS compatible input or outputST=Schmitt Trigger input with CMOS levelsAnalog=Analog inputI=InputO=OutputP=PowerOD=Open-Drain (no P diode to VDD)							

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

Din Nama	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTJ is a bidirectional I/O port.			
RJ0	62	I/O	ST	Digital I/O.			
RJ1/SEG33 RJ1 SEG33	61	I/O O	ST Analog	6			
RJ2/SEG34 RJ2 SEG34	60	I/O O	ST Analog	5			
RJ3/SEG35 RJ3 SEG35	59	I/O O	ST Analog	Digital I/O. SEG35 output for LCD.			
RJ4/SEG39 RJ4 SEG39	39	I/O O	ST Analog	Digital I/O. SEG39 output for LCD.			
RJ5/SEG38 RJ5 SEG38	40	I/O O	ST Analog	Digital I/O SEG38 output for LCD.			
RJ6/SEG37 RJ6 SEG37	41	I/O O	ST Analog	Digital I/O. SEG37 output for LCD.			
RJ7/SEG36 RJ7 SEG36	42	I/O O	ST Analog	Digital I/O. SEG36 output for LCD.			
Vss	11, 31, 51, 70	Р	_	Ground reference for logic and I/O pins.			
Vdd	32, 48, 71	Р	—	Positive supply for logic and I/O pins.			
AVss	26	Р	—	Ground reference for analog modules.			
AVDD	25	P		Positive supply for analog modules.			
ENVREG	24	I	ST	Enable for on-chip voltage regulator.			
VDDCORE/VCAP VDDCORE	12	Р	_	Core logic power or external filter capacitor connection. Positive supply for microcontroller core logic (regulator disabled).			
VCAP		Р		External filter capacitor connection (regulator enabled).			
Legend: TTL = TTL ST = Sch I = Inpu P = Pow	mitt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)			

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

R/W-0	U-0	R/	W-0	R/	W-0	R/	/W-0	R	/W-0	R	/W-0	F	/W-0	
TRIGSEL	—	VC	FG1	VC	FG0	PC	FG3	PC	CFG2	P	CFG1	P	CFG0	
bit 7													bit C	
Legend:														
R = Readable			Vritable				Inimple		l bit, rea					
-n = Value at	POR	'1' = E	Bit is set			'0' = E	Bit is cle	eared		x = B	x = Bit is unknown			
bit 7	TRIGSEL: Sp	oecial T	rigger S	elect bi	it									
	1 = Selects t													
	0 = Selects t				the CC	CP2								
bit 6	Unimplemen							,						
bit 5	VCFG1: Volta	-	erence	Configu	uration	bit (VRE	F- sour	ce)						
	1 = VREF- (A 0 = AVSS	112)												
bit 4	VCFG0: Volta	age Ref	erence	Configu	uration	bit (Vre	F+ sou	rce)						
	1 = VREF+(A 0 = AVDD	N3)												
bit 3-0	PCFG<3:0>:	A/D Po	rt Confi	guratio	n Contr	ol bits:								
	PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	
	0000	Α	А	А	Α	А	Α	Α	Α	Α	Α	Α	Α	
	0001	А	А	А	А	А	Α	Α	А	Α	Α	Α	Α	
	0010	Α	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0011	Α	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0100	D	А	А	Α	А	А	Α	Α	Α	Α	А	Α	
	0101	D	D	А	Α	А	Α	Α	А	Α	Α	Α	Α	
	0110	D	D	D	Α	А	Α	Α	Α	Α	Α	Α	Α	
	0111	D	D	D	D	А	Α	Α	Α	Α	Α	Α	Α	
	1000	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	
	1001	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	
	1010	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	
	1011	D	D	D	D	D	D	D	D	Α	Α	Α	Α	
	1100	D	D	D	D	D	D	D	D	D	Α	Α	Α	
	1101	D	D	D	D	D	D	D	D	D	D	Α	Α	
	1110	D	D	D	D	D	D	D	D	D	D	D	Α	
	1111	D	D	D	D	D	D	D	D	D	D	D	D	
	A = Analog in		-	-			gital I/O							

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

D = Digital I/O

2.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding) capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(Chold)(Ric + Rss + Rs) ln(1/2048)

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ature c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048)$ µs -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) µs 1.05 µs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

2.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD.

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum		
Operation	ADCS<2:0>	Device Frequency	
2 Tosc	000	2.86 MHz	
4 Tosc	100	5.71 MHz	
8 Tosc	001	11.43 MHz	
16 Tosc	101	22.86 MHz	
32 Tosc	010	40.0 MHz	
64 Tosc	110	40.0 MHz	
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾	

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

2.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

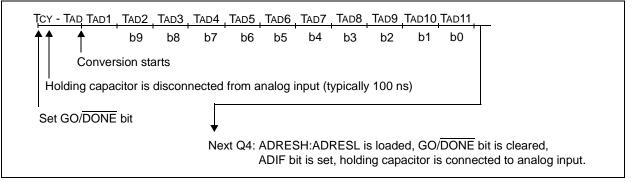
2.5 A/D Conversions

Figure 2-3 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

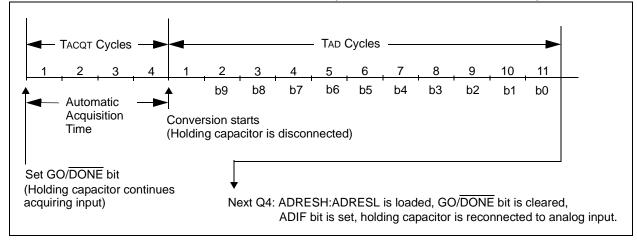
Figure 2-4 shows the operation of the A/D converter after the GO/DONE bit has been set; the ACQT<2:0> bits are set to '010' and a 4 TAD acquisition time is selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.


Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

2.6 Use of the CCP2 Trigger


An A/D conversion can be started by the "Special Event Trigger" of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

FIGURE 2-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

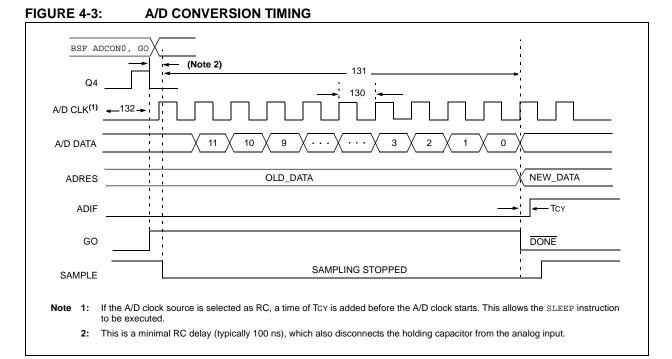
NOTES:

3.0 SPECIAL FEATURES OF THE CPU

- Note 1: This section documents only the CPU features that are different from, or in addition to, the features of the PIC18F87J90 family devices.
 - For additional details on the Configuration bits, refer to Section 24.1 "Configuration Bits" in the "PIC18F87J90 Family Data Sheet" (DS39933).

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision for device programmers and can be read by firmware using table reads.


TABLE 3-1: DEVICE ID REGISTERS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx ⁽²⁾
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 10x1 ⁽²⁾

Legend: x = unknown, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

2: See Register 3-1 and Register 3-2 for DEVID values. These registers are read-only and cannot be programmed by the user.

TABLE 4-2: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
130	Tad	A/D Clock Period	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	—	μS	
135	Tswc	Switching Time from Convert \rightarrow Sample	—	(Note 4)		
137	TDIS	Discharge Time	0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

5.0 PACKAGING INFORMATION

For packaging information, see the *"PIC18F87J93 Family Data Sheet"* (DS39933).

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	: Name	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Woul	d you like a reply? <u>Y</u>	
Devid	ce: PIC18F87J93 Family	Literature Number: DS39948A
Ques	stions:	
1. V	Vhat are the best features of this do	cument?
_		
	low does this document meet your h	nardware and software development needs?
_		
_		
3. C	Do you find the organization of this d	ocument easy to follow? If not, why?
_		
_		
4. V	Vhat additions to the document do y	ou think would enhance the structure and subject?
-		
_		
5. V	Vhat deletions from the document co	ould be made without affecting the overall usefulness?
_		
_		
6. Is	s there any incorrect or misleading in	nformation (what and where)?
-		
	lesson del construction della d	
7. ⊦	low would you improve this docume	
-		
_		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain purchasing information such as pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X <u>/XX XXX</u> Temperature Package Pattern Range	 Examples: a) PIC18F87J93-I/PT 301 = Industrial temperature, TQFP package, QTP pattern #301. b) PIC18F87J93T-I/PT = Tape and reel, Industrial temperature, TQFP package.
Device ^(1,2)	PIC18F66J93, PIC18F66J93T PIC18F67J93, PIC18F67J93T PIC18F86J93, PIC18F86J93T PIC18F87J93, PIC18F87J93T	
Temperature Range	$I = -40^{\circ}C$ to +85°C (Industrial)	
Package	PT = TQFP (Thin Quad Flatpack)	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	Note 1: F = Standard Voltage Range 2: T = In Tape and Reel